CN111318439A - 一种基于高居里温度压电材料的超声换能器及其制备方法 - Google Patents

一种基于高居里温度压电材料的超声换能器及其制备方法 Download PDF

Info

Publication number
CN111318439A
CN111318439A CN202010137112.7A CN202010137112A CN111318439A CN 111318439 A CN111318439 A CN 111318439A CN 202010137112 A CN202010137112 A CN 202010137112A CN 111318439 A CN111318439 A CN 111318439A
Authority
CN
China
Prior art keywords
ultrasonic transducer
piezoelectric
curie temperature
matching layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010137112.7A
Other languages
English (en)
Inventor
赵祥永
王巨杉
方必军
王飞飞
张巧珍
肖俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN202010137112.7A priority Critical patent/CN111318439A/zh
Publication of CN111318439A publication Critical patent/CN111318439A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本发明一种基于高居里温度压电材料的超声换能器及其制备方法,涉及超声换能器技术领域。该超声换能器由压电材料1,匹配材料层2,背衬材料层3,金属外壳4以及同轴电缆5组成,其工作频率为1MHz至100MHz。一种基于高居里温度压电陶瓷超声换能器的制备方法,包括步骤:A.测试压电陶瓷1铌镁酸铅‑铪酸铅‑钛酸的材料参数;至步骤L,表征超声换能器的声学性能。超声换能器压电系数接近500pC/N,在厚度伸缩振动模式下的机电耦合系数高达56.9%,对提升超声换能器的带宽和灵敏度具有重要作用。在高能量及较高温度的条件下使用中不会轻易退极化,在医学成像、诊断治疗以及无损检测等领域具有着重要的应用价值。

Description

一种基于高居里温度压电材料的超声换能器及其制备方法
技术领域
本发明涉及超声换能器技术领域,具体指一种基于高居里温度压电陶瓷(铌镁酸铅-铪酸铅-钛酸铅)的超声换能器及其制备方法。
背景技术
X射线成像、超声显像诊断技术、核磁共振成像技术以及计算机体层扫描技术(CT)并称为现代医学成像的四种新技术。其中,超声显像诊断由于其安全、高效的特点备受医学界欢迎。超声换能器是实现电学能量与声学能量转换的器件,在医学成像、诊断治疗以及无损检测等领域具有着重要的应用价值。
超声换能器主要由压电材料、匹配材料、背衬材料、金属外壳、同轴电缆等组成。传统的超声换能器主要采用锆钛酸铅(即商业PZT-5H压电陶瓷)和铌镁酸铅-钛酸铅PMN-PT压电单晶作为主要的压电材料,因这两种体系的压电材料存在居里温度不够高和温度稳定性能不够优异,超声换能器在使用过程中压电材料易退极化,造成换能器的性能降低。同时,现有超声换能器采用的振动模式主要有长度伸缩、径向伸缩、横向伸缩、厚度切变、厚度伸缩等,这些不仅与压电材料的形状有关,而且与压电材料振动模式的纯度有关。显而易见,高居里温度压电材料制备的超声换能器不仅可以应用于医学成像、诊断治疗等,而且可以应用于无损检测、大功率超声以及高温检测等领域。因此,探索与寻找新型耐高温、高能量及高频率的压电材料是当下超声换能器领域急需解决的技术问题。
发明内容
本发明的目的在于克服现有技术存在的缺失和不足,提出一种基于高居里温度压电陶瓷铌镁酸铅-铪酸铅-钛酸铅的超声换能器及其制备方法。
本发明一种基于高居里温度压电材料的超声换能器,由压电陶瓷,匹配材料层,背衬材料层,金属外壳,同轴电缆组成,其中,所述压电陶瓷为铌镁酸铅-铪酸铅-钛酸铅陶瓷(0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3),其厚度为20μm至1500μm,居里温度大于290℃,温度稳定性从室温保持到260℃。
所述匹配材料层为单匹配层或双匹配层。
所述背衬材料层为环氧树脂与钨粉的混合物,其声阻抗为4Mrayl至7Mrayl。
所述单匹配层使用频率范围为10MHz至100MHz;双匹配层使用频率范围为1MHz至10MHz。
本发明一种基于高居里温度压电材料的超声换能器的制备方法,包括以下步骤:
第一步,测试压电陶瓷铌镁酸铅-铪酸铅-钛酸铅(0.15PMN-0.38PH-0.47PT)的材料参数;
第二步,按照等效电路KLM模型模拟换能器的频域及时域;
第三步,将压电陶瓷依次进行机械减薄、抛光,直至厚度为20μm至1500μm;
第四步,在抛光后的压电陶瓷刷银电极;
第五步,将刷电极后的压电陶瓷极化;
第六步,在压电陶瓷一侧浇铸背衬材料层,并磨削至设定厚度;
第七步,在压电陶瓷另一侧浇铸第一匹配层,并磨削到设定厚度;
第八步,用锡焊将背衬材料层与匹配材料层之间的电极上把芯线引出;
第九步,用金属外壳将上述获得的结构进行封装;
第十步,在第一匹配层上再浇铸第二匹配层,并磨削到设定厚度;
第十一步,用同轴电缆线把引线连接;
第十二步,表征超声换能器的声学性能。
本发明超声换能器采用的压电材料压电系数接近500pC/N,在厚度伸缩振动模式下的机电耦合系数高达56.9%,对提升超声换能器的带宽和灵敏度具有重要作用。在高能量及较高温度的条件下使用中不会轻易退极化,在应用于医学成像、诊断治疗等以及无损检测,地质勘探、石油开采、核工业以及汽车制造业等行业有重要的应用价值。
附图说明
图1为本发明一种基于高居里温度压电材料的超声换能器结构示意图;
图2为本发明一种基于高居里温度压电材料的超声换能器制备方法流程框图;
图3为本发明实施例KLM等效电路模型设计超声换能器的时域及频域;
图4为本发明实施例的压电陶瓷的温度稳定性;
图5为本发明实施例实际测试得到的超声换能器的时域及频域;
图6为本发明实施例为本发明超声换能器的声场性能。
具体实施方法
以下结合附图和实例对本发明作进一步描述
本发明一种基于高居里温度压电材料超声换能器(如附图1所示),由压电陶瓷1,匹配材料层2,背衬材料层3,金属外壳4,同轴电缆5组成,其特点,所述压电陶瓷1为铌镁酸铅-铪酸铅-钛酸铅陶瓷(0.15PMN-0.38PH-0.47PT),其厚度为20μm至1500μm,居里温度大于290℃,温度稳定性从室温保持到260℃。
所述匹配材料层2为单匹配层或双匹配层。
所述背衬材料层3为环氧树脂与钨粉的混合物,其声阻抗为4Mrayl至7Mrayl。
所述双匹配层,其近压电陶瓷1侧为第一匹配层2-1,其成分为环氧树脂与氧化硅的混合物,声阻抗为7Mrayl至9Mrayl;其近待检测物体侧为第二匹配层2-2,其成分为环氧树脂,声阻抗为2Mrayl至4Mrayl。
所述单匹配层,其近待检测物体侧成分为环氧树脂,声阻抗为2Mrayl至4Mrayl。
所述单匹配层使用频率范围为10MHz至100MHz;双匹配层使用频率范围为1MHz至10MHz。
一种基于高居里温度压电材料的超声换能器的制备方法(如附图2所示),实施例包括以下步骤:
A.测试铌镁酸铅-铪酸铅-钛酸铅(0.15PMN-0.38PH-0.47PT)压电陶瓷的材料参数。
B.按照等效电路KLM模型模拟换能器的频域及时域(如附图3所示)。
C.将压电陶瓷1依次进行机械减薄、抛光,直至最佳厚度为1280μm。
D.在抛光后的压电陶瓷1刷银电极。
E.将刷电极后的压电陶瓷1极化。
F.在压电陶瓷1一侧将环氧树脂与钨粉按照1∶2的比例混合后搅拌均匀浇铸作为背衬材料层3,其声阻抗为5.4Mrayl,然后磨平至厚度为8mm。
G.在压电陶瓷1另一侧将环氧树脂与氧化硅按照1∶4的比例混合后搅拌浇铸第一匹配层2-1,其声阻抗为8Mrayl,然后磨平至厚度为0.44mm。
H.用锡焊将背衬材料层3与匹配材料层2之间的电极上把芯线引出。
I.用金属外壳4将上述获得的结构进行封装。
J.在第一匹配层2-1上将环氧树脂充分混合烘干作浇铸第二匹配层2-2,其声阻抗为3.1Mrayl,将其磨平至厚度为0.33mm。
K.用同轴电缆5把引线连接。
L.表征超声换能器的声学性能。
进一步,所述步骤D极化条件:室温下按照25kV/cm的电场在硅油中极化,极化时升压时间为900s,保压时间为600s,降压时间为900s(如附图4所示)。
所述单匹配层使用频率范围为10MHz至100MHz,则省略步骤J,并调整背衬材料层3与第一匹配层2-1的厚度。
本发明所述步骤L超声换能器的声学性能的表征,通过信号发生器(5073PR,Olympus,Japan)与示波器(Agilent 54810A Infinium)得到时域图与频域图(如图5所示)。采用声场测试仪(Onda,CA 94089,USA)测得到超声换能器的声强分布图(如图6所示)。
本发明超声换能器采用的压电材料压电系数接近500pC/N,在厚度伸缩振动模式下的机电耦合系数高达56.9%,对提升超声换能器的带宽和灵敏度具有重要作用。在高能量及较高温度的条件下使用中不会轻易退极化,在应用于医学成像、诊断治疗以及无损检测,地质勘探、石油开采、核工业以及汽车制造业等行业具有重要的应用价值。

Claims (9)

1.一种基于高居里温度压电材料的超声换能器,由压电陶瓷(1),匹配材料层(2),背衬材料层(3),金属外壳(4),同轴电缆(5)组成,其特征在于,所述压电陶瓷(1)为铌镁酸铅-铪酸铅-钛酸铅陶瓷(xPb(Mg1/3Nb2/3)O3-yPbHfO3-(1-x-y)PbTiO3);
所述匹配材料层(2)为单匹配层或双匹配层;
所述背衬材料层(3)为环氧树脂与钨粉的混合物,其声阻抗为4Mrayl至7Mrayl。
2.根据权利要求1所述的一种基于高居里温度压电材料的超声换能器,其特征在于,所述压电陶瓷(1)其厚度为20μm至1500μm,居里温度大于290℃,温度稳定性从室温保持到260℃。
3.根据权利要求1所述的一种基于高居里温度压电材料的超声换能器,其特征在于,所述双匹配层,其近压电陶瓷(1)侧为第一匹配层(2-1),成分为环氧树脂与氧化硅的混合物,声阻抗为7Mrayl至9Mrayl;其近待检测物体侧为第二匹配层(2-2),成分为环氧树脂,声阻抗为2Mrayl至4Mrayl;
所述单匹配层,其近待检测物体侧成分为环氧树脂,声阻抗为2Mrayl至4Mrayl。
4.根据权利要求1所述的一种基于高居里温度压电材料的超声换能器,其特征在于,所述单匹配层使用频率范围为10MHz至100MHz;双匹配层使用频率范围为1MHz至10MHz。
5.根据权利要求1所述的一种基于高居里温度压电材料的超声换能器,其特征在于,所述换能器的振动模式为厚度伸缩振动模式或长度伸缩振动模式。
6.一种基于高居里温度压电材料的超声换能器的制备方法,其特征在于,包括以下步骤:
A,测试压电陶瓷(1)铌镁酸铅-铪酸铅-钛酸铅(0.15PMN-0.38PH-0.47PT)的材料参数;
B,按照等效电路KLM模型模拟换能器的频域及时域;
C,将压电陶瓷(1)依次进行机械减薄、抛光,直至厚度为20μm至1500μm;
D,在抛光后的压电陶瓷(1)刷银电极;
E,将刷电极后的压电陶瓷(1)极化;
F,在压电陶瓷(1)一侧浇铸背衬材料层(3),并磨削至设定厚度;
G,在压电陶瓷(1)另一侧浇铸第一匹配层(2-1),并磨削到设定厚度;
H,用锡焊将背衬材料层(3)与匹配材料层(2)之间的电极上把芯线引出;
l,用金属外壳(4)将上述获得的结构进行封装;
J,在第一匹配层(2-1)上再浇铸第二匹配层(2-2),并磨削到设定厚度;
K,用同轴电缆(5)线把引线连接;
L,表征超声换能器的声学性能。
7.根据权利要求6所述的一种基于高居里温度压电材料的超声换能器的制备方法,其特征在于,所述步骤D极化条件:室温下按照25kV/cm的电场在硅油中极化,极化时升压时间为900s,保压时间为600s,降压时间为900s。
8.根据权利要求6、7所述的一种基于高居里温度压电材料的超声换能器的制备方法,其特征在于,所述单匹配层使用频率范围为10MHz至100MHz,则省略步骤I,并调整背衬材料层(3)与第一匹配层(2-1)的厚度。
9.根据权利要求6、7所述的一种基于高居里温度压电材料的超声换能器的制备方法,其特征在于,所述步骤H通过信号发生器(5073PR,Olympus,Japan)与示波器(Agilent54810A Infinium)实现超声换能器时域与频域的测试及采用声场测试仪(Onda,CA 94089,USA)测得超声换能器的声强分布曲线。
CN202010137112.7A 2020-03-02 2020-03-02 一种基于高居里温度压电材料的超声换能器及其制备方法 Pending CN111318439A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010137112.7A CN111318439A (zh) 2020-03-02 2020-03-02 一种基于高居里温度压电材料的超声换能器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010137112.7A CN111318439A (zh) 2020-03-02 2020-03-02 一种基于高居里温度压电材料的超声换能器及其制备方法

Publications (1)

Publication Number Publication Date
CN111318439A true CN111318439A (zh) 2020-06-23

Family

ID=71169058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010137112.7A Pending CN111318439A (zh) 2020-03-02 2020-03-02 一种基于高居里温度压电材料的超声换能器及其制备方法

Country Status (1)

Country Link
CN (1) CN111318439A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182157A (zh) * 2021-04-27 2021-07-30 之江实验室 一种柔性压电超声波换能器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761540B2 (ja) * 2013-06-28 2015-08-12 セイコーエプソン株式会社 圧電材料、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
CN106518071A (zh) * 2016-09-27 2017-03-22 四川大学 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用
CN107512910A (zh) * 2016-06-16 2017-12-26 中国科学院福建物质结构研究所 一种三元弛豫铁电压电材料铌镥酸铅‑铌镍酸铅‑钛酸铅及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761540B2 (ja) * 2013-06-28 2015-08-12 セイコーエプソン株式会社 圧電材料、圧電素子、液体噴射ヘッド、液体噴射装置、超音波センサー、圧電モーター及び発電装置
CN107512910A (zh) * 2016-06-16 2017-12-26 中国科学院福建物质结构研究所 一种三元弛豫铁电压电材料铌镥酸铅‑铌镍酸铅‑钛酸铅及其制备方法和应用
CN106518071A (zh) * 2016-09-27 2017-03-22 四川大学 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱荣峰: "高居里温度压电陶瓷PMN-PH-PT的制备及其性能研究", 《高居里温度压电陶瓷PMN-PH-PT的制备及其性能研究 *
王巨杉等: "基于0.15Pb (Mg1/3Nb2/3) O3-0.38PbHfO3-0.47PbTiO3压电陶瓷的厚度模态超声波换能器的制备及性能", 《CERAMICS INTERNATIONAL》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182157A (zh) * 2021-04-27 2021-07-30 之江实验室 一种柔性压电超声波换能器

Similar Documents

Publication Publication Date Title
Sun et al. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers
Chen et al. Eco-friendly highly sensitive transducers based on a new KNN–NTK–FM lead-free piezoelectric ceramic for high-frequency biomedical ultrasonic imaging applications
CN101524682B (zh) 压电单晶复合材料高频超声换能器及其制作方法与应用
Zhou et al. Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite
Zhou et al. Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications
Lee et al. High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics
CN103115967B (zh) 一种声发射传感器及其制备方法和应用
JPH02261437A (ja) 超音波探触子
Chen et al. High-frequency ultrasonic transducer fabricated with lead-free piezoelectric single crystal
He et al. Full tensorial elastic, piezoelectric, and dielectric properties characterization of [011]-poled PZN-9% PT single crystal
Zhu et al. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array [Correspondence]
Yang et al. High frequency needle ultrasonic transducers based on Mn doped piezoelectric single crystal
WO2010106924A1 (ja) 有機圧電材料の延伸処理方法、有機圧電材料の製造方法、超音波振動子、超音波探触子および超音波医用画像診断装置
Chen et al. Endoscopic ultrasound radial array transducers fabricated with PZT tube by a rotate-and-dice method
CN111318439A (zh) 一种基于高居里温度压电材料的超声换能器及其制备方法
Hou et al. Optimized backing layers design for high frequency broad bandwidth ultrasonic transducer
Zhang et al. Fabrication of PIMNT/Epoxy 1-3 composites and ultrasonic transducer for nondestructive evaluation
Zhou et al. Design and fabrication of PZN-7% PT single crystal high frequency angled needle ultrasound transducers
Ke et al. Broadband ultrasonic array transducer from multilayer piezoelectric ceramic with lowered co-firing temperature
Chen et al. Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers
Lau et al. Ferroelectric lead magnesium niobate–lead titanate single crystals for ultrasonic hydrophone applications
Wang et al. Fabrication and properties of the thickness mode ultrasonic transducer based on 0.15 Pb (Mg1/3Nb2/3) O3-0.38 PbHfO3-0.47 PbTiO3 piezoelectric ceramics
Zou et al. Development of cardiac phased array with large-size PZN-5.5% PT single crystals
JPH01139041A (ja) 超音波診断装置
Guan et al. Enhancement of 10 MHz single element ultrasonic transducers based on alternating current polarized PIN-PMN-PT single crystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200623

WD01 Invention patent application deemed withdrawn after publication