CN108588662A - 一种包含CrN扩散障层的导电复合涂层及制备方法 - Google Patents

一种包含CrN扩散障层的导电复合涂层及制备方法 Download PDF

Info

Publication number
CN108588662A
CN108588662A CN201810606625.0A CN201810606625A CN108588662A CN 108588662 A CN108588662 A CN 108588662A CN 201810606625 A CN201810606625 A CN 201810606625A CN 108588662 A CN108588662 A CN 108588662A
Authority
CN
China
Prior art keywords
crn
preparation
diffusion barrier
barrier layer
composite coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810606625.0A
Other languages
English (en)
Inventor
耿树江
赵茂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201810606625.0A priority Critical patent/CN108588662A/zh
Publication of CN108588662A publication Critical patent/CN108588662A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及高温导电防护涂层领域,特别是涉及一种包含CrN扩散障层的导电复合涂层及制备方法。该导电复合涂层包括一个CrN扩散障内层和一个导电的合金热转化外层,制备方法包括三个工序:工序一为CrN扩散障内层的制备,工序二为合金外层的制备,工序三为热处理。本发明能有效解决合金涂层与基体间的合金元素互扩散问题,改善涂层性能,避免损害基体的力学性能。

Description

一种包含CrN扩散障层的导电复合涂层及制备方法
技术领域
本发明涉及高温导电防护涂层领域,特别是涉及一种一种包含CrN扩散障层的导电复合涂层及制备方法,可用于固体氧化物燃料电池不锈钢连接体导电复合涂层及制备方法。
背景技术
固体氧化物燃料电池作为一种新型发电装置,具有转化率高、环境友好、燃料适应性广等优点,大力发展必定能有效解决全球能源问题。其中连接体作为关键部件之一,直接影响着整个电池堆的性能及使用寿命。利用铁素体不锈钢作为连接体基体材料,并在其表面制备高温导电防护涂层,如MnCo2O4、Mn1.7Cu1.3O4等尖晶石类涂层,能有效地提高连接体抗高温氧化性,抑制Cr挥发,降低面比电阻,保证燃料电池的长期稳定运行。但是,通过氧化实验发现,合金涂层在热转化过程中与不锈钢基体存在元素互扩散问题,基体中Fe,Cr元素向涂层扩散,从而改变涂层中元素种类和含量,导致涂层的化学稳定性、导电性、抗高温氧化性降低。与此同时,互扩散形成的空洞严重影响基体的力学性能。因此,在铁素体不锈钢基体与合金涂层之间制备一层扩散障层,以此来解决基体与涂层之间合金元素的互扩散问题。
已有的研究表明,合金组元在本征缺陷浓度低的氮化物,如CrN、AlN中扩散速率极低,因此这类氮化物能有效抑制合金组元扩散性能,同时考虑到不影响整个涂层的导电性能,因此选择导电性较好的CrN作为扩散障材料。利用多弧离子镀制备的CrN薄膜均匀致密缺陷少,可有效阻止热转化涂层合金与基体合金间的元素互扩散。
发明内容
为解决上述技术问题,本发明提供了一种包含CrN扩散障层的导电复合涂层及制备方法,能够有效解决合金涂层与基体间的合金元素互扩散问题,改善涂层性能,避免损害基体的力学性能。
具体技术方案如下:
一种包含CrN扩散障层的导电复合涂层,所述导电复合涂层包括一个CrN扩散障内层和一个导电的合金热转化外层。
所述CrN扩散障内层的厚度为0.5μm至5μm,连续致密,化学成分为:铬含量78~88wt%,余量为氮。
所述导电的合金热转化外层的厚度为5μm至20μm,其化学成分包括锰和铜,其中锰和铜的原子比为1.7:1.3。
一种包含CrN扩散障层的导电复合涂层的制备方法,包括如下工序,工序一为CrN扩散障内层的制备,工序二为合金外层的制备,工序三为热处理。
所述CrN扩散障内层的制备是利用多弧离子镀制备CrN扩散障内层,包括以下步骤:
(1)基体预处理工艺:将铁素体不锈钢基体经240~2000#SiC砂纸打磨后抛光,在丙酮中超声10~20min,用烘干机充分干燥;
(2)沉积CrN扩散障层:将清洗后的基体固定在转架上,放入镀膜机的真空室,真空室保持真空度1~6×10-3pa,加热至200~250℃;打开Ar流量阀,保持真空室内压力为0.1~0.6pa,通入N2调节真空室内压力为0.3~1.6pa;打开转架电源,转速为30~60r/min;对基体施加100~300V负偏压,占空比10~50%;铬靶弧源电流55~70A,靶材为铬靶材,沉积时间0.2~1.5小时;。
所述合金外层的制备是利用直流磁控溅射制备合金外层,包括以下步骤:关闭偏压电源和弧源电流,关闭N2流量阀和Ar流量阀,对真空室抽真空至1~6×10-3pa;打开Ar流量阀,保持真空室压力为0.1~0.6pa,温度为200~250℃;打开直流电源,电压200~500V,电流1~6A,靶材为MnCu靶材,沉积时间1~4小时。
所述热处理是将制备好涂层的样品置于马弗炉中,在600~800℃空气中热暴露不低于10小时,通过热处理将合金外层热转化为高温导电的尖晶石层。
所述铬靶材的纯度为99.99%。
所述MnCu靶材采用Mn和Cu质量比为1.7:1.3的合金。
与现有技术相比,本发明的有益技术效果是:
1、CrN扩散障层能有效抑制合金涂层与基体间合金元素的互扩散,改善涂层性能,避免损害基体力学性能;并且不会影响整个复合涂层的导电性能。
2、利用多弧离子镀制备的CrN薄膜均匀致密,附着力强,可调控镀膜参数得到极薄连续膜;多弧离子镀与直流磁控溅射同炉进行,一次装炉可完成全部镀膜过程,简化工艺流程。
附图说明
图1为多弧离子镀/直流磁控溅射技术制备的不锈钢基体/CrN扩散障/合金涂层截面形貌;
图2为不锈钢基体/CrN扩散障/合金热转化涂层在800℃空气中氧化168小时后的截面形貌;
图3为图2中白线处所对应的元素线扫分布图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明,但本发明的保护范围不受附图和具体实施例所限。
本发明导电复合涂层包括一个CrN扩散障内层和一个导电的合金热转化外层。其中,CrN扩散障内层的化学成分为:铬含量78~88wt%,余量为氮。导电的合金热转化外层的化学成分包括锰和铜,其中锰和铜的原子比为1.7:1.3。
基体合金表面经砂纸打磨,丙酮清洗后,利用多弧离子镀技术在基体合金上制备厚度为0.5μm至5μm的CrN扩散障层,随后采用直流磁控溅射技术在扩散障内层上制备厚度为2μm至10μm的合金外层,然后通过热处理将合金外层热转化为5μm至20μm厚的高温导电的尖晶石层。
下面通过实施例和附图对本发明进一步详细说明。
实施例1
基材采用SUS430铁素体不锈钢,基体试样为15mm×11mm×2mm,基体试样经清洗后放入镀膜机的真空室,真空室保持真空度1×10-3pa,加热至200℃;打开Ar流量阀,保持真空室内压力为0.2pa,打开N2流量阀,调节真空室内压力为0.6pa;打开转架电源,转速为30r/min;对基体施加100V负偏压,占空比30%;铬靶弧源电流65A,沉积时间1小时。关闭偏压电源和弧源电流,关闭N2流量阀和Ar流量阀,对真空室抽真空至1×10-3pa;打开Ar流量阀,保持真空室压力为0.2pa,加热至200℃,打开直流电源,电压400V,电流3A,沉积时间2小时。本实施例中,CrN扩散障内层的化学成分为:铬含量86wt%,余量为氮。合金外层中锰和铜的原子比为1.7:1.3。
如图1所示,对SUS430/CrN/Mn1.7Cu1.3涂层进行截面观察,CrN层的厚度约为3μm,均匀致密,与基体结合良好;Mn1.7Cu1.3合金层的厚度约为7μm,与CrN层紧密结合。
实施例2
基材采用Crofer22APU铁素体不锈钢,基体试样为15mm×11mm×2mm,将清洗后的基体放入镀膜机的真空室,真空室保持真空度4×10-3pa,加热至220℃;打开Ar流量阀,保持真空室内压力为0.4pa,通入N2,调节真空室内压力为0.8pa;打开转架电源,转速为40/min;对基体施加150V负偏压,占空比10%;铬靶弧源电流55A,沉积时间1.5小时。关闭偏压电源和弧源电流,关闭N2流量阀和Ar流量阀,对真空室抽真空至4×10-3pa;打开Ar流量阀,保持真空室压力为0.1pa,加热至220℃,打开直流电源,电压500V,电流6A,沉积时间1.5小时;在800℃空气中热处理10小时。随后,基体/涂层体系在800℃空气中长期氧化168小时。
如图2和图3所示,对基体/涂层体系在800℃空气中氧化168小时后的截面形貌进行观察并分析元素分布。结果表明,合金外层已经热转化为高温导电的Cu1.3Mn1.7O4尖晶石层;CrN内层部分分解,反应生成了Cr2O3,未分解的CrN层仍然连续致密,与基体结合良好。涂层与基体间未观察到明显元素互扩散,基体与涂层界面处也未发现明显空洞,表明多弧离子镀制备的CrN层有效地解决了涂层与基体间合金元素互扩散的问题,从而改善涂层性能,并且保护了基体的力学性能。
实施例3
