CN108585852A - 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用 - Google Patents

一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用 Download PDF

Info

Publication number
CN108585852A
CN108585852A CN201810443144.2A CN201810443144A CN108585852A CN 108585852 A CN108585852 A CN 108585852A CN 201810443144 A CN201810443144 A CN 201810443144A CN 108585852 A CN108585852 A CN 108585852A
Authority
CN
China
Prior art keywords
luminous
zirconate
piezoelectric ceramic
temperature
magnesium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810443144.2A
Other languages
English (en)
Other versions
CN108585852B (zh
Inventor
孙恩伟
赵燕
戚旭东
祁旭昕
孙晔
吕伟明
杨彬
曹文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810443144.2A priority Critical patent/CN108585852B/zh
Publication of CN108585852A publication Critical patent/CN108585852A/zh
Application granted granted Critical
Publication of CN108585852B publication Critical patent/CN108585852B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Composite Materials (AREA)

Abstract

一种镨掺杂铌铟镁酸铅‑钛酸铅发光压电陶瓷、制备方法及其应用,本发明属于功能陶瓷材料领域,具体涉及一种镨掺杂铌铟镁酸铅‑钛酸铅发光压电陶瓷、制备方法及其应用。本发明要解决现有稀土元素掺杂压电陶瓷机电性能偏低的问题。压电陶瓷的化学式为0.24Pb(In1/2Nb1/2)O3‑0.42Pb(Mg1/3Nb2/3)O3‑0.34PbTiO3:xPr3+,其中x为摩尔分数,0<x≤0.02。制备方法为先合成InNbO4和MgNb2O6前驱体,然后以InNbO4、MgNb2O6、PbO、TiO2和Pr6O11为原料制备,再镀金电极及极化处理,即得到压电陶瓷。本发明用于高灵敏度温度传感和电光调控。

Description

一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其 应用
技术领域
本发明属于功能陶瓷材料领域,具体涉及一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用。
背景技术
稀土元素是化学元素周期表中具有丰富物理化学性质的一类元素。稀土发光材料一般是由稀土元素和材料主体化合物组成的,用以发光的稀土元素通常被称为发光中心或者激活剂,材料主体化合物被称为基质。稀土元素掺杂的多功能材料具备显著的可调制发光特性,而稀土元素镨掺杂的氧化物被证明具有高效的发光效率,在发光器件、光学传感器件方面表现出巨大应用潜力,引起了科学界与工业界的广泛关注。研究表明,对于具有机电耦合效应的压电基质材料,镨的发光强度强烈依赖于掺杂浓度、温度和晶场等环境因素,因而使得镨掺杂压电陶瓷发光材料在温度传感、电场传感等传感器领域有着广阔的应用。
但是,目前作为镨掺杂氧化物基质的压电材料的压电系数和机电耦合因子普遍偏低。例如,镨掺杂钛酸钡基压电陶瓷的压电系数d33为200-300pC/N,机电耦合因子kp约为50%,而镨掺杂钛酸铋钠基压电陶瓷的压电系数d33仅为80-100pC/N。基质材料较低的压电性能限制了镨掺杂氧化物在高灵敏度温度传感、电场传感领域的进一步应用。因此,制备具有高压电性能和机电耦合因子的新型镨掺杂发光压电陶瓷材料,进而通过镨离子各能级相关的荧光发射强度比值随温度变化的关系,实现高灵敏度的温度测量,具有重要的实际意义。
发明内容
本发明是要解决现有稀土元素掺杂压电陶瓷机电性能偏低的问题,而提供一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用。
一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的化学通式为0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3:xPr3+,其中x为摩尔分数,0<x≤0.02。
一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法是按以下步骤完成的:
一、采用固相反应法合成纯相的InNbO4前驱体粉体;
二、采用固相反应法合成纯相的MgNb2O6前驱体粉体;
三、以PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体为原料,采用固相反应法合成具有钙钦矿结构的预烧粉体;
四、将具有钙钦矿结构的预烧粉体放入研钵中研磨,然后转移至球磨罐中,以无水乙醇作为球磨介质在转速为120~200r/min的条件下球磨8~12h,得到球磨后的湿料,将球磨后的湿料置于温度为60~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料与粘合剂混合在10~50MPa压强下保压2~3min压成圆片,再次放入研钵中研磨,80~200目过筛后,在4~10MPa的压强下保压2~3min压成圆片,得到成型圆片;
五、将成型圆片置于坩埚中,采用具有钙钦矿结构的预烧粉体进行掩埋,以2~4℃/min的升温速率将坩埚由室温升温至500~650℃,在温度为500~650℃的条件下保温2h~4h,然后以2~4℃/min的升温速率将温度从500~650℃升温至1000~1300℃,在温度为1000~1300℃的条件下烧结5~7h,得到烧结后的陶瓷片;
六、对烧结后的陶瓷片进行表面磨平处理,然后采用小型金属溅射镀膜机对烧结后的陶瓷片镀金20~30min,得到镀金后的陶瓷片,再采用直流高压电源在温度为100~150℃、电场强度为15~20kV/cm的条件下对镀金后的陶瓷片极化处理30~60min,极化完成后,即得到镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷。
一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷用于高灵敏度温度传感和电光调控。
本发明有益效果:本发明制备的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷具有良好的机电性能和发光性能,矫顽场Ec为11kv/cm~7kv/cm,机械品质因数Qm为90~70,压电应变系数d33为550pC/N~450pC/N,机电耦合系数kp为68%~50%。本发明利用镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷的1D2-3H43P0-3H4荧光强度比值与温度的关系实现了高灵敏度的温度传感,同时实现陶瓷的电光调控。
附图说明
图1为实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的XRD谱图;
图2为实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的表面SEM图;
图3为实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的室温电滞回线;其中1表示40kV/cm,2表示30kV/cm,3表示20kV/cm,4表示10kV/cm;
图4为实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的变温发光光谱图;其中按箭头方向从上到下依次为308K、318K、328K、338K、348K、358K、368K、378K和388K不同温度的曲线;
图5为实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷温度传感拟合曲线;
图6为实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷在不同直流电压下的PL光谱图;其中按箭头方向从上到下依次为0.00kV/cm、0.63kV/cm、1.25kV/cm、1.88kV/cm和2.50kV/cm不同电场强度的曲线。
具体实施方式
本发明技术方案不限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的化学通式为0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3:xPr3+,其中x为摩尔分数,0<x≤0.02。
具体实施方式二:本实施方式一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法是按以下步骤完成的:
一、采用固相反应法合成纯相的InNbO4前驱体粉体;
二、采用固相反应法合成纯相的MgNb2O6前驱体粉体;
三、以PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体为原料,采用固相反应法合成具有钙钦矿结构的预烧粉体;
四、将具有钙钦矿结构的预烧粉体放入研钵中研磨,然后转移至球磨罐中,以无水乙醇作为球磨介质在转速为120~200r/min的条件下球磨8~12h,得到球磨后的湿料,将球磨后的湿料置于温度为60~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料与粘合剂混合在10~50MPa压强下保压2~3min压成圆片,再次放入研钵中研磨,80~200目过筛后,在4~10MPa的压强下保压2~3min压成圆片,得到成型圆片;
五、将成型圆片置于坩埚中,采用具有钙钦矿结构的预烧粉体进行掩埋,以2~4℃/min的升温速率将坩埚由室温升温至500~650℃,在温度为500~650℃的条件下保温2~4h,然后以2~4℃/min的升温速率将温度从500~650℃升温至1000~1300℃,在温度为1000~1300℃的条件下烧结5~7h,得到烧结后的陶瓷片;
六、对烧结后的陶瓷片进行表面磨平处理,然后采用小型金属溅射镀膜机对烧结后的陶瓷片镀金20~30min,得到镀金后的陶瓷片,再采用直流高压电源在温度为100~150℃、电场强度为15~20kV/cm的条件下对镀金后的陶瓷片极化处理30~60min,极化完成后,即得到镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷。
本实施方式步骤五中以2~4℃/min的升温速率将坩埚由室温升温至500~650℃,在温度为500~650℃的条件下保温2~4h的目的是排除粘合剂。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤一中采用固相反应法合成纯相的InNbO4前驱体粉体具体是按以下步骤进行的:
将In2O3和Nb2O5按照摩尔比1:1进行称取,将称取的In2O3和Nb2O5混合并置于球磨罐中,以无水乙醇作为球磨介质在转速为200~260r/min的条件下球磨40~50h,得到球磨后的湿料,将球磨后的湿料置于温度为80~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料在20~30MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以2~4℃/min的升温速率将坩埚由室温升温至1000~1200℃,在温度为1000~1200℃的条件下烧结4~7h,烧结后放入研钵中研磨成粉末,得到纯相的InNbO4前驱体粉体。其他与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三不同的是:步骤二中采用固相反应法合成纯相的MgNb2O6前驱体粉体具体是按以下步骤进行的:
将MgO和Nb2O5按照摩尔比1:1进行称取,将称取的MgO和Nb2O5混合并置于球磨罐中,以无水乙醇作为球磨介质在转速为200~260r/min的条件下球磨40~50h,得到球磨后的湿料,将球磨后的湿料置于温度为80~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料在20~30MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以2~5℃/min的升温速率将坩埚由室温升温至900~1200℃,在温度为900~1200℃的条件下烧结5~7h,烧结后放入研钵中研磨成粉末,得到纯相的MgNb2O6前驱体粉体。其他与具体实施方式二或三相同。
具体实施方式五:本实施方式与具体实施方式二至四之一不同的是:步骤三中以PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体为原料,采用固相反应法合成具有钙钦矿结构的预烧粉体具体是按以下步骤进行的:
按化学通式为0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3:xPr3+配比称取PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体,其中x为摩尔分数,0<x≤0.02,然后将称取的PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体混合,得到混合料,将混合料置于球磨罐中,以无水乙醇作为球磨介质在转速为130~200r/min的条件下球磨40~50h,得到球磨后的湿料,将球磨后的湿料置于温度为80~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料用研钵进行研磨得到混合粉末,在20~30MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以1~3℃/min的升温速率将坩埚由室温升温至700~900℃,在温度为700~900℃的条件下煅烧3~5h,得到具有钙钦矿结构的预烧粉体;所述混合料与无水乙醇的质量比为1:(1.2~1.5)。其他与具体实施方式二至四之一相同。
具体实施方式六:本实施方式与具体实施方式二至五之一不同的是:步骤四得到的成型圆片的直径为13mm。其他与具体实施方式二至五之一相同。
具体实施方式七:本实施方式与具体实施方式二至六之一不同的是:步骤四中所述粘合剂为PVA,粘合剂的添加量为干燥块料质量的3~5%。其他与具体实施方式二至六之一相同。
具体实施方式八:本实施方式一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷用于高灵敏度温度传感和电光调控。
具体实施方式九:本实施方式与具体实施方式八不同的是:镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷用于高灵敏度温度传感按以下步骤进行:在加热温度为300K~450K的范围下,采用300nm~400nm激发光对铌铟镁酸铅-钛酸铅压电陶瓷的光致发光特性进行测量,得到峰位中心分别位于492nm蓝光和603nm红光发光峰。其他与具体实施方式八相同。
具体实施方式十:本实施方式与具体实施方式八或九不同的是:镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷用于电光调控的极化电场为0.5kV/cm~3.5kV/cm。其他与具体实施方式八或九相同。
采用下述实施例验证本发明的有益效果:
实施例一:一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法是按以下步骤完成的:
一、将In2O3和Nb2O5按照摩尔比1:1进行称取,将称取的In2O3和Nb2O5混合并置于球磨罐中,以无水乙醇作为球磨介质在转速为220r/min的条件下球磨48h,得到球磨后的湿料,将球磨后的湿料置于温度为80℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料在20MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以2℃/min的升温速率将坩埚由室温升温至1100℃,在温度为1100℃的条件下烧结7h,烧结后放入研钵中研磨成粉末,得到纯相的InNbO4前驱体粉体;
二、将MgO和Nb2O5按照摩尔比1:1进行称取,将称取的MgO和Nb2O5混合并置于球磨罐中,以无水乙醇作为球磨介质在转速为220r/min的条件下球磨48h,得到球磨后的湿料,将球磨后的湿料置于温度为80℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料在20MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以3℃/min的升温速率将坩埚由室温升温至1000℃,在温度为1000℃的条件下烧结7h,烧结后放入研钵中研磨成粉末,得到纯相的MgNb2O6前驱体粉体;
三、按化学通式为0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3:xPr3+配比称取PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体,其中x为摩尔分数,x=0.005,然后将称取的PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体混合,得到混合料,将混合料置于球磨罐中,以无水乙醇作为球磨介质在转速为150r/min的条件下球磨48h,得到球磨后的湿料,将球磨后的湿料置于温度为80℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料用研钵进行研磨得到混合粉末,在20MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以2℃/min的升温速率将坩埚由室温升温至800℃,在温度为800℃的条件下煅烧4h,得到具有钙钦矿结构的预烧粉体;所述混合料与无水乙醇的质量比为1:1.3;
四、将具有钙钦矿结构的预烧粉体放入研钵中研磨,然后转移至球磨罐中,以无水乙醇作为球磨介质在转速为150r/min的条件下球磨8h,得到球磨后的湿料,将球磨后的湿料置于温度为60℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料与PVA混合在20MPa压强下保压3min压成圆片,再次放入研钵中研磨,80~200目过筛后,在6MPa的压强下保压3min压成圆片,得到成型圆片;成型圆片的直径为13mm;所述粘合剂的添加量为干燥块料质量的3~5%;
五、将成型圆片置于坩埚中,采用具有钙钦矿结构的预烧粉体进行掩埋,以2℃/min的升温速率将坩埚由室温升温至550℃,在温度为550℃的条件下保温3h,然后以2℃/min的升温速率将温度从550℃升温至1150℃,在温度为1150℃的条件下烧结6h,得到烧结后的陶瓷片;
六、对烧结后的陶瓷片进行表面磨平处理,然后采用小型金属溅射镀膜机对烧结后的陶瓷片镀金20min,得到镀金后的陶瓷片,再采用直流高压电源在温度为150℃、电场强度为20kV/cm的条件下对镀金后的陶瓷片极化处理60min,极化完成后,即得到镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷,其化学式为0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3:0.005Pr3+
对实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷进行结构和性能测试:
步骤一:将陶瓷样品研碎磨细成粉体用于X射线粉末衍射,具体测试条件为室温下,测量角度范围为10度~90度,采用的步长为0.01度,每分钟2度。根据所得X射线粉末衍射谱图,如图1所示,表明室温下镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷具有纯钙钦矿结构。
步骤二:将得到的陶瓷样品,在表面进行喷金后,用德国卡尔蔡司公司SIGMA-300扫描电镜观察陶瓷表面的形貌,如图2所示,表明陶瓷片中晶粒大小分布均匀,致密性良好。
步骤三:将所得到的镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷样品两面抛光后喷金,用于电滞回线的测试。测量不同电场下的电滞回线。在±40kv/cm的直流电压下,出现饱和现象。确定矫顽场Ec为8kv/cm~7kv/cm,如图3所示。
步骤四:测试镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷的压电性能。利用准静态d33测试仪测得的压电常数d33为500pC/N~450pC/N。
步骤五:测试镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷的其他电学参数。利用HP4294测试仪可以得到压电陶瓷在室温下的机电耦合系数、机械品质因素。机电耦合系数kp为60%~50%,机械品质因素Qm为80~70,镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷表现出了非常优异的压电、介电性能。
将实施例一得到的镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷进行温度传感和电光调控应用。
步骤一:将所得到的镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷样品两面抛光后,用HORIBA,Fluoromax-4分光光谱仪对其发光特性进行测试。用360nm激发光对铌铟镁酸铅-钛酸铅压电陶瓷样品的光致发光特性进行测量,如图4所示,得到峰位中心分别位于的492nm蓝光发光峰和603nm红光发光峰。并进一步利用其1D2-3H43P0-3H4荧光强度比值与温度的关系实现了高灵敏度的温度传感。603nm处与492nm处的激发强度的比值随温度变化的拟合曲线如图5所示,并给出了拟合的公式。拟合结果表明,其传感灵敏度为9987.1/T2,拟合度达到0.999,实现了高灵敏度的温度传感应用。
步骤二:将所得到的镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷样品两面抛光后,在0.5kv/mm~3.5kv/mm直流电场下,测量其光致发光谱,如图6所示,实现了镨掺杂铌铟镁酸铅-钛酸铅压电陶瓷的电光调控。

Claims (10)

1.一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷,其特征在于镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的化学通式为0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3:xPr3+,其中x为摩尔分数,0<x≤0.02。
2.如权利要求1所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法,其特征在于镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法是按以下步骤完成的:
一、采用固相反应法合成纯相的InNbO4前驱体粉体;
二、采用固相反应法合成纯相的MgNb2O6前驱体粉体;
三、以PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体为原料,采用固相反应法合成具有钙钦矿结构的预烧粉体;
四、将具有钙钦矿结构的预烧粉体放入研钵中研磨,然后转移至球磨罐中,以无水乙醇作为球磨介质在转速为120~200r/min的条件下球磨8~12h,得到球磨后的湿料,将球磨后的湿料置于温度为60~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料与粘合剂混合在10~50MPa压强下保压2~3min压成圆片,再次放入研钵中研磨,80~200目过筛后,在4~10MPa的压强下保压2~3min压成圆片,得到成型圆片;
五、将成型圆片置于坩埚中,采用具有钙钦矿结构的预烧粉体进行掩埋,以2~4℃/min的升温速率将坩埚由室温升温至500~650℃,在温度为500~650℃的条件下保温2~4h,然后以2~4℃/min的升温速率将温度从500~650℃升温至1000~1300℃,在温度为1000~1300℃的条件下烧结5~7h,得到烧结后的陶瓷片;
六、对烧结后的陶瓷片进行表面磨平处理,然后采用小型金属溅射镀膜机对烧结后的陶瓷片镀金20~30min,得到镀金后的陶瓷片,再采用直流高压电源在温度为100~150℃、电场强度为15~20kV/cm的条件下对镀金后的陶瓷片极化处理30~60min,极化完成后,即得到镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷。
3.根据权利要求2所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法,其特征在于步骤一中采用固相反应法合成纯相的InNbO4前驱体粉体具体是按以下步骤进行的:
将In2O3和Nb2O5按照摩尔比1:1进行称取,将称取的In2O3和Nb2O5混合并置于球磨罐中,以无水乙醇作为球磨介质在转速为200~260r/min的条件下球磨40~50h,得到球磨后的湿料,将球磨后的湿料置于温度为80~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料在20~30MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以2~4℃/min的升温速率将坩埚由室温升温至1000~1200℃,在温度为1000~1200℃的条件下烧结4~7h,烧结后放入研钵中研磨成粉末,得到纯相的InNbO4前驱体粉体。
4.根据权利要求2所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法,其特征在于步骤二中采用固相反应法合成纯相的MgNb2O6前驱体粉体具体是按以下步骤进行的:
将MgO和Nb2O5按照摩尔比1:1进行称取,将称取的MgO和Nb2O5混合并置于球磨罐中,以无水乙醇作为球磨介质在转速为200~260r/min的条件下球磨40~50h,得到球磨后的湿料,将球磨后的湿料置于温度为80~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料在20~30MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以2~5℃/min的升温速率将坩埚由室温升温至900~1200℃,在温度为900~1200℃的条件下烧结5~7h,烧结后放入研钵中研磨成粉末,得到纯相的MgNb2O6前驱体粉体。
5.根据权利要求2所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法,其特征在于步骤三中以PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体为原料,采用固相反应法合成具有钙钦矿结构的预烧粉体具体是按以下步骤进行的:
按化学通式为0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3:xPr3+配比称取PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体,其中x为摩尔分数,0<x≤0.02,然后将称取的PbO、TiO2、Pr6O11、纯相的InNbO4前驱体粉体和纯相的MgNb2O6前驱体粉体混合,得到混合料,将混合料置于球磨罐中,以无水乙醇作为球磨介质在转速为130~200r/min的条件下球磨40~50h,得到球磨后的湿料,将球磨后的湿料置于温度为80~120℃的电热鼓风干燥箱内烘干,得到干燥块料,将干燥块料用研钵进行研磨得到混合粉末,在20~30MPa压强下压成直径为30mm的圆片,将直径为30mm的圆片置于坩埚中,以1~3℃/min的升温速率将坩埚由室温升温至700~900℃,在温度为700~900℃的条件下煅烧3~5h,得到具有钙钦矿结构的预烧粉体;所述混合料与无水乙醇的质量比为1:(1.2~1.5)。
6.根据权利要求2所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法,其特征在于步骤四得到的成型圆片的直径为13mm。
7.根据权利要求2所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的制备方法,其特征在于步骤四中所述粘合剂为PVA,粘合剂的添加量为干燥块料质量的3~5%。
8.如权利要求1所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的应用,其特征在于镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷用于高灵敏度温度传感和电光调控。
9.根据权利要求8所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的应用,其特征在于镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷用于高灵敏度温度传感按以下步骤进行:在加热温度为300K~450K的范围下,采用300nm~400nm激发光对铌铟镁酸铅-钛酸铅压电陶瓷的光致发光特性进行测量,得到峰位中心分别位于492nm蓝光和603nm红光发光峰。
10.根据权利要求8所述的一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷的应用,其特征在于镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷用于电光调控的极化电场为0.5kV/cm~3.5kV/cm。
CN201810443144.2A 2018-05-10 2018-05-10 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用 Active CN108585852B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810443144.2A CN108585852B (zh) 2018-05-10 2018-05-10 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810443144.2A CN108585852B (zh) 2018-05-10 2018-05-10 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108585852A true CN108585852A (zh) 2018-09-28
CN108585852B CN108585852B (zh) 2021-04-20

Family

ID=63637050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810443144.2A Active CN108585852B (zh) 2018-05-10 2018-05-10 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108585852B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971475A (zh) * 2019-05-07 2019-07-05 常州工程职业技术学院 一种铕离子Eu3+激活的铌铟酸钙红发光荧光粉、制备方法及其应用
CN110078508A (zh) * 2019-05-07 2019-08-02 哈尔滨工业大学 一种锰掺杂铌铟锌酸铅-钛酸铅压电陶瓷、制备方法及其应用
CN113390529A (zh) * 2021-06-10 2021-09-14 松山湖材料实验室 适于超宽测温范围的荧光测温方法
CN113956040A (zh) * 2020-07-20 2022-01-21 中国科学院上海硅酸盐研究所 一种具有超高压电系数及超强光致发光性能的透明光电陶瓷材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045762A (zh) * 1988-12-09 1990-10-03 巴特尔纪念研究院 采用控制化学计量和颗粒度生产钙钛矿复合物的亚微型陶瓷粉末的方法
CN101215168A (zh) * 2008-01-16 2008-07-09 武汉理工大学 镁钽酸锆钛酸铅陶瓷的掺杂改性方法
CN101265091A (zh) * 2008-04-21 2008-09-17 天津大学 镨掺杂锆钛酸铅的压电陶瓷及其制备方法
CN102503422A (zh) * 2011-11-02 2012-06-20 宁波大学 一种钛铌镁铟酸铅热释电陶瓷及制备方法
CN103866386A (zh) * 2014-03-04 2014-06-18 西安交通大学 一种新型三元压电晶体单相原料的制备方法
CN104313696A (zh) * 2014-09-11 2015-01-28 西安交通大学 一种微波频段无介电弥散的铁电单晶材料的处理方法
CN104419984A (zh) * 2013-09-10 2015-03-18 中国科学院上海硅酸盐研究所 钙钛矿结构弛豫铁电单晶铌铟酸铅-铌镁酸铅-钛酸铅的制备方法
CN104987072A (zh) * 2015-07-17 2015-10-21 哈尔滨工业大学 高电学性能的铌铟酸铅-铌镁酸铅-钛酸铅弛豫铁电织构陶瓷及其制备方法和应用
CN105084898A (zh) * 2015-08-07 2015-11-25 哈尔滨工业大学 一种低温烧结三元系弛豫铁电陶瓷材料、制备方法及其应用
CN106890783A (zh) * 2017-03-17 2017-06-27 华中科技大学 基于pin‑pmn‑pt三元系压电单晶的一维超声相控阵探头及制备方法
WO2017193092A1 (en) * 2016-05-05 2017-11-09 Yan Yongke Giant piezoelectric voltage coefficient in grain oriented modified material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045762A (zh) * 1988-12-09 1990-10-03 巴特尔纪念研究院 采用控制化学计量和颗粒度生产钙钛矿复合物的亚微型陶瓷粉末的方法
CN101215168A (zh) * 2008-01-16 2008-07-09 武汉理工大学 镁钽酸锆钛酸铅陶瓷的掺杂改性方法
CN101265091A (zh) * 2008-04-21 2008-09-17 天津大学 镨掺杂锆钛酸铅的压电陶瓷及其制备方法
CN102503422A (zh) * 2011-11-02 2012-06-20 宁波大学 一种钛铌镁铟酸铅热释电陶瓷及制备方法
CN104419984A (zh) * 2013-09-10 2015-03-18 中国科学院上海硅酸盐研究所 钙钛矿结构弛豫铁电单晶铌铟酸铅-铌镁酸铅-钛酸铅的制备方法
CN103866386A (zh) * 2014-03-04 2014-06-18 西安交通大学 一种新型三元压电晶体单相原料的制备方法
CN104313696A (zh) * 2014-09-11 2015-01-28 西安交通大学 一种微波频段无介电弥散的铁电单晶材料的处理方法
CN104987072A (zh) * 2015-07-17 2015-10-21 哈尔滨工业大学 高电学性能的铌铟酸铅-铌镁酸铅-钛酸铅弛豫铁电织构陶瓷及其制备方法和应用
CN105084898A (zh) * 2015-08-07 2015-11-25 哈尔滨工业大学 一种低温烧结三元系弛豫铁电陶瓷材料、制备方法及其应用
WO2017193092A1 (en) * 2016-05-05 2017-11-09 Yan Yongke Giant piezoelectric voltage coefficient in grain oriented modified material
CN106890783A (zh) * 2017-03-17 2017-06-27 华中科技大学 基于pin‑pmn‑pt三元系压电单晶的一维超声相控阵探头及制备方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BYUNG-KOOK KIM等: "Superlattice reflections in Pr 3+,4+-doped Pb(Mg1/3Nb2/3)O3", 《MATERIALS LETTERS》 *
XU DONG QI等: "Electromechanical properties of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics", 《CERAMICS INTERNATIONAL》 *
吴丰民: "铁电单晶铌铟镁酸铅-钛酸铅结构", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
张学娇等: "铌镁酸铅-钛酸铅透明陶瓷电光效应的温度特性", 《中国激光》 *
徐凯等: "《材料科技》", 31 August 2004, 中国科学技术出版社 *
曲远方等: "《现代陶瓷材料及技术》", 31 May 2008, 华东理工大学出版社 *
林声和等: "《压电陶瓷》", 31 October 1979, 国防工业出版社 *
汪济奎等: "《新型功能材料导论》", 31 October 2014, 华东理工大学出版社 *
熊荣等: "稀土改性钛酸铅微粉的水热合成及其性能研究", 《高等学校化学学报》 *
陈照峰等: "《无机非金属材料学 第2版》", 29 February 2016, 西北工业大学出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971475A (zh) * 2019-05-07 2019-07-05 常州工程职业技术学院 一种铕离子Eu3+激活的铌铟酸钙红发光荧光粉、制备方法及其应用
CN110078508A (zh) * 2019-05-07 2019-08-02 哈尔滨工业大学 一种锰掺杂铌铟锌酸铅-钛酸铅压电陶瓷、制备方法及其应用
CN110078508B (zh) * 2019-05-07 2021-09-10 哈尔滨工业大学 一种锰掺杂铌铟锌酸铅-钛酸铅压电陶瓷、制备方法及其应用
CN113956040A (zh) * 2020-07-20 2022-01-21 中国科学院上海硅酸盐研究所 一种具有超高压电系数及超强光致发光性能的透明光电陶瓷材料及其制备方法
CN113956040B (zh) * 2020-07-20 2022-07-12 中国科学院上海硅酸盐研究所 一种具有超高压电系数及超强光致发光性能的透明光电陶瓷材料及其制备方法
CN113390529A (zh) * 2021-06-10 2021-09-14 松山湖材料实验室 适于超宽测温范围的荧光测温方法
CN113390529B (zh) * 2021-06-10 2023-10-27 松山湖材料实验室 适于超宽测温范围的荧光测温方法

Also Published As

Publication number Publication date
CN108585852B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN108585852A (zh) 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用
CN104016674B (zh) 一种钛酸钡基无铅压电陶瓷及其制备方法
CN108467263B (zh) 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN103787658A (zh) 无铅压电铌酸钾钠基光-电多功能材料及制备方法
CN104710173A (zh) 无铅铁电上转换荧光陶瓷材料及其制备方法和应用
CN107032782A (zh) 陶瓷材料、压电驱动器和用于制备该陶瓷材料的方法
CN105016728A (zh) 一种稀土掺杂非充满型钨青铜发光铁电材料及其制备方法
CN106938929A (zh) 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法
CN103880421A (zh) 一种高效铌酸钾钠基无铅压电荧光材料及制备方法
CN110156459A (zh) 一种基于BiAlO3掺杂BaTiO3无铅压电陶瓷储能电容器的制备方法
CN104944943B (zh) 一种具有发光特性的bnt基无铅电致伸缩材料及制备方法
CN108285341A (zh) 一种稀土掺杂的钛酸钡基陶瓷及其制备方法和同时调节压电性能和发光性能的电场调节方法
CN108409321A (zh) 一种掺杂LaMnO3的钛酸铋铁高温压电陶瓷及其制备方法
Yu et al. Strong Photoluminescence and Improved Electrical Properties in Eu-Modified SrBi 4 Ti 4 O 15 Multifunctional Ceramics
CN101941841A (zh) 一种掺杂改性的铌酸铋钙陶瓷材料及其制备方法
CN104496474B (zh) 一种紫外转换白光led透明陶瓷材料及其制备方法
CN107512910A (zh) 一种三元弛豫铁电压电材料铌镥酸铅‑铌镍酸铅‑钛酸铅及其制备方法和应用
CN107117964B (zh) 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
CN110078508B (zh) 一种锰掺杂铌铟锌酸铅-钛酸铅压电陶瓷、制备方法及其应用
CN109809815A (zh) 一种具有高饱和极化以及低剩余极化的无铅铌酸钠基反铁电陶瓷及其制备方法
CN106187167B (zh) 一种增强稀土Er离子光致发光的复合材料及其制备方法
CN1331803C (zh) (Ba1-x-ySrxYy)TiO3基电介质陶瓷材料及其制备方法
CN107540373A (zh) 一种La离子掺杂PZT基压电陶瓷材料及其制备方法
CN104830344B (zh) 一种Er3+,Yb3+共掺YOF红色上转换荧光材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant