CN108538611B - 一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用 - Google Patents
一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN108538611B CN108538611B CN201810154690.4A CN201810154690A CN108538611B CN 108538611 B CN108538611 B CN 108538611B CN 201810154690 A CN201810154690 A CN 201810154690A CN 108538611 B CN108538611 B CN 108538611B
- Authority
- CN
- China
- Prior art keywords
- wet tissue
- nano
- chip arrays
- cobalt acid
- acid nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 68
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 66
- 239000010941 cobalt Substances 0.000 title claims abstract description 66
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 239000002253 acid Substances 0.000 title claims abstract description 65
- 238000003491 array Methods 0.000 title claims abstract description 58
- VMWYVTOHEQQZHQ-UHFFFAOYSA-N methylidynenickel Chemical compound [Ni]#[C] VMWYVTOHEQQZHQ-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title abstract description 12
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000835 fiber Substances 0.000 claims abstract description 25
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 18
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims abstract description 13
- 239000004312 hexamethylene tetramine Substances 0.000 claims abstract description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004202 carbamide Substances 0.000 claims abstract description 12
- 229910017709 Ni Co Inorganic materials 0.000 claims abstract description 11
- 229910003267 Ni-Co Inorganic materials 0.000 claims abstract description 11
- 229910003262 Ni‐Co Inorganic materials 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 10
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 8
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000001354 calcination Methods 0.000 claims abstract description 7
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 44
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 18
- 238000009210 therapy by ultrasound Methods 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 6
- 238000006555 catalytic reaction Methods 0.000 abstract description 3
- 238000011017 operating method Methods 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 42
- 229910052759 nickel Inorganic materials 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- 229960000935 dehydrated alcohol Drugs 0.000 description 8
- 229960004756 ethanol Drugs 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 230000004087 circulation Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/44—Raw materials therefor, e.g. resins or coal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供了一种纳米片阵列钴酸镍‑碳复合材料及其制备方法和应用。该纳米片阵列钴酸镍‑碳复合材料制备方法包括以下步骤:将湿巾进行超声处理,干燥得到湿巾纤维;将硝酸镍、硝酸钴、尿素和六次甲基四胺加入到乙醇水溶液中得到混合液;将湿巾纤维于混合液中浸泡后进行水热反应得到负载有Ni‑Co前驱体的湿巾纤维基体;然后于混合气体氛围中加热煅烧反应,冷却后得到纳米片阵列钴酸镍‑碳复合材料。本发明的制备方法利用了生活常用的湿巾作为模板,有效利用了生活中的垃圾,操作方法简单、原料易得、环境友好,在清洁能源、催化等领域拥有广阔的应用前景。其作为超级电容器电极,具高的比电容及优良的循环稳定性。
Description
技术领域
本发明属于无机材料技术领域,具体涉及一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用。
背景技术
碳管由于其良好的导电性、大比表面积、低的密度和优良的电化学稳定性,使其在催化载体、锂离子电池、超级电容器和燃料电池等领域拥有十分广阔的应用前景。
双金属氧化物由于具有更多的氧化态、更好的导电性能,相比单金属氧化物具有更好的性能。其低廉的价格、丰富的资源及环境友好性,使其在超级电容器、锂离子电池和燃料电池等领域具有广阔的应用前景。钴酸镍由于其优良的性能,引起人们的广泛关注。研究者制备了各种纳米结构的钴酸镍,但是其导电性能远低于碳材料,影响了其在超级电容器、锂离子电池等领域的应用。
因此,找到一种操作简单、成本低、环保的制备高导电性能钴酸镍-碳复合材料的方法成为本领域亟待解决的问题。
发明内容
基于现有技术中复合材料存在的导电性能差、成本高、不环保等问题,本发明的目的在于提供一种利用湿巾为模板制备的纳米片阵列钴酸镍-碳复合材料的方法及其制备的纳米片阵列钴酸镍-碳复合材料。本发明的制备方法操作简单、成本低、安全和环保,制备得到的复合材料具有高导电性能和优良的循环稳定性。本发明的目的还在于提供该纳米片阵列钴酸镍-碳复合材料作为电极在超级电容器、锂离子电池或燃料电池领域中的应用。
本发明的目的通过以下技术方案得以实现:
一方面,本发明提供一种制备纳米片阵列钴酸镍-碳复合材料的方法,该方法包括以下步骤:
将湿巾进行超声处理,然后干燥得到湿巾纤维;
将硝酸镍、硝酸钴、尿素和六次甲基四胺(HMT)加入到乙醇水溶液中,搅拌均匀得到混合液;
将湿巾纤维于混合液中浸泡,使混合液充分润湿湿巾纤维表面,然后将充分润湿的湿巾纤维连同浸泡液一并转入到水热合成反应釜中进行水热反应,反应产物冷却、清洗干燥后得到负载有Ni-Co前驱体的湿巾纤维基体;
将负载有Ni-Co前驱体的湿巾纤维基体于混合气体氛围中加热煅烧反应,冷却后得到纳米片阵列钴酸镍-碳复合材料。
上述的方法中,乙醇的水溶液根据实际操作合理搭配无水乙醇和去离子水进行配制和用量选择;硝酸镍、硝酸钴、尿素和六次甲基四胺的用量根据实际操作进行合理复配。
上述的方法中,优选地,超声处理的方法为:将湿巾依次浸入到丙酮溶液、无水乙醇溶液、盐酸溶液和去离子水溶液中分别进行超声处理。
上述的方法中,丙酮溶液、无水乙醇溶液、盐酸溶液、去离子水溶液的用量根据实际操作合理选择。
上述的方法中,优选地,进行超声处理的功率均为250W,超声的时间均为5-20min;更加优选地,超声的时间均为10min。
上述的方法中,优选地,超声处理后的湿巾进行干燥的温度为50-100℃,干燥时间为12-24h;更加优选地,超声处理后的湿巾进行干燥的温度为60℃,干燥时间为12h。
上述的方法中,优选地,所述湿巾质量为1-3g;更加优选地,所述湿巾质量为1.4g。
上述的方法中,优选地,所述盐酸溶液的浓度为0.5-1mol/L;更加优选地,所述盐酸溶液的浓度为1mol/L。
上述的方法中,优选地,所述硝酸镍、所述硝酸钴、所述尿素和所述六次甲基四胺的摩尔比为(1-3):(1-4):(1-5):(2-5);更加优选地,所述硝酸镍、所述硝酸钴、所述尿素和所述六次甲基四胺的摩尔比为1:2:3.2:4.4。
上述的方法中,优选地,进行水热反应的温度为60-100℃;反应时间为4-8h。
上述的方法中,优选地,水热反应后的产物冷却后,采用无水乙醇和去离子水进行冲洗,并于50-80℃下干燥10-16h。
上述的方法中,优选地,混合气体氛围是由氧气、氮气和氩气组成的混合气体;其中,氧气、氮气和氩气的体积比为(1-8):(1-4):(1-5)。
上述的方法中,优选地,所述混合气体的流速为80-400mL·min-1。
上述的方法中,优选地,加热升温的速率为1℃/min;加热煅烧的温度为300-400℃;煅烧时间为1-4h。
另一方面,本发明还提供上述方法制备得到的纳米片阵列钴酸镍-碳复合材料。
再一方面,本发明还提供上述纳米片阵列钴酸镍-碳复合材料作为电极在超级电容器、锂离子电池或燃料电池领域中的应用。
本发明的制备方法利用了生活常用的湿巾作为模板,有效利用了生活中的垃圾,操作方法简单、原料易得、环境友好,在清洁能源、催化等领域拥有广阔的应用前景。其制备得到的纳米片阵列钴酸镍-碳复合材料能够作为超级电容器电极,在电流密度0.5Ag-1,该复合材料的比电容为2014.4Fg-1;在高的电流密度50Ag-1,该复合材料的比电容为1711.1Fg-1,经5000次循环后,其比电容仍维持了初始比电容的96.21%。尿素和六次甲基四胺的同时加入有效降低了水热反应温度,同时流动的混合气体有利于中空管和钴酸镍纳米片阵列的形成,有利于碳均匀弥散分布在纳米片钴酸镍阵列中。利用湿巾为模板制备的纳米片阵列钴酸镍具有大的比表面积,保证了纳米片阵列钴酸镍-碳复合材料与电解液充分接触,有效减小了电解液离子的扩散距离,使复合材料中的大部分物质可参与反应,使其具有高的比电容。由于碳弥散分布在纳米片阵列钴酸镍中,提高了钴酸镍的导电性。中空管结构可适应由于化学反应引起的复合材料体积膨胀,提高了复合材料的结构稳定性,结合碳材料自身的稳定性,使我们制备的复合材料具有高的比电容、良好的倍率稳定性及优良的循环稳定性,在超级电容器、锂离子电池和燃料电池领域中具有广阔的应用前景。
附图说明
图1为实施例1中的湿巾模板的SEM图;
图2为实施例1中的纳米片阵列钴酸镍-碳复合材料2000倍下的SEM图;
图3为实施例1中的纳米片阵列钴酸镍-碳复合材料5000倍下的SEM图;
图4为实施例1中的纳米片阵列钴酸镍-碳复合材料的TEM图;
图5为实施例1中的纳米片阵列钴酸镍-碳复合材料的EDS曲线;
图6为实施例1中的纳米片阵列钴酸镍-碳复合材料的XRD谱线;
图7为实施例1中的纳米片阵列钴酸镍-碳复合材料的氮气吸附/脱附曲线;
图8为实施例1中的纳米片阵列钴酸镍-碳复合材料的比电容随电流密度变化曲线;
图9为实施例1中的纳米片阵列钴酸镍-碳复合材料在电流密度30Ag-1的循环稳定性曲线,其中插图为第1次和第5000次的计时电位曲线;
图10为实施例2中纳米片阵列钴酸镍-碳复合材料500倍下的SEM图;
图11为实施例2中的纳米片阵列钴酸镍-碳复合材料的TEM图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施提供一种制备纳米片阵列钴酸镍-碳复合材料的方法,该方法包括以下步骤:
(1)将湿巾(其SEM图如图1所示)剪切成1.0cm×1.0cm的方块,依次浸入到1mol/L的盐酸溶液、丙酮溶液、无水乙醇溶液和去离子水溶液中分别进行超声处理移除湿巾表面残余的油渍及其他残留物,超声处理的功率均为250W,超声处理的时间为10min;超声处理后的湿巾在60℃真空干燥箱中干燥12h得到湿巾纤维。
(2)将1.1632g的Ni(NO3)2·6H2O(2mM)、2.3280g的Co(NO3)2·6H2O(4mM)、0.3856g(6.4mM)的尿素和2.4672g的HMT(8.8mM)加入到40mL去离子水和20mL无水乙醇中,常温下磁力搅拌20min,然后放入1.4g的湿巾纤维,继续浸泡20min,使溶液充分润湿湿巾纤维表面。
(3)然后将充分润湿的湿巾纤维连同浸泡液一并转入到水热合成反应釜的聚四氟乙烯衬套(容积为100mL)中,利用不锈钢外壳密封釜盖,将水热合成反应釜置于加热器(例如鼓风干燥箱)中内,于90℃下进行水热反应6h,反应产物自然冷却后,取出用无水乙醇和去离子水进行冲洗,去除表面残余的粉末前驱体,随后于60℃下干燥12h,得到负载有Ni-Co前驱体的湿巾纤维基体。
(4)将负载有Ni-Co前驱体的湿巾纤维在400℃、气氛为氧气、氮气和氩气(体积比为8:1:1)、流速为300mL min-1的混合气体中煅烧4h,升温速率设置为1℃min-1;待到自然冷却,即得到纳米片阵列钴酸镍-碳复合材料。
如图2所示,该纳米片阵列钴酸镍-碳复合材料为中空管状、碳弥散分布在中空管状的复合材料中。图3为该纳米片阵列钴酸镍-碳复合材料5000倍下的SEM图片,由图可看出,钴酸镍呈纳米片阵列的形貌。图4为该纳米片阵列钴酸镍-碳复合材料的TEM图片,透射电镜照片为电子束穿透样品的衍射照片,可以看出复合材料内部为中空结构,没有明显的碳纤维存在。图5为该纳米片阵列钴酸镍-碳复合材料的扫描电镜的EDS曲线,复合材料中含有C、O、Ni和Co四种元素。图6为该纳米片阵列钴酸镍-碳复合材料的XRD谱线,由图可知,复合材料为立方尖晶石结构的钴酸镍。结合图5,可确认我们制备的为钴酸镍-碳复合材料。结合图4,可确认碳均匀弥散的分布在纳米片阵列钴酸镍中。以上结果证明我们制备了碳均分弥散分布在纳米片阵列钴酸镍中空管的复合材料。图7为该纳米片阵列钴酸镍-碳复合材料的氮气吸附/脱附曲线,通过计算得到该复合材料的比表面积为106m2·g-1,其具有高的比表面积。图8为该纳米片阵列钴酸镍-碳复合材料的比电容随电流密度变化曲线。在电流密度0.5Ag-1,该复合材料的比电容为2014.4Fg-1;在高的电流密度50Ag-1,该复合材料的比电容为1711.1Fg-1。该复合材料具有高的比电容及倍率稳定性。图9为该纳米片阵列钴酸镍-碳复合材料在电流密度30Ag-1的循环稳定性曲线。其中插图为第1次和第5000次的计时电位曲线,可以看出第5000次循环测试相比第1次循环测试的计时电位曲线变化很小。经5000次循环后,其比电容仍维持了初始比电容的96.21%,仅损失了3.79%,该复合材料具有高的循环稳定性。
以上结果证明我们制备了碳均匀弥散分布在纳米片阵列钴酸镍中空管中的复合材料。该复合材料具有较高的比电容、好的倍率稳定性及良好的循环稳定性,在超级电容器领域具有广阔的应用前景。
实施例2
本实施提供一种制备纳米片阵列钴酸镍-碳复合材料的方法,该方法包括以下步骤:
(1)将湿巾(其SEM图如图1所示)剪切成1.0cm×1.0cm的方块,依次浸入到1mol/L的盐酸溶液、丙酮溶液、无水乙醇溶液和去离子水溶液中分别进行超声处理移除湿巾表面残余的油渍及其他残留物,超声处理的功率均为250W,超声处理的时间为10min;超声处理后的湿巾在60℃真空干燥箱中干燥12h得到湿巾纤维。
(2)将1.1632g的Ni(NO3)2·6H2O(2mM)、2.3280g的Co(NO3)2·6H2O(4mM)、0.3856g(6.4mM)的尿素和2.4672g的HMT(8.8mM)加入到40mL去离子水和20mL无水乙醇中,常温下磁力搅拌20min,然后放入1.4g的湿巾纤维,继续浸泡20min,使溶液充分润湿湿巾纤维表面。
(3)然后将充分润湿的湿巾纤维连同浸泡液一并转入到水热合成反应釜的聚四氟乙烯衬套(容积为100mL)中,利用不锈钢外壳密封釜盖,将水热合成反应釜置于加热器(例如鼓风干燥箱)中内,于90℃下进行水热反应6h,反应产物自然冷却后,取出用无水乙醇和去离子水进行冲洗,去除表面残余的粉末前驱体,随后于60℃下干燥12h,得到负载有Ni-Co前驱体的湿巾纤维基体。
(4)将负载有Ni-Co前驱体的湿巾纤维在300℃、气氛为氧气、氮气和氩气(体积比为2:4:4)、流速为200mL min-1的混合气体中煅烧3h,升温速率设置为1℃min-1;待到自然冷却,即得到纳米片阵列钴酸镍-碳复合材料。
图10为该纳米片阵列钴酸镍-碳复合材料500倍下的SEM图片。由图可知,该材料为内部中空的纳米片阵列钴酸镍复合材料。图11为该纳米片阵列钴酸镍-碳复合材料的TEM图片。可以看出,纳米片阵列钴酸镍均匀分布在中空管结构的碳纤维表面。以上结果表明,我们制备的材料为纳米片阵列钴酸镍-碳中空管复合材料。
该纳米片阵列钴酸镍-碳复合材料具备中空管结构,此复合材料为纳米片阵列钴酸镍-碳中空管复合材料。
将该纳米片阵列钴酸镍-碳复合材料作为超级电容器电极,在电流密度5Ag-1下,其比电容为1252Fg-1,循环5000次后,其比电容为1177Fg-1。
实施例3
本实施提供一种制备纳米片阵列钴酸镍-碳复合材料的方法,该方法包括以下步骤:
(1)将湿巾(其SEM图如图1所示)剪切成1.0cm×1.0cm的方块,依次浸入到1mol/L的盐酸溶液、丙酮溶液、无水乙醇溶液和去离子水溶液中分别进行超声处理移除湿巾表面残余的油渍及其他残留物,超声处理的功率均为250W,超声处理的时间为10min;超声处理后的湿巾在60℃真空干燥箱中干燥12h得到湿巾纤维。
(2)将1.1632g的Ni(NO3)2·6H2O(2mM)、2.3280g的Co(NO3)2·6H2O(4mM)、0.3856g(6.4mM)的尿素和2.4672g的HMT(8.8mM)加入到40mL去离子水和20mL无水乙醇中,常温下磁力搅拌20min,然后放入1.4g的湿巾纤维,继续浸泡20min,使溶液充分润湿湿巾纤维表面。
(3)然后将充分润湿的湿巾纤维连同浸泡液一并转入到水热合成反应釜的聚四氟乙烯衬套(容积为100mL)中,利用不锈钢外壳密封釜盖,将水热合成反应釜置于加热器(例如鼓风干燥箱)中内,于90℃下进行水热反应6h,反应产物自然冷却后,取出用无水乙醇和去离子水进行冲洗,去除表面残余的粉末前驱体,随后于60℃下干燥12h,得到负载有Ni-Co前驱体的湿巾纤维基体。
(4)将负载有Ni-Co前驱体的湿巾纤维在300℃、气氛为氧气、氮气和氩气(体积比为3:3:4)、流速为100mL min-1的混合气体中煅烧2h,升温速率设置为1℃min-1;待到自然冷却,即得到纳米片阵列钴酸镍-碳复合材料。
将该纳米片阵列钴酸镍-碳复合材料作为超级电容器电极,在电流密度5Ag-1下,其比电容为1368Fg-1,循环5000次后,其比电容为1286Fg-1。
本发明的制备方法利用了生活常用的湿巾作为模板,有效利用了生活中的垃圾,操作方法简单、原料易得、环境友好,在清洁能源、催化等领域拥有广阔的应用前景。其作为超级电容器电极,具高的比电容及优良的循环稳定性。
Claims (17)
1.一种制备纳米片阵列钴酸镍-碳复合材料的方法,其特征在于,该方法包括以下步骤:
将湿巾进行超声处理,然后干燥得到湿巾纤维;
将硝酸镍、硝酸钴、尿素和六次甲基四胺加入到乙醇水溶液中,搅拌均匀得到混合液;
将湿巾纤维于混合液中浸泡,使混合液充分润湿湿巾纤维表面,然后将充分润湿的湿巾纤维连同浸泡液一并转入到水热合成反应釜中进行水热反应,反应产物冷却、清洗干燥后得到负载有Ni-Co前驱体的湿巾纤维基体;
将负载有Ni-Co前驱体的湿巾纤维基体于流动的混合气体氛围中加热煅烧反应,冷却后得到纳米片阵列钴酸镍-碳复合材料;
混合气体氛围是由氧气、氮气和氩气组成的混合气体;其中,氧气、氮气和氩气的体积比为(1-8):(1-4):(1-5);所述混合气体的流速为80-400mL·min-1。
2.根据权利要求1所述的方法,其特征在于:超声处理的方法为:将湿巾依次浸入到丙酮溶液、无水乙醇溶液、盐酸溶液和去离子水溶液中分别进行超声处理。
3.根据权利要求2所述的方法,其特征在于:进行超声处理的功率均为250W,超声的时间均为5-20min。
4.根据权利要求3所述的方法,其特征在于:超声的时间均为10min。
5.根据权利要求2所述的方法,其特征在于:超声处理后的湿巾进行干燥的温度为50-100℃,干燥时间为12-24h。
6.根据权利要求5所述的方法,其特征在于:超声处理后的湿巾进行干燥的温度为60℃,干燥时间为12h。
7.根据权利要求1或2所述的方法,其特征在于:所述湿巾质量为1-3g。
8.根据权利要求7所述的方法,其特征在于:所述湿巾质量为1.4g。
9.根据权利要求2所述的方法,其特征在于:所述盐酸溶液的浓度为0.5-1mol/L。
10.根据权利要求9所述的方法,其特征在于:所述盐酸溶液的浓度为1mol/L。
11.根据权利要求1所述的方法,其特征在于:所述硝酸镍、所述硝酸钴、所述尿素和所述六次甲基四胺的摩尔比为(1-3):(1-4):(1-5):(2-5)。
12.根据权利要求11所述的方法,其特征在于:所述硝酸镍、所述硝酸钴、所述尿素和所述六次甲基四胺的摩尔比为1:2:3.2:4.4。
13.根据权利要求1所述的方法,其特征在于:进行水热反应的温度为60-100℃;反应时间为4-8h。
14.根据权利要求13所述的方法,其特征在于:水热反应后的产物冷却后,采用无水乙醇和去离子水进行冲洗,并于50-80℃下干燥10-16h。
15.根据权利要求1所述的方法,其特征在于:加热升温的速率为1℃/min;加热煅烧的温度为300-400℃;煅烧时间为1-4h。
16.权利要求1-15任一项所述方法制备得到的纳米片阵列钴酸镍-碳复合材料。
17.权利要求16所述纳米片阵列钴酸镍-碳复合材料作为电极在超级电容器、锂离子电池或燃料电池领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810154690.4A CN108538611B (zh) | 2018-02-23 | 2018-02-23 | 一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810154690.4A CN108538611B (zh) | 2018-02-23 | 2018-02-23 | 一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108538611A CN108538611A (zh) | 2018-09-14 |
CN108538611B true CN108538611B (zh) | 2019-09-06 |
Family
ID=63485809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810154690.4A Expired - Fee Related CN108538611B (zh) | 2018-02-23 | 2018-02-23 | 一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108538611B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109580737A (zh) * | 2018-11-13 | 2019-04-05 | 云南大学 | 一种非酶葡萄糖电解催化材料的制备方法 |
CN110482480B (zh) * | 2019-08-23 | 2022-09-09 | 浙江理工大学 | 一种钴镍双金属羟基亚磷酸盐棒状晶体阵列薄膜及其制备方法 |
CN110540186B (zh) * | 2019-09-10 | 2022-11-29 | 桂林电子科技大学 | 一种蚕茧状C@NiCo2O4复合材料及其制备方法和应用 |
CN111118883B (zh) * | 2019-12-31 | 2022-03-01 | 东华大学 | 一种纤维素基碳纳米纤维复合材料及其制备和应用 |
CN111261430B (zh) * | 2020-01-20 | 2022-04-26 | 陕西科技大学 | 一种纳米针状硫化钴镍/碳纸柔性电极及其制备方法 |
CN114705737B (zh) * | 2021-11-29 | 2024-02-06 | 苏州科技大学 | 碳布表面修饰金属有机框架衍生的钴酸镍纳米片阵列复合材料及其制备和应用 |
CN114914098B (zh) * | 2022-06-14 | 2023-05-12 | 湘潭大学 | 废弃湿巾衍生氮氧硫共掺杂柔性碳布的制备方法及用途 |
CN115869958B (zh) * | 2022-12-02 | 2024-06-25 | 陕西科技大学 | 一种NiCoO2/NiCo2O4-CNF催化材料及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104143450A (zh) * | 2014-07-10 | 2014-11-12 | 东华大学 | 导电聚合物包覆钴酸镍复合电极材料的制备方法 |
CN104505496A (zh) * | 2014-10-21 | 2015-04-08 | 西安交通大学 | 多孔无定形碳纳米管与金属氧化纳米片复合材料制备方法 |
CN107244877A (zh) * | 2017-05-22 | 2017-10-13 | 陕西科技大学 | 一种双金属氧化物‑碳化硅纤维多尺度增强体增强磷酸铝陶瓷基结构吸波材料及其制备方法 |
CN107342405A (zh) * | 2017-06-14 | 2017-11-10 | 三峡大学 | 一种MoS2‑xOx/碳负极材料及其制备方法 |
-
2018
- 2018-02-23 CN CN201810154690.4A patent/CN108538611B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104143450A (zh) * | 2014-07-10 | 2014-11-12 | 东华大学 | 导电聚合物包覆钴酸镍复合电极材料的制备方法 |
CN104505496A (zh) * | 2014-10-21 | 2015-04-08 | 西安交通大学 | 多孔无定形碳纳米管与金属氧化纳米片复合材料制备方法 |
CN107244877A (zh) * | 2017-05-22 | 2017-10-13 | 陕西科技大学 | 一种双金属氧化物‑碳化硅纤维多尺度增强体增强磷酸铝陶瓷基结构吸波材料及其制备方法 |
CN107342405A (zh) * | 2017-06-14 | 2017-11-10 | 三峡大学 | 一种MoS2‑xOx/碳负极材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
"Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li-O2 batteries;Guoxue Liu等;《Journal of Materials Chemistry A》;20170531;第28卷(第5期);第S2页第2段 |
Also Published As
Publication number | Publication date |
---|---|
CN108538611A (zh) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108538611B (zh) | 一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用 | |
CN107604375B (zh) | 氮钴双掺杂多孔碳复合物双功能氧催化剂及其制备方法和应用 | |
CN103715436B (zh) | 一种二氧化碳电化学还原催化剂及其制备和应用 | |
CN108707923A (zh) | 一种以泡沫镍为载体的镍铁氢氧化物/还原氧化石墨烯电化学析氧催化剂及其制备方法 | |
CN109999861A (zh) | 一种镍钴双金属磷化物电催化剂及其合成方法与应用 | |
CN106669763B (zh) | 一种氮掺杂碳包覆纳米花状MoSe2复合材料及制备与应用 | |
CN106025302A (zh) | 一种单胞厚度纳米多孔四氧化三钴纳米片阵列电催化材料 | |
CN110743603B (zh) | 一种钴铁双金属氮化物复合电催化剂及其制备方法与应用 | |
CN108346522A (zh) | 一种四氧化三钴分级结构纳米阵列材料、制备方法及其应用 | |
CN109967099A (zh) | 一种具有中空纳米结构的Co2P@C复合材料及其制备方法和应用 | |
CN108380224A (zh) | 一种镍钴硫化物@双金属氢氧化镍铁核壳异质结构纳米管阵列材料及其制备方法和应用 | |
CN109524678A (zh) | 一种析氧铁钴合金-铁酸钴/氮掺杂纳米碳管复合催化剂及其制备方法和应用 | |
CN107012473B (zh) | 一种双金属复合材料及其制备方法和应用 | |
CN109225270A (zh) | 一种Ni3S2@NiV-LDH异质结构双功能电催化剂、制备方法及用途 | |
CN109148903A (zh) | 3d海胆球状碳基镍钴双金属氧化物复合材料的制备方法 | |
CN107731566A (zh) | 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用 | |
CN110075858A (zh) | 一种钒掺杂的钴铁层状双氢氧化物/泡沫镍纳米复合材料及其制备方法 | |
CN110479329A (zh) | 一种磷掺杂碲化钴纳米材料的制备及应用 | |
CN107739058A (zh) | 自组装菱形花簇四氧化三钴纳米材料的制备方法及其产品和应用 | |
CN109898093B (zh) | 一种3d结构复合析氢电极及其制备方法 | |
CN101944620A (zh) | 多元复合物为载体的燃料电池催化剂及制备方法 | |
CN108878176A (zh) | 一种超级电容器用氮掺杂介孔碳复合金属氧化物电极材料的制备技术 | |
CN109786766A (zh) | 一种多孔碳负载过渡金属氧化物复合材料的制备方法 | |
CN110075853A (zh) | 一种电催化全分解水CoZn-LDHs-ZIF@C复合结构材料及制备方法、应用 | |
CN109455774A (zh) | 一种Ni-Fe-OH/MoS2/Ni3S2的复合纳米片/碳纤维布、制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190906 Termination date: 20210223 |
|
CF01 | Termination of patent right due to non-payment of annual fee |