基材采用E-Brite不锈钢,基体试样为15mm×11mm×2mm,将清洗后的基体放入镀膜机的真空室,真空室保持真空度5×10-3pa,加热至230℃;打开Ar流量阀,保持真空室内压力为0.1pa,通入N2,调节真空室内压力为0.3pa;打开转架电源,转速为50r/min;对基体施加200V负偏压,占空比20%;铬靶弧源电流60A,沉积时间0.5小时。关闭偏压电源和弧源电流,关闭N2流量阀和Ar流量阀,对真空室抽真空至5×10-3pa;打开Ar流量阀,保持真空室压力为0.3pa,加热至230℃,打开直流电源,电压300V,电流2A,沉积时间1小时;在700℃空气中热处理10小时。随后,基体/涂层体系在800℃下氧化168小时,利用四点法测量其面比电阻,结果为4.97mΩ·cm2
实施例4
基材采用E-Brite不锈钢,基体试样为15mm×11mm×2mm,将清洗后的基体放入镀膜机的真空室,真空室保持真空度6×10-3pa,加热至250℃;打开Ar流量阀,保持真空室内压力为0.6pa,通入N2,调节真空室内压力为1.6pa;打开转架电源,转速为60r/min;对基体施加300V负偏压,占空比50%;铬靶弧源电流70A,沉积时间0.2小时。关闭偏压电源和弧源电流,关闭N2流量阀和Ar流量阀,对真空室抽真空至6×10-3pa;打开Ar流量阀,保持真空室压力为0.6pa,加热至250℃,打开直流电源,电压200V,电流1A,沉积时间4小时;在600℃空气中热处理10小时。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种包含CrN扩散障层的导电复合涂层,其特征在于:所述导电复合涂层包括一个CrN扩散障内层和一个导电的合金热转化外层。
2.根据权利要求1所述的包含CrN扩散障层的导电复合涂层,其特征在于:所述CrN扩散障内层的厚度为0.5μm至5μm,连续致密,化学成分为:铬含量78~88wt%,余量为氮。
3.根据权利要求1所述的包含CrN扩散障层的导电复合涂层,其特征在于:所述导电的合金热转化外层的厚度为5μm至20μm,其化学成分包括锰和铜,其中锰和铜的原子比为1.7:1.3。
4.一种包含CrN扩散障层的导电复合涂层的制备方法,其特征在于:包括如下工序,工序一为CrN扩散障内层的制备,工序二为合金外层的制备,工序三为热处理。
5.根据权利要求4所述的包含CrN扩散障层的导电复合涂层的制备方法,其特征在于:所述CrN扩散障内层的制备是利用多弧离子镀制备CrN扩散障内层,包括以下步骤:
(1)基体预处理工艺:将铁素体不锈钢基体经240~2000#SiC砂纸打磨后抛光,在丙酮中超声10~20min,用烘干机充分干燥;
(2)沉积CrN扩散障层:将清洗后的基体固定在转架上,放入镀膜机的真空室,真空室保持真空度1~6×10-3pa,加热至200~250℃;打开Ar流量阀,保持真空室内压力为0.1~0.6pa,通入N2调节真空室内压力为0.3~1.6pa;打开转架电源,转速为30~60r/min;对基体施加100~300V负偏压,占空比10~50%;铬靶弧源电流55~70A,靶材为铬靶材,沉积时间0.2~1.5小时。
6.根据权利要求4所述的包含CrN扩散障层的导电复合涂层的制备方法,其特征在于:所述合金外层的制备是利用直流磁控溅射制备合金外层,包括以下步骤:关闭偏压电源和弧源电流,关闭N2流量阀和Ar流量阀,对真空室抽真空至1~6×10-3pa;打开Ar流量阀,保持真空室压力为0.1~0.6pa,温度为200~250℃;打开直流电源,电压200~500V,电流1~6A,靶材为MnCu靶材,沉积时间1~4小时。
7.根据权利要求4所述的包含CrN扩散障层的导电复合涂层的制备方法,其特征在于:所述热处理是将制备好涂层的样品置于马弗炉中,在600~800℃空气中热暴露不低于10小时,通过热处理将合金外层热转化为高温导电的尖晶石层。
8.根据权利要求5所述的包含CrN扩散障层的导电复合涂层的制备方法,其特征在于:所述铬靶材的纯度为99.99%。
9.根据权利要求6所述的包含CrN扩散障层的导电复合涂层的制备方法,其特征在于:所述MnCu靶材采用Mn和Cu质量比为1.7:1.3的合金。
CN201810606625.0A 2018-06-13 2018-06-13 一种包含CrN扩散障层的导电复合涂层及制备方法 Pending CN108588662A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810606625.0A CN108588662A (zh) 2018-06-13 2018-06-13 一种包含CrN扩散障层的导电复合涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810606625.0A CN108588662A (zh) 2018-06-13 2018-06-13 一种包含CrN扩散障层的导电复合涂层及制备方法

Publications (1)

Publication Number Publication Date
CN108588662A true CN108588662A (zh) 2018-09-28

Family

ID=63627494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810606625.0A Pending CN108588662A (zh) 2018-06-13 2018-06-13 一种包含CrN扩散障层的导电复合涂层及制备方法

Country Status (1)

Country Link
CN (1) CN108588662A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760803A (zh) * 2019-11-29 2020-02-07 东北大学 一种用于固体氧化物燃料电池不锈钢连接体的复合涂层及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416275A (zh) * 2004-12-17 2009-04-22 德州仪器公司 铁电电容器堆叠蚀刻清洗
CN102047454A (zh) * 2008-04-16 2011-05-04 Lg伊诺特有限公司 发光器件及其制造方法
CN102653858A (zh) * 2012-05-28 2012-09-05 哈尔滨工业大学深圳研究生院 磁控溅射与后续氧化制备MnCo尖晶石保护膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416275A (zh) * 2004-12-17 2009-04-22 德州仪器公司 铁电电容器堆叠蚀刻清洗
CN102047454A (zh) * 2008-04-16 2011-05-04 Lg伊诺特有限公司 发光器件及其制造方法
CN102653858A (zh) * 2012-05-28 2012-09-05 哈尔滨工业大学深圳研究生院 磁控溅射与后续氧化制备MnCo尖晶石保护膜的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760803A (zh) * 2019-11-29 2020-02-07 东北大学 一种用于固体氧化物燃料电池不锈钢连接体的复合涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN110055496B (zh) 一种在核用锆合金基底表面制备Cr涂层的制备工艺
Talic et al. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects
Molin et al. Microstructural and electrical characterization of Mn-Co spinel protective coatings for solid oxide cell interconnects
CN109560289B (zh) 一种金属双极板及其制备方法以及燃料电池
CN111424242B (zh) 一种抗cmas双层结构防护涂层、热障涂层多层结构及其制备方法
Sønderby et al. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells
CN104404467B (zh) 一种过渡金属硼化物涂层及其制备方法
CN103668095A (zh) 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN106435489B (zh) 一种铌基表面抗氧化自愈合Cr/NiCr涂层的制备方法
CN209401743U (zh) 一种金属双极板以及燃料电池
CN100393909C (zh) 用电子束物理气相沉积多孔树枝晶陶瓷层的热障涂层方法
Sønderby et al. Strontium diffusion in magnetron sputtered gadolinia‐doped ceria thin film barrier coatings for solid oxide fuel cells
CN109913771A (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN104561891A (zh) 双成分梯度阻氢渗透涂层及其制备方法
CN109755592A (zh) 一种金属双极板及其制备方法以及燃料电池
Zhao et al. Comparison of electroplating and sputtering Ni for Ni/NiFe2 dual layer coating on ferritic stainless steel interconnect
CN108588662A (zh) 一种包含CrN扩散障层的导电复合涂层及制备方法
CN107675134A (zh) 一种烧结钕铁硼永磁体表面氮化物复合镀层及制备方法
Tao et al. Anti-corrosion performance of Si-surface-alloying NdFeB magnets obtained with magnetron sputtering and thermal diffusion
CN105385997B (zh) 一种Cr2O3薄膜体系及其制备方法
CN112962065B (zh) 一种镍基合金表面复合结构涂层及其制备方法
Liu et al. Developing TiAlN coatings for intermediate temperature solid oxide fuel cell interconnect applications
Baba et al. Corrosion-resistant titanium nitride coatings formed on stainless steel by ion-beam-assisted deposition
CN109576644A (zh) 一种制备涂层导体用高钨合金基带的方法
CN105239050A (zh) 一种固体氧化物燃料电池不锈钢连接体尖晶石氧化物保护涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928