CN107512910A - 一种三元弛豫铁电压电材料铌镥酸铅‑铌镍酸铅‑钛酸铅及其制备方法和应用 - Google Patents

一种三元弛豫铁电压电材料铌镥酸铅‑铌镍酸铅‑钛酸铅及其制备方法和应用 Download PDF

Info

Publication number
CN107512910A
CN107512910A CN201610429220.5A CN201610429220A CN107512910A CN 107512910 A CN107512910 A CN 107512910A CN 201610429220 A CN201610429220 A CN 201610429220A CN 107512910 A CN107512910 A CN 107512910A
Authority
CN
China
Prior art keywords
preparation
synthesis
hours
lunbo
ninb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610429220.5A
Other languages
English (en)
Other versions
CN107512910B (zh
Inventor
龙西法
乔显集
李修芝
王祖建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201610429220.5A priority Critical patent/CN107512910B/zh
Publication of CN107512910A publication Critical patent/CN107512910A/zh
Application granted granted Critical
Publication of CN107512910B publication Critical patent/CN107512910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种三元铁电压电材料及其制备方法和应用,所述材料的化学组成为:xPb(Lu1/2Nb1/2)O3‑yPb(Ni1/3Nb2/3)O3‑(1‑x‑y)PbTiO3,其中,x=0.17~0.43,y=0.09~0.53,所述材料属于钙钛矿型结构。所述的陶瓷材料的制备方法采用固相合成工艺。通过X‑射线粉末衍射,确定该体系为钙钛矿型结构,通过电学的测试,其具有优异的铁电性,介电性和压电性能,其在压电传感器、存储器、高性能电容器方面具有应用前景。

Description

一种三元弛豫铁电压电材料铌镥酸铅-铌镍酸铅-钛酸铅及其 制备方法和应用
技术领域
本发明涉及一种三元铁电压电陶瓷材料。具体而言,本发明涉及到同时具有铁电性和压电性的三元陶瓷,以及其合成工艺,属于功能材料学领域。
背景技术
1955年G.A.Skanavi首先在钛酸锶钡(SBT)的铁电体中发现一个明显的弥散区域,而后G.A.Smolenkii等又发现了一大类以铌镁酸铅为代表的复合钙钛矿型化合物,它们既有明显的铁电性又呈现出强烈的弛豫特性。这类材料便被称为弥散相变铁电体(DPT)或弛豫铁电体(RFE)。严格说,把具有以下介电特征的铁电体称之为弛豫铁电体:一是相变弥散,既铁电到顺电转变是一个渐变的过程,没有一个确定的居里温度Tc,表现为介电常数与温度的关系曲线中介电峰的宽化,通常将其介电常数最大值所对应的温度Tm作为一个特征温度;二是频率色散现象,即在Tm温度以下,随频率增加,介电常数下降,损耗增加,介电峰和损耗峰向高温方向移动;三是在转变温度Tm以上仍存在较大的自发极化强度。弛豫铁电体主要有复合钙钛矿型弛豫铁电体,乌青铜型弛豫铁电体和聚合物型弛豫铁电体,其中复合钙钛矿型弛豫铁电体是近年来研究最多的一类。弛豫铁电体具有极高的介电常数、相对低的烧结温度以及由弥散相变引起的较低容温变化率,大的电致伸缩系数和几乎无滞后的特点,使其在多层陶瓷电容器和新型电致伸缩器件方面有着巨大的应用前景;透明弛豫铁电体具有优异的电光和开关特性,可用于电光存储、开关和记忆元件。
目前,具有复合钙钛矿结构的铅基铁电材料在MPB区域附近表现出极其优异的性质而受到广泛关注。例如铌镍酸铅-钛酸铅,其在MPB区域具有很好的电学性能,然而其居里温度较低,限制了它在高温的应用。因此,探索新的对铌镍酸铅-钛酸铅二元体系的改性方法来提高其居里温度是很有必要的。
发明内容
本发明的目的在于针对上述提出的问题寻找一种新型的高居里温度的材料并研究其制备工艺。本发明通过研究发现,在铌镍酸铅-钛酸铅二元体系中加入铌镥酸铅,发现体系的居里温度(本发明中涉及弛豫铁电体,用Tm表征居里温度)明显提高,获得一种高居里温度的新型三元铁电压电材料。
本发明提供的一种新型三元铁电压电材料,所述材料的化学组成为:
xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3
其中,x=0.17~0.43,y=0.09~0.53,所述材料属于钙钛矿型结构。
根据本发明,所述材料具有MPB区域,该区域的电学性能最优。
根据本发明,所述三元铁电压电材料为陶瓷体。优选地,所述陶瓷体的粒径均一,致密度高。
本发明中,所述材料可简称为PLN-PNN-PT。
本发明还提供所述的三元铁电压电材料的制备方法,是采用固相合成法制备。
根据本发明,所述制备方法包括以下步骤:
(1)合成前驱体LuNbO4和NiNb2O6
(2)由步骤(1)的前驱体经固相法合成本发明的三元铁电压电材料,所述材料的化学组成为:xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3,其中,x=0.17~0.43,y=0.09~0.53。
根据本发明,步骤(1)中,初始原料包括Lu2O3、Nb2O5和NiO。优选地,初始原料按照LuNbO4和NiNb2O6分子式的化学计量比进行称量。
根据本发明,步骤(1)中,初始原料按照LuNbO4和NiNb2O6分子式的化学计量比进行称量,混合研磨,高温烧结合成前驱体LuNbO4和NiNb2O6
根据本发明,步骤(1)中,高温烧结分两步,1100-1400℃烧结0.5-3小时和900-1050℃烧结4-8小时。
根据本发明,步骤(2)具体包括以下步骤:
(2a)准备原料:步骤(1)中合成的前驱体LuNbO4和NiNb2O6以及PbO、TiO2
(2b)步骤(2a)的原料混合研磨,然后压片,预合成;
(2c)排胶;
(2d)高温烧结得到本发明的三元铁电压电材料,所述材料的化学组成为:xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3,其中,x=0.17~0.43,y=0.09~0.53。
根据本发明,步骤(2a)中,LuNbO4和NiNb2O6以及PbO、TiO2按照Pb(Lu1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3分子式的化学计量比进行称量。优选地,PbO为过量的,例如过量1~10mol%(优选2~6mol%)。本发明中,采取PbO过量的方法弥补PbO挥发造成的损失。
根据本发明,步骤(2b)中,LuNbO4和NiNb2O6研磨成粉末后再与PbO、TiO2混合研磨。优选地,与PbO、TiO2混合后加入酒精进行研磨。优选地,加入酒精后研磨的时间为1-5小时(例如2-4小时)。
根据本发明,步骤(2b)中,压片的压力为5-20MPa,例如10-15MPa。
根据本发明,步骤(2b)中,预合成的温度为600-1000℃,例如700-900℃;预合成的时间为1-5小时,例如2-4小时。
根据本发明,步骤(2c)中,将步骤(2b)预合成的产品继续研磨,之后再加入粘结剂,压片,排胶。
根据本发明,步骤(2d)中,烧结的温度为1000-1200℃;烧结时间为1-5小时。
本发明的三元铁电压电材料可用于压电传感器、存储器、电容器等方面。
本发明的有益效果为:
本发明提供了一种新型的三元铁电压电材料,通过在铌镍酸铅-钛酸铅二元体系中加入铌镥酸铅,制得所述的材料,所述材料具有高居里温度,以及优异的电学性能。具体而言,通过测试分析得到:①该三元体系的稳定性较强,比较容易得到纯相;②该三元体系的居里温度(由Tm表征)大于120℃,最高可达333℃;③该三元体系的压电系数高于270pC/N,最高可以达到378pC/N。
本发明提供了一种上述材料的简易制备方法,所述方法能够成功制备纯的钙钛矿相,避免一步合成法所产生的焦绿石结构,而且通过上述方法制备的陶瓷粒径均一,致密度高。
由于本发明的材料具有上述的优异性能,所以在压电传感器、存储器、电容器等方面具有极其广阔的应用前景。
附图说明
图1实施例1的xPLN-yPNN-(1-x-y)PT(x=0.30,y=0.29、0.31、0.33和0.35)陶瓷粉末的XRD图。
图2实施例1的0.30PLN-0.31PNN-0.39PT陶瓷的介温谱图。
图3实施例1的xPLN-yPNN-(1-x-y)PT(x=0.30,y=0.29、0.31、0.33和0.35)陶瓷的电滞回线图。
图4实施例1的xPLN-yPNN-(1-x-y)PT(x=0.30,y=0.29、0.31、0.33和0.35)陶瓷的压电常数随PNN的变化曲线。
图5(a)实施例4的xPLN-yPNN-(1-x-y)PT(x=0.17,y=0.45、0.47、0.49和0.51)陶瓷粉末的XRD图。
图5(b)实施例4的xPLN-yPNN-(1-x-y)PT(x=0.43,y=0.09、0.11、0.13和0.15)陶瓷粉末的XRD图。
图6(a)实施例4的0.17PLN-0.47PNN-0.36PT陶瓷的介温谱图。
图6(b)实施例4的0.43PLN-0.13PNN-0.44PT陶瓷的介温谱图。
图7(a)实施例4的xPLN-yPNN-(1-x-y)PT(x=0.17,y=0.45、0.47、0.49和0.51)陶瓷的电滞回线图。
图7(b)实施例4的xPLN-yPNN-(1-x-y)PT(x=0.43,y=0.09、0.11、0.13和0.15)陶瓷的电滞回线图。
图8(a)实施例4的xPLN-yPNN-(1-x-y)PT(x=0.17,y=0.45,0.47,0.49和0.51)陶瓷的压电常数随PNN的变化曲线。
图8(b)实施例4的xPLN-yPNN-(1-x-y)PT(x=0.43,y=0.09、0.11、0.13和0.15)陶瓷的压电常数随PNN的变化曲线。
具体实施方式
本发明是基于寻找新的高居里温度的铁电压电材料而进行的。PLN-PNN-PT作为一种新型的铁电压电材料,具有很好的研究价值和实用价值。
本发明还提供了一种简单高效地制备所述材料的方法,即上述的固相合成法,具体的,为两步的固相合成法。本发明中,通过反复的探索,确定了最佳的合成步骤,合成温度,合成时间,烧结温度和烧结时间等,最终得到性能最佳的陶瓷产品。
下面进一步通过实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:采用固相合成法制备具有下述结构式的陶瓷:
xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3(x=0.30,y=0.29、0.31、0.33和0.35)。
(1)将初始原料Lu2O3、Nb2O5和NiO按照LuNbO4和NiNb2O6分子式的化学计量比进行称量并混合研磨,在高温烧结炉中分别以1250℃烧结1小时和1000℃烧结6小时的方法合成前驱体LuNbO4和NiNb2O6
(2)将合成的前驱体LuNbO4和NiNb2O6研磨成粉末与PbO、TiO2按照xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3(x=0.30,y=0.29、0.31、0.33和0.35)分子式的化学计量比进行称量,且采取PbO过量4mol%的方法弥补PbO挥发造成的损失,加入酒精混合研磨两小时,然后在10MPa下压片,在800℃马弗炉中合成2小时。
(3)排胶:将预合成样品加入酒精继续研磨两小时,之后再加入少量浓度为5wt%的PVA作为粘结剂,在12MPa下压片,在550℃排胶两小时。
(4)烧结:放入1050℃-1150℃高温中烧结2小时,得到具有上述结构式的陶瓷。
实施例2:实施例1中制备的陶瓷的结构确定。
采用X-射线粉末衍射(XRD),确定所述陶瓷的结构。所用仪器为日本RIGAKU-DMAX2500粉末衍射仪(Cu靶,λ=0.154056nm,石墨单色仪),具体测试条件为室温下,测量角度范围为10-80°,采用的步长为0.02°(2θ),时间为每步2s。得到的粉末衍射结果如图1所示。
从图1可见,所制备的陶瓷均为纯的钙钛矿结构,不含焦绿石相。对于xPb(Lu1/ 2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3(x=0.30,y=0.29、0.31、0.33和0.35)陶瓷,当x=0.30,y=0.29时,该三元体系为四方钙钛矿相结构;当y=0.31时,该体系处于MPB区域,当y=0.33和0.35时,该体系为三方钙钛矿相结构。
实施例3:实施例1中制备的陶瓷的电学性能测量。
a)所述陶瓷切片、磨薄、抛光,两面涂上银胶,用于电学性能的测量。
b)介电性的测量:所用仪器为阿尔法介电/阻抗高分辨率分析仪(Novolcontrol,German),测温范围30~500℃,频率范围102~104Hz,小信号测试电压1Vrms。
c)铁电性的测量:所用仪器为TF 2000标准铁电测量系统,温度条件为室温,所加频率为10Hz。
d)压电性的测量:所用仪器为ZJ-4AN型准静态d33测量仪。
具体的测量结果如图2,图3,图4所示。
从图2可见,对于0.30PLN-0.31PNN-0.39PT而言,该体系具有明显的弛豫特性。随着频率增加,Tm从211.3℃增加到213.8℃。同PNN-PT二元体系MPB附近的Tm(120℃)相比而言,有了很大的提高。
从图3可见,矫顽场Ec随着PT含量增加而逐渐增大,而剩余极化强度Pr先增加后减小,位于MPB附近组分0.30PLN-0.31PNN-0.39PT的三元陶瓷材料具有最大的剩余极化强度Pr=32.9μC/cm2,该材料的矫顽场为Ec=15.2kV/cm。由图中各组分的测试结果可以看出,MPB附近的PLN-PNN-PT陶瓷材料具有很好的铁电性。
从图4可见,随着PT含量的增加,压电系数在283~368pC/N范围内变化。从图中可以看到,压电系数d33呈现出先增大后减小的变化趋势,在y=0.31的时候达到最大值368pC/N,即材料在MPB附近具有高压电活性。
实施例4:采用固相合成法制备具有下述结构式的陶瓷:
xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3(x=0.17,y=0.45、0.47、0.49和0.51;x=0.43,y=0.09、0.11、0.13和0.15)
(1)采用实施例1的方法合成前驱体LuNbO4和NiNb2O6
(2)将合成的前驱体LuNbO4和NiNb2O6研磨成粉末与PbO、TiO2按照xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3(x=0.17,y=0.45、0.47、0.49和0.51;x=0.43,y=0.09、0.11、0.13和0.15)分子式的化学计量比进行称量,且采取PbO过量4mol%的方法弥补PbO挥发造成的损失,加入酒精混合研磨两小时,然后在10MPa下压片,在800℃马弗炉中合成2小时。
(3)排胶:将预合成样品加入酒精继续研磨两小时,之后再加入少量浓度为5wt%的PVA作为粘结剂,在12MPa下压片,在550℃排胶两小时。
(4)烧结:放入1050℃-1150℃高温中烧结2小时,得到具有上述结构式的陶瓷。
实施例5:实施例4中制备的陶瓷的结构确定。
采用实施例2中同样的方法得到实施例4的陶瓷粉末衍射结果,如图5(a)和图5(b)所示。
从图5(a)可见,所制备的陶瓷均为纯的钙钛矿结构,不含焦绿石相。对于xPb(Lu1/ 2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3(x=0.17,y=0.45、0.47、0.49和0.51)陶瓷,当x=0.17,y=0.45时,该三元体系为四方钙钛矿相结构;当y=0.47时,该体系处于MPB区域,当y=0.49和0.51时,该体系为三方钙钛矿相结构。
从图5(b)可见,所制备的陶瓷均为纯的钙钛矿结构,不含焦绿石相。对于xPb(Lu1/ 2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3(x=0.43,y=0.09、0.11、0.13和0.15)陶瓷,当x=0.43,y=0.09时,该三元体系为四方钙钛矿相结构;当y=0.11时,该体系处于MPB区域,当y=0.13和0.15时,该体系为三方钙钛矿相结构。
实施例6:实施例4中制备的陶瓷的电学性能测量。
采用与实施例3同样的方法测定实施例4中制备的陶瓷的介电性、铁电性和压电性,具体的测量结果如图6(a)、6(b),7(a)、7(b),8(a)和8(b)所示。
从图6(a)可见,对于0.17PLN-0.47PNN-0.36PT而言,该体系具有明显的弛豫特性。随着频率增加,Tm从121℃增加到155℃。同PNN-PT二元体系MPB附近的Tm(120℃)相比而言,有所提高。
从图6(b)可见,对于0.43PLN-0.13PNN-0.44PT而言,该体系具有明显的弛豫特性。随着频率增加,Tm从299℃增加到333℃。同PNN-PT二元体系MPB附近的Tm(120℃)相比而言,有极大提高。
从图7(a)可见,矫顽场Ec随着PT含量增加而逐渐增大,而剩余极化强度Pr先增加后减小,位于MPB附近组分0.17PLN-0.47PNN-0.44PT的三元陶瓷材料具有最大的剩余极化强度Pr=27.1μC/cm2,该材料的矫顽场为Ec=8.89kV/cm。由图中各组分的测试结果可以看出,MPB附近的PLN-PNN-PT陶瓷材料具有很好的铁电性。
从图7(b)可见,矫顽场Ec随着PT含量增加而逐渐增大,而剩余极化强度Pr先增加后减小,位于MPB附近组分0.43PLN-0.11PNN-0.46PT的三元陶瓷材料具有最大的剩余极化强度Pr=32.03μC/cm2,该材料的矫顽场为Ec=21.3kV/cm。由图中各组分的测试结果可以看出,MPB附近的PLN-PNN-PT陶瓷材料具有很好的铁电性。
从图8(a)可见,随着PT含量的增加,压电系数在290~378pC/N范围内变化。从图中可以看到,压电系数d33呈现出先增大后减小的变化趋势,在y=0.47的时候达到最大值378pC/N,即材料在MPB附近具有高压电活性。
从图8(b)可见,随着PT含量的增加,压电系数在272~335pC/N范围内变化。从图中可以看到,压电系数d33呈现出先增大后减小的变化趋势,在y=0.11的时候达到最大值335pC/N,即材料在MPB附近具有高压电活性。
再次说明,上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种三元铁电压电材料,其特征在于,所述材料的化学组成为:
xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3
其中,x=0.17~0.43,y=0.09~0.53,所述材料属于钙钛矿型结构。
2.根据权利要求1所述的三元铁电压电材料,其特征在于,所述材料具有MPB区域。
优选地,所述三元铁电压电材料为陶瓷体。还优选地,所述陶瓷体的粒径均一,致密度高。
3.权利要求1或2所述的三元铁电压电材料的制备方法,其特征在于,所述材料是采用固相合成法制备。
优选地,所述制备方法包括以下步骤:
(1)合成前驱体LuNbO4和NiNb2O6
(2)由步骤(1)的前驱体经固相法合成本发明的三元铁电压电材料,所述材料的化学组成为:xPb(Lu1/2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3,其中,x=0.17~0.43,y=0.09~0.53。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,初始原料包括Lu2O3、Nb2O5和NiO。优选地,初始原料按照LuNbO4和NiNb2O6分子式的化学计量比进行称量。
优选地,步骤(1)中,初始原料按照LuNbO4和NiNb2O6分子式的化学计量比进行称量,混合研磨,高温烧结合成前驱体LuNbO4和NiNb2O6
优选地,步骤(1)中,高温烧结分两步,1100-1400℃烧结0.5-3小时和900-1050℃烧结4-8小时。
5.根据权利要求3或4所述的制备方法,其特征在于,步骤(2)具体包括以下步骤:
(2a)准备原料:步骤(1)中合成的前驱体LuNbO4和NiNb2O6以及PbO、TiO2
(2b)步骤(2a)的原料混合研磨,然后压片,预合成;
(2c)排胶;
(2d)高温烧结得到本发明的三元铁电压电材料,所述材料的化学组成为:xPb(Lu1/ 2Nb1/2)O3-yPb(Ni1/3Nb2/3)O3-(1-x-y)PbTiO3,其中,x=0.17~0.43,y=0.09~0.53。
6.根据权利要求5所述的制备方法,其特征在于,步骤(2a)中,LuNbO4和NiNb2O6以及PbO、TiO2按照Pb(Lu1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3分子式的化学计量比进行称量。优选地,PbO为过量的,例如过量1~10mol%(优选2~6mol%)。
7.根据权利要求5所述的制备方法,其特征在于,步骤(2b)中,LuNbO4和NiNb2O6研磨成粉末后再与PbO、TiO2混合研磨。优选地,与PbO、TiO2混合后加入酒精进行研磨。优选地,加入酒精后研磨的时间为1-5小时(例如2-4小时)。
优选地,步骤(2b)中,压片的压力为5-20MPa,例如10-15MPa。
优选地,步骤(2b)中,预合成的温度为600-1000℃,例如700-900℃;预合成的时间为1-5小时,例如2-4小时。
8.根据权利要求5所述的制备方法,其特征在于,步骤(2c)中,将步骤(2b)预合成的产品继续研磨,之后再加入粘结剂,压片,排胶。
9.根据权利要求5所述的制备方法,其特征在于,步骤(2d)中,烧结的温度为1000-1200℃;烧结时间为1-5小时。
10.权利要求1或2所述的三元铁电压电材料在压电传感器、存储器或电容器等中的应用。
CN201610429220.5A 2016-06-16 2016-06-16 一种三元弛豫铁电压电材料铌镥酸铅-铌镍酸铅-钛酸铅及其制备方法和应用 Active CN107512910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610429220.5A CN107512910B (zh) 2016-06-16 2016-06-16 一种三元弛豫铁电压电材料铌镥酸铅-铌镍酸铅-钛酸铅及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610429220.5A CN107512910B (zh) 2016-06-16 2016-06-16 一种三元弛豫铁电压电材料铌镥酸铅-铌镍酸铅-钛酸铅及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107512910A true CN107512910A (zh) 2017-12-26
CN107512910B CN107512910B (zh) 2019-11-26

Family

ID=60721352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610429220.5A Active CN107512910B (zh) 2016-06-16 2016-06-16 一种三元弛豫铁电压电材料铌镥酸铅-铌镍酸铅-钛酸铅及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107512910B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650888A (zh) * 2018-12-27 2019-04-19 哈尔滨工业大学 一种低温织构高电学性能三元系钛酸铅基弛豫铁电取向陶瓷及其制备方法和应用
CN111318439A (zh) * 2020-03-02 2020-06-23 上海师范大学 一种基于高居里温度压电材料的超声换能器及其制备方法
CN111370682A (zh) * 2020-03-26 2020-07-03 四川青源新材料有限公司 锂离子电池正极材料前驱体、正极材料及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447455A (zh) * 2002-03-25 2003-10-08 小川敏夫 畴控制压电单晶元件及其制造方法
CN103011816A (zh) * 2012-12-06 2013-04-03 中国科学院福建物质结构研究所 二元铁电固溶体铌镥酸铅-钛酸铅的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447455A (zh) * 2002-03-25 2003-10-08 小川敏夫 畴控制压电单晶元件及其制造方法
CN103011816A (zh) * 2012-12-06 2013-04-03 中国科学院福建物质结构研究所 二元铁电固溶体铌镥酸铅-钛酸铅的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李振荣等: "Pb(Ni1/3Nb2/3)O3-PbTiO3系统准同型相界附近的介电、热释电和压电性能", 《硅酸盐学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650888A (zh) * 2018-12-27 2019-04-19 哈尔滨工业大学 一种低温织构高电学性能三元系钛酸铅基弛豫铁电取向陶瓷及其制备方法和应用
CN111318439A (zh) * 2020-03-02 2020-06-23 上海师范大学 一种基于高居里温度压电材料的超声换能器及其制备方法
CN111370682A (zh) * 2020-03-26 2020-07-03 四川青源新材料有限公司 锂离子电池正极材料前驱体、正极材料及制备方法

Also Published As

Publication number Publication date
CN107512910B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
Yang et al. High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 ceramics
Sun et al. Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0. 98Ca0. 02Zr0. 02Ti0. 98O3 lead-free ceramics
Kalem et al. Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum
JP4529219B2 (ja) 圧電セラミックス及びその製造方法
Kalem et al. Dielectric and piezoelectric properties of PMN-PT ceramics doped with strontium
CN108238795B (zh) 一种具有高居里温度的新型三元铁电陶瓷系统及其制备方法和应用
Cen et al. Effect of Zr4+ substitution on thermal stability and electrical properties of high temperature BiFe0. 99Al0. 01O3–BaTi1− xZrxO3 ceramics
CN107512910B (zh) 一种三元弛豫铁电压电材料铌镥酸铅-铌镍酸铅-钛酸铅及其制备方法和应用
CN104844202B (zh) 一种锰锑酸铅掺杂的铌镍‑锆钛酸铅压电陶瓷
CN109704762A (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
Zhong et al. Effect of rare earth additives on the microstructure and dielectric properties of 0.67 Pb (Mg1/3Nb2/3) O3–0.33 PbTiO3 ceramics
Chen et al. Origin of ultrahigh thermal stability on dielectric permittivity and dipole glass-like behavior of 0.4 Ba0. 8Ca0. 2TiO3-0.6 Bi (Mg0. 5Ti0. 5) O3 based ceramics
CN107244912A (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
KR102380196B1 (ko) 우수한 물성을 가지는 비스무스 페라이트-티탄산 바륨계 친환경 무연 압전 세라믹스 및 그 제조방법
KR20160061175A (ko) 압전 세라믹스 조성물, 압전소자 및 그 제조방법
Tong et al. Enhanced transduction coefficient and thermal stability of 0.75 BiFeO3-0.25 BaTiO3 ceramics for high temperature piezoelectric energy harvesters applications
Perumal et al. Structural, dielectric, AC conductivity, piezoelectric and impedance spectroscopy studies on PbZr0. 52Ti0. 48O3: RE3+ (RE3+: La3+, Nd3+ and Dy3+) ceramics
KR20210111525A (ko) 우수한 기계적 품질 계수 및 높은 상전이 온도를 가지는 무연 압전 세라믹스 및 그 제조방법
CN104402426B (zh) 一种铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
Dumitru et al. Investigations on the doping effects on the properties of piezoelectric ceramics
CN107311643A (zh) 宽工作温区高介电性能的无铅电子陶瓷材料及制备方法
CN102584230B (zh) 一种高压电系数、高电致应变低温烧结的压电陶瓷材料及其制备方法
Sadhasivam et al. Lead free high Tc piezoelectric Sr2Nb2O7-La2Ti2O7 solid solution: A structural, dielectric ferroelectric and piezoelectric studies
US5425889A (en) Method for producing a piezoceramic
KR20080108781A (ko) 비납계 압전 세라믹스 조성물 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant