CN108585795B - 一种融盐法制备负温度系数热敏陶瓷材料的方法 - Google Patents

一种融盐法制备负温度系数热敏陶瓷材料的方法 Download PDF

Info

Publication number
CN108585795B
CN108585795B CN201810757948.XA CN201810757948A CN108585795B CN 108585795 B CN108585795 B CN 108585795B CN 201810757948 A CN201810757948 A CN 201810757948A CN 108585795 B CN108585795 B CN 108585795B
Authority
CN
China
Prior art keywords
temperature coefficient
ceramic material
thermal sensitive
negative temperature
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810757948.XA
Other languages
English (en)
Other versions
CN108585795A (zh
Inventor
姚金城
王军华
孔雯雯
常爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201810757948.XA priority Critical patent/CN108585795B/zh
Publication of CN108585795A publication Critical patent/CN108585795A/zh
Application granted granted Critical
Publication of CN108585795B publication Critical patent/CN108585795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种融盐法制备负温度系数热敏陶瓷材料及其制备方法,该方法以含锰、镍、铝的氧化物为原料,氯化钠和氯化钾混合盐为熔剂,在高温下发生熔融反应制备出粒径均匀,尺寸小、分散性好的粉体,然后将粉体预压成型、等静压、烧结制备出负温度系数热敏陶瓷材料。采用本发明所述方法获得的负温度系数热敏陶瓷材料,经常规方法切片、涂电极、划片、封装,制成的NTC热敏电阻产品的阻值和B值一致性较高、互换性能较好,可在中高温区100‑500℃进行温度测量与控制。

Description

一种融盐法制备负温度系数热敏陶瓷材料的方法
技术领域
本发明涉及一种融盐法制备负温度系数热敏陶瓷材料的方法。
背景技术
负温度系数热敏电阻元件的性能在很大程度上取决于热敏陶瓷粉体材料的质量,不但与纯度和结构有关,而且与粉体材料粒度、分散性以及形貌等有关。因此寻求工艺简单、易于操作放大而又能有效地提高热敏材料质量的新方法变得十分重要。
熔融盐法是近年来发展起来的制备纳米材料的新方法。熔盐合成法主要是利用反应物在盐熔融态中的溶解度,反应物在液相中能够实现原子尺度的混合,并且在液相介质中具有更快的扩散速度,这两种效应使合成反应在较短的时间内和较低的温度下完成。另外由于反应体系为液相,使得合成产物各组分配比准确、成分均匀,无偏析。同时在反应过程中,熔融盐贯穿在生成的粉体颗粒之间,阻止颗粒之间的相互连接,使合成的粉体的分散性很好,在随后的清洗过程中,有利于杂质的清除,使反应产物的纯度提高。所以采用熔盐法可以制备出理想的粉体材料。
发明内容
本发明的目的在于,提供一种熔盐法制备负温度系数热敏陶瓷材料的方法,该方法以含锰、镍、铝的氧化物为原料,氯化钠和氯化钾混合盐为反应介质,在高温下发生熔融反应制备出粒径均匀,尺寸小、分散性好的粉体,然后将粉体预压成型、等静压、烧结制备出负温度系数热敏陶瓷材料。采用本发明所述方法获得的负温度系数热敏陶瓷材料,经常规方法切片、涂电极、划片、封装,制成的NTC热敏电阻产品的阻值和B值一致性较高、互换性能较好,可在中高温区100-500℃进行温度测量与控制。本发明具有原料廉价易得,制备过程简单,不需要专用设备,物相纯度高,产物形貌可控和产量高等优势。
本发明所述的一种融盐法制备负温度系数热敏陶瓷材料的方法,其特征在于按下列步骤进行:
a、将四氧化三锰、氧化镍、氧化铝按摩尔比为锰:镍:铝=80-97:2-10:1-10称量,放入球磨罐中,加入溶剂去离子水和无水乙醇,球磨罐放置在行星式球磨机内,研磨6-10小时,得到混合物;
b、将步骤a中的混合物,放在温度80℃烘箱内烘干,然后加入氯化钠和氯化钾,用行星式球磨机继续研磨3-5小时,转速为215rpm,得到混合物,其中氯化钠和氯化钾的加入量与四氧化三锰、氧化镍、氧化铝的摩尔比为6-10:1;
c、将步骤b得到的混合物在温度600-800℃熔融反应2小时,然后用去离子水洗涤,抽滤,重复多次至滤液中无氯离子,再用无水乙醇冲洗,干燥,获得粉体;
d、将步骤c得到的粉体进行预压成型,等静压,在温度1000-1200℃烧结4小时,即可得到负温度系数热敏陶瓷材料。
步骤a中球磨罐内玛瑙球相对质量分别为大球占总重量的20%,中球占40%,小球占40%。
步骤a中球磨罐中溶剂、球、料的质量比例为1.2:1.5:1。
本发明所述的一种融盐法制备负温度系数热敏陶瓷材料的方法,该方法以含锰、镍、铝的氧化物为原料,通过加入常用低熔点混合盐氯化钠和氯化钾发生熔融反应,替代常规预烧工艺,使其产物颗粒细小,成份均匀,性质稳定,颗粒分散性好,无团聚,同时降低了烧结温度防止烧结过程中晶粒异常长大。通过本发明所述方法获得热敏陶瓷材料的材料,经过切片、涂电极、划片、焊接、封装,制成的NTC热敏电阻元件B250/300=6000×(1±1%);阻值R250℃为2-20kΩ,在1%内的成品率为50-70%,在2%以内的成品率达到75%-95%。阻值和B值一致性较高、互换性能较好。本发明具有原料廉价易得,制备过程简单,物相纯度高,产物形貌可控和产量高等优势。
具体实施方式
实施例1
a、将四氧化三锰、氧化镍、氧化铝按摩尔比为锰:镍:铝=88:7:5称量,放入球磨罐中,加入溶剂去离子水和无水乙醇,球磨罐放置在行星式球磨机内,球磨罐内玛瑙球相对质量分别为大球占总重量的20%,中球占40%,小球占40%,球磨罐中溶剂、球、料的质量比例为1.2:1.5:1,研磨9小时,得到混合物;
b、将步骤a中的混合物,放在温度80℃烘箱内烘干,然后加入氯化钠和氯化钾,用行星式球磨机继续研磨3小时,转速为215rpm,得到混合物,其中氯化钠和氯化钾的加入量与四氧化三锰、氧化镍、氧化铝的摩尔比为6:1;
c、将步骤b得到的混合物在温度800℃熔融反应2小时,然后用去离子水洗涤,抽滤,重复多次至滤液中无氯离子,再用无水乙醇冲洗,干燥,获得粉体;
d、将步骤c得到的粉体进行预压成型,等静压,在温度1000℃烧结4小时,即得到负温度系数热敏陶瓷材料;
将得到的负温度系数热敏电阻陶瓷材料,经常规方法切片、涂电极、划片、焊接引线和封装,制成的NTC热敏电阻元件,测得该材料B250/300=6000K,阻值R250℃为6kΩ,在1%内的成品率为50-70%,在2%以内的成品率达到75%-95%。
实施例2
a、将四氧化三锰、氧化镍、氧化铝按摩尔比为锰:镍:铝=97:2:1称量,放入球磨罐中,加入溶剂去离子水和无水乙醇,球磨罐放置在行星式球磨机内,球磨罐内玛瑙球相对质量分别为大球占总重量的20%,中球占40%,小球占40%,球磨罐中溶剂、球、料的质量比例为1.2:1.5:1研磨10小时,得到混合物;
b、将步骤a中的混合物,放在温度80℃烘箱内烘干,然后加入氯化钠和氯化钾,用行星式球磨机继续研磨4小时,转速为215rpm,得到混合物,其中氯化钠和氯化钾的加入量与四氧化三锰、氧化镍、氧化铝的摩尔比为8:1;
c、将步骤b得到的混合物在温度600℃熔融反应2小时,然后用去离子水洗涤,抽滤,重复多次至滤液中无氯离子,再用无水乙醇冲洗,干燥,获得粉体;
d、将步骤c得到的粉体进行预压成型,等静压,在温度1050℃烧结4小时,即得到负温度系数热敏陶瓷材料;
将得到的负温度系数热敏电阻陶瓷材料,经常规方法切片、涂电极、划片、焊接引线和封装,制成的NTC热敏电阻元件,得该材料B250/300=5950K,阻值R250℃为13kΩ,在1%内的成品率为50-70%,在2%以内的成品率达到75%-95%。
实施例3
a、将四氧化三锰、氧化镍、氧化铝按摩尔比为锰:镍:铝=80:10:10称量,放入球磨罐中,加入溶剂去离子水和无水乙醇,球磨罐放置在行星式球磨机内,球磨罐内玛瑙球相对质量分别为大球占总重量的20%,中球占40%,小球占40%,球磨罐中溶剂、球、料的质量比例为1.2:1.5:1,研磨6小时,得到混合物;
b、将步骤a中的混合物,放在温度80℃烘箱内烘干,然后加入氯化钠和氯化钾,用行星式球磨机继续研磨5小时,转速为215rpm,得到混合物,其中氯化钠和氯化钾的加入量与四氧化三锰、氧化镍、氧化铝的摩尔比为10:1;
c、将步骤b得到的混合物在温度700℃熔融反应2小时,然后用去离子水洗涤,抽滤,重复多次至滤液中无氯离子,再用无水乙醇冲洗,干燥,获得粉体;
d、将步骤c得到的粉体进行预压成型,等静压,在温度1200℃烧结4小时,即可得到负温度系数热敏陶瓷材料;
将得到的负温度系数热敏电阻陶瓷材料,经常规方法切片、涂电极、划片、焊接引线和封装,制成的NTC热敏电阻元件,测得该材料B250/300=5950K,R250℃阻值为2kΩ。在1%内的成品率为50-70%,在2%以内的成品率达到75%-95%。

Claims (3)

1.一种融盐法制备负温度系数热敏陶瓷材料的方法,其特征在于按下列步骤进行:
a、将四氧化三锰、氧化镍、氧化铝按摩尔比为锰:镍:铝=80-97:2-10:1-10称量,放入球磨罐中,加入溶剂去离子水和无水乙醇,球磨罐放置在行星式球磨机内,研磨6-10小时,得到混合物;
b、将步骤a中的混合物,放在温度80℃烘箱内烘干,然后加入氯化钠和氯化钾,用行星式球磨机继续研磨 3-5小时,转速为215rpm,得到混合物,其中氯化钠和氯化钾的加入量与四氧化三锰、氧化镍、氧化铝的摩尔比为6-10:1;
c、将步骤b得到的混合物在温度600-800℃熔融反应2小时,然后用去离子水洗涤,抽滤,重复多次至滤液中无氯离子,再用无水乙醇冲洗,干燥,获得粉体;
d、将步骤c得到的粉体进行预压成型,等静压,在温度1000-1200℃烧结4小时,即可得到负温度系数热敏陶瓷材料。
2.根据权利要求1所述的一种融盐法制备负温度系数热敏陶瓷材料的方法,其特征在于步骤a中球磨罐内玛瑙球相对质量分别为大球占总重量的20%,中球占40%,小球占40%。
3.根据权利要求1所述的一种融盐法制备负温度系数热敏陶瓷的方法,其特征在于步骤a中球磨罐中溶剂、球、料的质量比例为1.2:1.5:1。
CN201810757948.XA 2018-07-11 2018-07-11 一种融盐法制备负温度系数热敏陶瓷材料的方法 Active CN108585795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810757948.XA CN108585795B (zh) 2018-07-11 2018-07-11 一种融盐法制备负温度系数热敏陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810757948.XA CN108585795B (zh) 2018-07-11 2018-07-11 一种融盐法制备负温度系数热敏陶瓷材料的方法

Publications (2)

Publication Number Publication Date
CN108585795A CN108585795A (zh) 2018-09-28
CN108585795B true CN108585795B (zh) 2021-02-05

Family

ID=63615259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810757948.XA Active CN108585795B (zh) 2018-07-11 2018-07-11 一种融盐法制备负温度系数热敏陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN108585795B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110171949A (zh) * 2019-05-23 2019-08-27 国网江西省电力有限公司电力科学研究院 一种杆塔接地用导电混凝土及其制备方法
CN112479681B (zh) * 2020-11-24 2022-06-21 青岛三元传感技术有限公司 一种负温度系数热敏电阻芯片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357512A (zh) * 2001-07-27 2002-07-10 中国科学院新疆物理研究所 负温度系数热敏陶瓷的微波烧结方法
CN103880410A (zh) * 2014-02-14 2014-06-25 江西理工大学 熔盐法合成ZnO-Cr2O3-Fe2O3系湿敏陶瓷烧结粉体方法
CN104310992A (zh) * 2014-10-20 2015-01-28 江西理工大学 熔盐法合成La2O3-MgO-TiO2系介电陶瓷烧结粉体及其烧结方法
CN105198405A (zh) * 2015-10-13 2015-12-30 福州大学 一种电容-压敏双功能陶瓷及其制备方法
CN107162571A (zh) * 2017-05-31 2017-09-15 深圳顺络电子股份有限公司 一种多层片式ntc热敏电阻器陶瓷材料及其制备方法
CN107935596A (zh) * 2017-12-22 2018-04-20 中国科学院上海硅酸盐研究所 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357512A (zh) * 2001-07-27 2002-07-10 中国科学院新疆物理研究所 负温度系数热敏陶瓷的微波烧结方法
CN103880410A (zh) * 2014-02-14 2014-06-25 江西理工大学 熔盐法合成ZnO-Cr2O3-Fe2O3系湿敏陶瓷烧结粉体方法
CN104310992A (zh) * 2014-10-20 2015-01-28 江西理工大学 熔盐法合成La2O3-MgO-TiO2系介电陶瓷烧结粉体及其烧结方法
CN105198405A (zh) * 2015-10-13 2015-12-30 福州大学 一种电容-压敏双功能陶瓷及其制备方法
CN107162571A (zh) * 2017-05-31 2017-09-15 深圳顺络电子股份有限公司 一种多层片式ntc热敏电阻器陶瓷材料及其制备方法
CN107935596A (zh) * 2017-12-22 2018-04-20 中国科学院上海硅酸盐研究所 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Al2O3掺杂对MnCoNi系NTC热敏电阻材料性能的影响;黄霞 等;《电子元件与材料》;20110731;第30卷(第7期);25-28 *

Also Published As

Publication number Publication date
CN108585795A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
US5108515A (en) Thermoelectric material and process for production thereof
CN108585795B (zh) 一种融盐法制备负温度系数热敏陶瓷材料的方法
CN101786873B (zh) 锂离子电池电解质陶瓷膜的制备方法
CN106571422B (zh) 一种碲化铋基n型热电材料及其制备方法
US20210053840A1 (en) Co-current co-precipitation method of conio2 thermistor powders
EP2660201A1 (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
CN103030390A (zh) 一种氧化锌压敏电阻材料及制备方法
CN107400917A (zh) 一种SnSe2晶体化合物及其制备方法和应用
CN107226681B (zh) 一种低电阻率抗老化ntc热敏陶瓷材料及其制备方法
CN103183508A (zh) Ntc热敏电阻材料及制备方法和在电子器件中的应用
CN112174653B (zh) 一种高Qf低介电常数的微波介质陶瓷材料及其制备方法
CN112489906B (zh) 一种ntc热敏电阻芯片及其制备方法
CN112899586B (zh) 一种锰基非晶合金及其制备方法和应用
CN100415414C (zh) 用于制备高精度热敏电阻的纳米粉体
CN101830694B (zh) 高纯二氧化锡电极陶瓷材料及其制备方法
KR20130005105A (ko) 나노 열전분말 및 이를 이용한 열전소자
CN103964820A (zh) 一种汽车环形用高可靠负温度系数热敏电阻的制备方法
JPH0341780A (ja) 熱電材料の製造法
CN113563061A (zh) 一种用于单腔滤波器的低介电常数介质材料及其制备方法
CN110467448A (zh) 一种适于流延成型的纳米ntc陶瓷粉体及流延膜的制备方法
CN107473715B (zh) 一种三元系ntc热敏电阻材料及其制造方法
CN104370525A (zh) 一种锰钴铜体系非线性负温度系数厚膜电子浆料的制备方法
JP2750416B2 (ja) 熱電材料の製造方法
JPH06216415A (ja) 熱電変換材料の製造方法
CN114835490A (zh) 导电陶瓷材料及其制备方法和导电陶瓷体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant