CN108505057A - 一种包含含磷复合物的光电阴极及其制备方法 - Google Patents

一种包含含磷复合物的光电阴极及其制备方法 Download PDF

Info

Publication number
CN108505057A
CN108505057A CN201810157203.XA CN201810157203A CN108505057A CN 108505057 A CN108505057 A CN 108505057A CN 201810157203 A CN201810157203 A CN 201810157203A CN 108505057 A CN108505057 A CN 108505057A
Authority
CN
China
Prior art keywords
photocathode
phosphorous compound
fto
reaction
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810157203.XA
Other languages
English (en)
Other versions
CN108505057B (zh
Inventor
董玉明
王光丽
蒋平平
赵云霏
孔令刚
张会珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710107024.0A external-priority patent/CN107115876A/zh
Priority claimed from CN201710324701.4A external-priority patent/CN107138173A/zh
Application filed by Jiangnan University filed Critical Jiangnan University
Publication of CN108505057A publication Critical patent/CN108505057A/zh
Application granted granted Critical
Publication of CN108505057B publication Critical patent/CN108505057B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9091Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种包含含磷复合物的光电阴极及其制备方法,属于材料科学和光电化学技术领域。光生电子与反应物的界面反应滞后问题限制了稳定、高效的光电阴极的研制,在不破坏光活性物质的前提下可控沉积金属磷化物高效催化剂成为解决上述问题的可行途径。本发明设计包含含磷复合物的光电阴极,采用简便、温和、低成本的光化学法,成功沉积含磷复合物在光活性物质上,获得的光电阴极具有较好的稳定性和使用价值。此外,该复合电极的光化学制备方法不仅快速、可控,而且利用光能制备催化剂更绿色环保,为光电催化材料的规模化应用提供了新路径。

Description

一种包含含磷复合物的光电阴极及其制备方法
技术领域
本发明涉及一种包含含磷复合物的光电阴极及其制备方法,属于材料科学和光电化学技术领域。
背景技术
在不久的将来,化石燃料储量仍将支配全球能源需求。但是对着化石燃料的燃烧导致全世界的能源危机和日益严重的环境污染问题的出现,发展可持续、清洁的能源是解决当前问题最有效的措施之一。面对多种多样的可持续能源,氢能是一种零污染、高能量密度的可持续能源。另外,太阳能是一种取之不尽用之不竭的绿色能源,并且还具有大规模应用的潜力。光电化学(PEC)分解水可以利用太阳能进行制氢,是一种理想、高效的制氢方法,因此成为研究热点。
到目前为止,报道了许多用于光电分解水的半导体材料,包括从研究频率较高的氧化物 (例如:CuO、Cu2O、CuxO、CuBi2O4),到单质半导体(例如:P-Si),以及混合型半导体(例如:CdTe、CdSe、Cu3BiS3、GaInP2、CuInxGa1-xSe2)和有机半导体等等。然而,在这么多的半导体材料中,对于光电分解水析氢反应来说,Cu2O和P-Si被认为是比较高效的P型半导体材料。尤其是Cu2O,它不仅是由丰度较高的元素组成、可规模化生产、无毒的、低廉的制造成本,而且对于还原水制氢具有合适的带隙(2.0eV),最优的Cu2O理论上光电流可以达到14.7mAcm-2以及相应的光氢转换效率可以达到18%,引起了光电化学领域的高度重视。
然而,以Cu2O为代表的光活性物质存在着光生电子与反应物的界面反应滞后问题限制了在稳定的、高效的光电阴极中的应用,在不破坏光活性物质的前提下可控沉积高效催化剂成为解决上述问题的可行途径。
近年来,金属磷化物由于其具有良好的稳定性、地球含量丰富和高活性而成为研究热点。通过多种多样的制备方法和不同的磷源已经制备出了很多金属磷化物并用于电催化析氢反应,显示出了优异的性能,例如在宽pH变化的电解质溶液中具有低的过电位和长时间稳定性。自2014年以来,金属磷化物被用作光催化析氢反应的助催化剂,同时获得了高的产氢速率和优异的稳定性。然而,据我们所知,具有如此优异性能的金属磷化物还没有未见报道应用于光电催化方面。对于上述不稳定的半导体材料,金属磷化物应该是理想的保护材料和助催化剂。然而,金属磷化物直接应用于光电阴极是非常具有挑战性的,它的合成过程是限制其应用于光电阴极的主要原因。据我们所知,根据磷源的不同,金属磷化物的制备方法主要有以下几种:
第一种方法,使用三辛基膦(TOP)作为磷源高温条件下(T>300℃)合成金属磷化物,但是三辛基膦高度易燃且具有腐蚀性。
第二种方法,300-400℃高温条件下分解次亚磷酸盐(例如:NaH2PO2)产生剧毒气体PH3,PH3高温条件下还原金属氧化物/金属氢氧化物生成金属磷化物。
第三种方法,利用溶剂热法140-200℃使用红磷、白磷作为磷源合成金属磷化物。
第四种方法,使用氢气高温(T>600℃)还原金属的正磷酸盐制备金属磷化物。
这些经典的方法为金属磷化物在各种催化领域的应用做出了巨大的贡献。但是,作为光电阴极在不破坏光活性物质的前提下可控沉积高效催化剂的特殊需求,上述方法显得有难度。据发明人了解,由于上述技术原因,迄今为止,含有金属磷化物的光电阴极难以制备。
发明内容
为了解决上述问题,本发明设计包含含磷复合物的光电阴极,采用简便、温和、低成本的光化学法,成功沉积含磷复合物在光活性物质上,包括在FTO/Cu2O电极和FTO/NiO/CdS 上沉积并用于光电催化析氢方面,该光电阴极成本低,性能好,具有较好的稳定性和使用价值,且尚无文献报道。此外,该复合电极的光化学制备方法不仅快速、可控,而且利用光能制备催化剂更绿色环保。这种高效率和稳定性的策略为不稳定的光电催化材料的规模化应用提供了希望。
本发明的第一个目的是提供一种光电阴极,含有含磷复合物。
在一种实施方式中,含磷复合物的制备方法,包括在光活性物质光照情况下,金属离子与磷源生成含磷复合物;所述含磷复合物中含有磷和金属;所述生成反应中,必要物质为光活性物质、金属源和磷源。
根据上述的制备方法,其特征在于,除了必要物质之外,不加入其它牺牲剂。
在一种实施方式中,含磷复合物的制备方法是:将光活性物质加入到反应容器中,然后添加分散在溶剂中的金属源和磷源,混合均匀后除去反应体系中的氧气,然后后置于光照下搅拌反应,生成含磷复合物。
在一种实施方式中,所述含磷复合物为磷化钴/硫化镉纳米棒复合催化剂;所述方法,具体是:
(1)取一定量的硫化镉纳米棒加入25mL单口圆底烧瓶,加入一定量次磷酸钠(分子式 NaH2PO2)和氯化钴的混合水溶液,混合均匀后通入氮气30-40min以除去反应体系中氧气,然后置于氙灯下光照,光照时保持均匀搅拌,通过不同的光照时间调节CoxP含量;
(2)反应结束后,使用离心分离将固体分离,去离子水离心洗涤5-8次,乙醇洗涤1-3 次,将所得固体物质干燥,所得固体物质即为产品CoxP/硫化镉纳米棒复合催化剂。
在一种实施方式中,所述硫化镉纳米棒的制备具体是:取适量2.5水合氯化镉、硫脲与一定体积乙二胺置于100mL高压反应釜中,将反应釜置于160℃烘箱中水热处理48h,反应结束后将反应釜置于自然条件下降至室温,过滤得到黄色固体并用去离子水洗涤10次左右,乙醇洗涤1-2次,将得到固体置于60℃烘箱干燥一整晚,得到的黄色固体即为硫化镉纳米棒。
本发明的第二个目的是提供一种光电阴极的制备方法,包括在光活性物质光照情况下,金属离子与磷源生成含磷复合物;所述含磷复合物中含有磷和金属;所述生成反应中,必要物质为光活性物质、金属源和磷源;所述光活性物质,或者获得的含磷复合物,固定或者连接或者涂覆在导电的光电阴极基底上。
光活性物质是指在能够在光子的激发下吸收光子能量的物质。
在一种实施方式中,所述磷源中,磷的价态可以是-3到+5价的。所述磷源,可以是各种形态的磷源,比如单质,无机磷,有机磷等。在一些实施方式中,所述磷源可以是无机磷,比如以下任意一种或者多种组合:次磷酸根、亚磷酸根、或正磷酸根(H2PO2 -,H2PO3 -,H2PO4 -)。可以是以下任意一种或者多种组合:NaH2PO2、NaH2PO3、NaH2PO4。在另一些实施方式中,所述磷源可以为有机物,比如三辛基膦等有机磷。在一些实施方式中,所述磷源为单质磷,比如红磷和白磷等。
在一种实施方式中,所述金属离子中的金属,可以是过渡金属,还可以是In、Pt、Pd、 Rh、Re、Ir。可选地,所述过渡金属可以是铁、钴、镍、铜、锰、锌、铝等,还可以是铬、钼、钨等。
在一种实施方式中,所述金属离子,可选地,是由金属盐提供的。可选地,所述金属盐,可以是氯盐、溴盐、硝酸盐、亚硝酸盐、硫酸盐、亚硫酸盐、乙酸盐等。
在一种实施方式中,所述金属离子的供体可分散在反应体系中。
在一种实施方式中,所述光,是指能够能够激发光活性物质、与光活性物质能级匹配的光。
在一种实施方式中,所述光的波长,以光活性物质的需要为准。
在一种实施方式中,所述光活性物质,可以是粉体形态;比如纳米线、纳米线阵列、纳米管、纳米管阵列、纳米颗粒、含有多孔的纳米结构或其组合。
在一种实施方式中,所述反应的体系中,磷和金属离子的浓度在10-3mol L-1到饱和范围内时,容易在较短时间内完成沉积过程。可选地,所述反应的体系中,磷和金属离子的摩尔比没有特别的限制。其摩尔比在10-3-1000时容易实现沉积。
在一种实施方式中,所述方法是在低浓度氧气或者无氧气的体系中进行。在光化学反应中,采取措施降低体系中氧气浓度,有助于较快实现沉积过程。比如通入一定的惰性气体脱气,或者加入还原剂,或者抽走氧气等,均可以。
在一种实施方式中,所述无氧气的体系,是指在惰性气体的保护下进行。可选地,所述惰性气体可以是氮气、氩气等。
在一种实施方式中,所述方法,是在溶剂体系中进行;所述磷源和金属离子供体部分溶于或者完全溶于该溶剂体系中。
在一种实施方式中,所述导电的光电阴极基底可以是FTO和FTO/NiO。
在一种实施方式中,所述光电阴极的制备方法,包括先将光活性物质固定或者连接或者涂覆到相基底上得到导电的光电阴极基底,然后将光电阴极基底放置在含有金属离子供体和磷源的溶液中,排除体系中的氧气,将体系光照,反应结束后即得到本发明的含有含磷复合物的光电阴极。
在一种实施方式中,所述光电阴极为FTO/Cu2O/含磷复合物光电阴极或者FTO/NiO/CdS/ 含磷复合物光电阴极。
在一种实施方式中,所述FTO/Cu2O/含磷复合物光电阴极的制备包括:(1)溅射Cu在 FTO上;(2)阳极氧化法制备FTO/Cu(OH)2前驱体;(3)煅烧法制备FTO/Cu2O电极;(4) 光化学法沉积含磷复合物在FTO/Cu2O电极上。
在一种实施方式中,所述FTO/NiO/CdS/含磷复合物光电阴极的制备包括:(1)将干净的FTO玻璃浸入含Ni(NO3)2和六次甲基四胺的混合溶液中,然后加热处理一段时间再进行煅烧,得到FTO/NiO电极;(2)采用连续离子层沉积方法在FTO/NiO电极上制得CdS,即可得FTO/NiO/CdS光电阴极;(3)光化学法沉积含磷复合物在FTO/NiO/CdS电极上。
本发明的第三个目的是提供本发明的光电阴极或其制备方法在光电催化分解水析氢反应的应用。
本发明的有益效果:
本发明通过简便的光化学沉积法制备了含磷复合物在FTO/Cu2O和FTO/NiO/CdS电极上,利用半导体Cu2O或CdS在光照条件下激发出的电子使磷化物在光活性物质上生成,该材料在光电催化方面表现出优异的光电催化性能。本发明具有以下显著特点:
(1)本发明制备方法简便、可控,并且绿色环保,为光电阴极的制备提供一种新思路。
(2)本发明通过磷化镍和Cu2O的复合,既克服了单种物质性能上易受光腐蚀的缺陷,而且还提高了Cu2O光电阴极的光电催化性能。实验证明,该复合电极具有较低的电荷转移电阻,减小了电荷转移阻力,使电子更容易转移出去参加析氢反应,减小了载流子复合。
(3)本发明所采用的的电极为非贵金属催化剂,各个元素丰度高,降低了生产成本,并且具有较高的光电流密度和良好的稳定性,具有一定的工业应用价值。
附图说明
图1是实施例1所得FTO/Cu2O/NixP光电阴极的扫描电镜图;
图2是实施例1所得FTO/Cu2O/NixP光电阴极的X射线衍射图;
图3是实施例1所得NixP纳米颗粒的X射线光电子能谱图;
图4是实施例1所得FTO/Cu2O/NixP光电阴极的光电流密度图;
图5是实施例1所得FTO/Cu2O/NixP光电阴极的电化学交流阻抗谱图;
图6是实施例4所得FTO/NiO/CdS/NixP电极的扫描电镜图;
图7是实施例5的硫化镉纳米棒和CoxP/硫化镉纳米棒复合催化的XRD图谱;
图8是实施例5的CoxP/硫化镉纳米棒复合催化的透射电镜图片;
图9是实施例5的CoxP/硫化镉纳米棒复合催化扫描电镜能量色散X射线光谱;
图10是实施例5的CoxP/硫化镉纳米棒复合催化的X射线光电子能谱;
图11是实施例5的CoxP/硫化镉纳米棒复合催化光催化产氢测试图;
图12是实施例7的NixP/类石墨烯碳氮化合物复合催化剂复合催化的XRD图谱;
图13是实施例7的NixP/类石墨烯碳氮化合物复合催化剂的透射电镜图片;
图14是实施例7的NixP/类石墨烯碳氮化合物复合催化剂扫描电镜能量色散X射线光谱;
图15是实施例7的NixP/类石墨烯碳氮化合物复合催化剂的X射线光电子能谱;
图16是实施例7的NixP/类石墨烯碳氮化合物复合催化剂光催化分解水产氢测试图。
具体实施方案
下面是对本发明进行具体描述。
为了更具体的说明本发明的方法,下面给出本发明的实施例,但本发明的应用不仅限于此。
实施例1:FTO/Cu2O/NixP光电阴极的制备与表征
新型FTO/Cu2O/NixP光电阴极的制备步骤:
(1)磁控溅射Cu在FTO上
FTO导电基底的预处理:把FTO玻璃(1×2cm)先后置于丙酮和无水乙醇中分别浸泡,然后在2M氢氧化钾的异丙醇溶液中加热回流,最后再用去离子水清洗即可。室温下,采用国产JGP-450B磁控溅射沉积系统射频溅射在FTO玻璃上沉积单质铜薄膜,其中射频溅射的频率为13.56HZ,用单质铜(99.995%)作为靶材,持续溅射30min。
(2)阳极氧化法制备FTO/Cu(OH)2前驱体
使用阳极氧化法制备出Cu(OH)2纳米线前驱体,即用FTO/Cu作为工作电极,Pt网和Ag/AgCl(3M KCl)分别作为对电极和参比电极,在氢氧化钾(3M)电解质溶液中以恒定的电流密度(10mA/cm2)进行阳极氧化3分钟。取出电极用去离子水清洗干净,干燥。
(3)煅烧法制备FTO/Cu2O电极
将FTO/Cu(OH)2电极放在瓷舟中置于管式炉中600℃恒温煅烧4个小时,整个煅烧过程在 Ar(99.99%)的气氛下进行,升温速率为2℃/min,待其降至室温后取出,此即是获得的Cu2O 纳米线。
(4)光化学法沉积NixP在FTO/Cu2O电极上
双重功能的NixP是通过光化学方法沉积在Cu2O纳米线上的。分别配置好浓度为0.1M 的氯化镍溶液和浓度为0.2M的次磷酸钠溶液待用。然后用胶头滴管分别移取0.1M氯化镍溶液(4ml),0.2M次磷酸钠溶液(14ml)和去离子水(2ml)倒入25ml的烧瓶中,充分摇匀,密封后在避光的条件下进行氮气脱气处理40min。再放置于紫外可见氙光灯(300W) 下照射10min,用去离子水洗涤数次以除去电极表面的杂质,干燥。
图1是制得电极扫描电镜图,a图是制得电极的截面扫描电子显微镜图,制备出的氧化亚铜纳米线呈现了垂直的玉米棒状结构,长度在2.3μm左右。插图部分为电极的顶部扫描电子显微镜图,纳米线的直径大约为750nm。b图为放大了扫描电子显微镜图,从该图中可以发现该玉米棒状结构的纳米线上存在着孔状的结构。
图2是制得FTO/Cu2O/NixP光电阴极的X射线衍射图,标有黑桃心形状所在的位置归因于Cu2O产生的衍射峰,证明了Cu2O的成功制备。此外,CuO的存在可能是由于单质铜薄膜或者是后来制备出的Cu2O暴露在空气氛围下被氧化所导致的,单质Cu的出现是由于当铜与氢氧化铜反应的时候,铜没有被反应完剩余在了基底上所导致。在样品Cu2O/NixP上并没有检测到相应的NixP的衍射特征峰,这可能是由于沉积在Cu2O上的NixP含量较少所引起的。
图3是所得NixP纳米颗粒的X射线光电子能谱图,Ni 2p区域在结合能分别为852.6eV、 856.3eV、861.3eV处存在三个峰,这归因于NixP中分别存在着Niδ+、Ni的氧化物和Ni 2p 的卫星峰。对于P 2p区域,结合能位于129.5eV和132.9eV处的两个峰归属于报道的金属磷化物和磷的氧化物的峰。此外,在NixP上形成的Ni的氧化物或p的氧化物是由于样品暴露于空气中所造成的。表明NixP被成功制备出来。
以Na2SO4和KH2PO4的混合液作为电解质溶液,AM 1.5光照的情况下,FTO/Cu2O/NixP电极作为工作电极,Ag/AgCl电极作为参比电极,铂网作为对电极然后在CHI660E电化学工作站上进行线性扫描电化学性能测试,测试结果如图4中的FTO/Cu2O/NixP曲线。
实施例2:FTO/Cu2O/NixP光电阴极与FTO/Cu2O电极电化学性能对比
FTO/Cu2O光电阴极的制备:
(1)FTO导电基底进行预处理:把FTO玻璃(1×2cm)先后置于丙酮和无水乙醇中分别浸泡,然后在2M氢氧化钾的异丙醇溶液中加热回流,最后再用去离子水清洗即可。室温下,采用国产JGP-450B磁控溅射沉积系统射频溅射在FTO玻璃上沉积单质铜薄膜,其中射频溅射的频率为13.56HZ,用单质铜(99.995%)作为靶材,持续溅射30min。
(2)使用阳极氧化法制备出Cu(OH)2纳米线前驱体,即用FTO/Cu作为工作电极,Pt网和Ag/AgCl(3M KCl)分别作为对电极和参比电极,在氢氧化钾(3M)电解质溶液中以恒定的电流密度(10mA/cm2)进行阳极氧化3分钟。取出电极用去离子水清洗干净,干燥。
(3)将FTO/Cu(OH)2电极放在瓷舟中置于管式炉中600℃恒温煅烧4个小时,整个煅烧过程在Ar(99.99%)的气氛下进行,升温速率为2℃/min,待其降至室温后取出,此即是获得的Cu2O纳米线。
图2是制得FTO/Cu2O光电阴极的X射线衍射图,标有黑桃心形状所在的位置归因于Cu2O产生的衍射峰,证明了Cu2O的成功制备。
以Na2SO4和KH2PO4的混合液作为电解质溶液(PH=5),AM 1.5光照的情况下,FTO/Cu2O电极作为工作电极,Ag/AgCl电极作为参比电极,铂网作为对电极然后在CHI660E电化学工作站上进行线性扫描电化学性能测试,测试结果如图4。从图中可以看出,与单独的Cu2O光电阴极相比,Cu2O/NixP光电阴极的电流密度大约是单独的Cu2O的8倍。由此可知,对于光电催化析氢反应,通过光沉积NixP纳米颗粒在Cu2O纳米线上制得的复合电极材料显示出光电化学催化活性。值得注意的是由于NixP对Cu2O纳米线光激发产生的电子及时转移去参加析氢反应,大大减少了载流子的复合,提高了光电催化活性,光电流密度显着增加。
实施例3:FTO/Cu2O/NixP电极的电化学阻抗测试
电化学阻抗谱图中的电荷转移阻力(Rct)表示Cu2O/NixP催化剂与质子间的转移阻力大小,其数值可以从电化学阻抗谱图中曲线半圆直径可以得出,进而可以考察所制FTO/ Cu2O/NixP电极的产氢机理。
以Na2SO4和KH2PO4的混合液作为电解质溶液(PH=5),FTO/Cu2O/NixP作为工作电极,Ag/AgCl电极作为参比电极,铂网作为对电极,然后在CHI660E电化学工作站上进行电化学阻抗谱性能测试,测试结果如图5,从图中可以看出FTO/Cu2O/NixP电极的电荷转移电阻比较小,催化剂与质子间的转移阻力非常小,提高了光电催化性能。
实施例4:
以CdS为半导体进行光化学沉积NixP,具体步骤为:
(1)FTO导电基底的预处理:把FTO玻璃(1×2cm)先后置于2M氢氧化钾的异丙醇溶液中加热回流。然后用去离子水超声洗涤至中性以除去表面上残留物质。分别用丙酮、乙醇、超纯水依次超声15分钟,最后再用去离子水清洗即可。
(2)把干净的FTO玻璃浸入0.25M Ni(NO3)2和0.25M六次甲基四胺的混合溶液中(确保浸入的FTO玻璃面积为1cm2),然后100℃水浴中加热12min,待其降至室温后取出,用去离子水清洗干净、烘干。
(3)然后将其放入瓷舟中置于马弗炉中300℃恒温煅烧30min,待其降至室温后取出,即可得FTO/NiO电极。
(4)采用简便的连续离子层沉积方法在FTO/NiO电极上制得CdS。取4.627g Cd(NO3)2·4H2O置于50mL乙醇溶液中,混合均匀,作为镉源溶液;取3.6027g Na2S·9H2O置于50mL超纯水中,混合均匀,作为硫源;先将FTO/NiO电极浸入镉源溶液中5min,取出后用无水乙醇清洗干净,再将电极浸入硫源溶液中5min,取出后用超纯水清洗(确保浸入的FTO玻璃面积为1cm2),此过程成为一个循环,将上面过程循环数次,最后分别用去离子水,乙醇冲洗干净,烘干。即可得FTO/NiO/CdS光电阴极。
(5)将14mL的次磷酸钠溶液(0.2mol/L)和4mL氯化镍(0.1mol/L)加入25mL圆底烧瓶中,再加入2mL的去离子水,摇匀,将上述制备好的电极放入烧瓶中,然后向密封好的烧瓶中通入氮气40min以排除氧气等杂气。再将烧瓶放在300W氙灯下光照,光照时候均匀搅拌。反应结束后,用去离子水冲洗,烘干。得到FTO/NiO/CdS/NixP光电阴极。
图6是制得FTO/NiO/CdS/NixP电极的扫描电镜图,从图中可以看出NixP纳米颗粒紧紧负载在蜂窝状FTO/NiO/CdS光电阴极上。
实施例5:含磷复合物的制备
按照如下方法制备含磷复合物
(1)取20.25mmol二点五水合氯化镉,40.75mmol硫脲和60mL乙二胺置于100mL高压反应釜中,将反应釜置于160℃烘箱中水热处理48h,反应结束后将反应釜置于自然条件下降至室温,过滤得到黄色固体并用去离子水洗涤10次,乙醇洗涤2次,将得到固体置于60℃烘箱干燥一整晚,得到的黄色固体即为硫化镉纳米棒;
(2)取50mg硫化镉纳米棒置于25mL单口烧瓶中,随后加入2mL氯化钴水溶液(0.1M), 7mL次磷酸钠(分子式NaH2PO2)水溶液(0.1mol/L),1mL去离子水,超声分散处理1min,然后使用氮气脱气40min除去反应体系中氧气;
(3)待脱气完成后,将圆底烧瓶置于300W氙光灯下照射不同时间得到不同含量磷钴后,将所得固体离心分离,去离子水洗涤5次,乙醇洗涤2次,将所得固体使用氮气吹干,得到的固体即为CoxP/硫化镉纳米棒复合催化剂。并将催化剂命名为CoxP-T/CdS NRs(其中T代表光照时间,单位:min)。
将制备的光催化剂进行X射线衍射光谱(图7所示),透射电镜(图8所示),能量色散X 射线光谱(EDX)(图9所示)及其X射线光电子能谱(XPS)(图10所示)。
实施例6:含磷复合物催化活性
取实施例9中步骤(1)得到的硫化镉3mg置于100mL光催化反应器中,随后加入5mL三乙醇胺,45mL水。超声处理30s,使用氮气脱气1h排除体系中氧气,将圆底烧瓶置于300W氙光(配有420nm截止滤光片)下照射,反应结束后,用热导-气相色谱检测反应中生成的氢气,反应8h后其产氢速率为7.4mmol·g-1h-1
将实施例9中CoxP-50/CdS NRs复合催化剂取3mg置于100mL光催化反应器中,100mL 光催化反应器中,随后加入5mL三乙醇胺,45mL去离子水。超声处理30s,使用氮气脱气1h 排除体系中氧气,将圆底烧瓶置于300W氙光(配有420nm截止滤光片)下照射,反应结束后,用热导-气相色谱检测反应中生成的氢气,反应8h后其产氢速率为165.8mmol·g-1h-1,比单纯的硫化镉纳米棒产氢速率提高22倍。
将实施例9中CoxP-50/CdS NRs复合催化剂取1mg置于100mL光催化反应器中,随后加入,15g九水合硫化钠,11g无水亚硫酸钠,50mL去离子水。超声处理30s,使用氮气脱气1h排除体系中氧气,将圆底烧瓶置于300W氙光(配有420nm截止滤光片)下照射,反应结束后,用热导-气相色谱检测反应中生成的氢气,每隔5h使用热导-气相色谱检测反应中生成的氢气并进行一次脱气排除反应体系中氢气,然后继续光照处理,反应25h后催化活性仍无明显降低。
由上述各实施例及图11可看出,本实施例所制备的CoxP/硫化镉纳米棒复合催化剂合成方法简便、光催化产氢速率高、稳定性好、价格低廉,应用于工业生产中可大幅度节约成本,是一种有较大工业化前景的新型催化材料。
实施例7:含磷复合物的制备
按照如下方法制备含磷复合物:
(1)取20g硫脲置于4个坩埚中,将坩埚置于马弗炉中以2度每分的升温速率升至550℃,煅烧两小时,待降至室温取出坩埚,将固体研磨成粉末,将盛有固体粉末的坩埚置于马弗炉,以2度每分升温速率升至500℃,煅烧两小时,待降至室温取出黄白色固体粉末获得类石墨烯碳氮化合物;
(2)取30mg石墨烯碳氮化合物置于25mL单口烧瓶中,随后加入4mL硫化镍水溶液(0.1mol/L),4mL次磷酸钠(分子式NaH2PO2)水溶液(0.7mol/L),2mL水,超声分散处理30s,然后使用氮气脱气40min除去反应体系中氧气;
(3)待脱气完成后,将圆底烧瓶置于300W氙光灯下照射20min后,将所得固体离心分离,去离子水洗涤5次,乙醇洗涤2次,将所得固体使用氮气吹干,所得黑色物质即为NixP/类石墨烯碳氮化合物复合催化剂。所制备NixP/类石墨烯碳氮化合物复合催化剂命名为NixP-20/g-C3N4
将制备的光催化剂进行X射线衍射光谱(图12所示),透射电镜(图13所示),能量色散X 射线光谱(EDX)(图14所示)及X射线光电子能谱(图15所示)。
实施例8:含磷复合物催化活性
(1)实施例11中类石墨烯碳氮化合物取5mg置于25mL圆底烧瓶中,随后加入2mL三乙醇胺和8mL水,超声分散处理30s,然后使用氮气脱气40min除去反应体系中氧气;将圆底烧瓶置于300W氙光(配有AM 1.5G滤光片)下照射,反应结束后,用热导-气相色谱检测反应中生成的氢气,反应2h后其产氢速率为27μmol·g-1h-1
(2)将实施例11中NixP/类石墨烯碳氮化合物复合催化剂取5mg置于25mL圆底烧瓶中,随后加入2mL三乙醇胺,8mL水。超声处理30s,使用氮气脱气40min排除体系中氧气,将圆底烧瓶置于太阳光模拟器下光照,反应结束后,用热导-气相色谱检测反应中生成的氢气,反应2h后其产氢速率为8585μmol·g-1h-1,比单纯的类石墨烯碳氮化合物产氢速率提高317倍。
(3)将实施例11中NixP/类石墨烯碳氮化合物复合催化剂取5mg置于25mL圆底烧瓶中,随后加入1mL乳酸、9mL水,该混合溶液pH=2。超声处理30s,使用氮气脱气40min排除体系中氧气,将圆底烧瓶置于太阳光模拟器下光照。待反应75h后催化剂活性仍无明显降低。
由上述各实施例及图16可看出,所制备的NixP/类石墨烯碳氮化合物复合催化剂合成方法简便、光催化产氢速率高、酸性条件下稳定性好、价格低廉,应用于工业生产中可大幅度节约成本,且无毒环保,是一种有较大工业化前景的新型催化材料。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种光电阴极,其特征在于,含有含磷复合物;其中,含磷复合物的制备方法,包括在光活性物质光照情况下,金属离子与磷源生成含磷复合物;所述含磷复合物中含有磷和金属;所述生成反应中,必要物质为光活性物质、金属源和磷源。
2.权利要求1所述的含磷复合物的制备方法,其特征在于,所述含磷复合物为磷化钴/硫化镉纳米棒复合催化剂;所述方法,具体是:
(1)取一定量的硫化镉纳米棒加入25mL单口圆底烧瓶,加入一定量次磷酸钠(分子式NaH2PO2)和氯化钴的混合水溶液,混合均匀后通入氮气30-40min以除去反应体系中氧气,然后置于氙灯下光照,光照时保持均匀搅拌,通过不同的光照时间调节CoxP含量;
(2)反应结束后,使用离心分离将固体分离,去离子水离心洗涤5-8次,乙醇洗涤1-3次,将所得固体物质干燥,所得固体物质即为产品CoxP/硫化镉纳米棒复合催化剂。
3.根据权利要求3所述的方法,其特征在于,所述硫化镉纳米棒的制备具体是,取适量2.5水合氯化镉、硫脲与一定体积乙二胺置于100mL高压反应釜中,将反应釜置于160℃烘箱中水热处理48h,反应结束后将反应釜置于自然条件下降至室温,过滤得到黄色固体并用去离子水洗涤10次左右,乙醇洗涤1-2次,将得到固体置于60℃烘箱干燥一整晚,得到的黄色固体即为硫化镉纳米棒。
4.一种光电阴极,其特征在于,含有权利要求1~3任一所述的含磷复合物,比如CoxP/硫化镉纳米棒复合催化剂或者磷化镍/类石墨烯碳氮化合物复合催化剂;其中含磷复合物的反应体系中,除了必要物质之外,不加入其它牺牲剂。
5.一种光电阴极的制备方法,其特征在于,包括在光活性物质光照情况下,金属离子与磷源生成含磷复合物;所述含磷复合物中含有磷和金属;所述生成反应中,必要物质为光活性物质、金属源和磷源;所述光活性物质,或者获得的含磷复合物,固定或者连接或者涂覆在导电的光电阴极基底上。
6.根据权利要求5所述的方法,其特征在于,所述磷源中,磷的价态可以是-3到+5价的。所述磷源,可以是各种形态的磷源,比如单质,无机磷,有机磷等。在一些实施方式中,所述磷源可以是无机磷,比如以下任意一种或者多种组合:次磷酸根、亚磷酸根、或正磷酸根(H2PO2 -,H2PO3 -,H2PO4 -)。可以是以下任意一种或者多种组合:NaH2PO2、NaH2PO3、NaH2PO4。在另一些实施方式中,所述磷源可以为有机物,比如三辛基膦等有机磷。在一些实施方式中,所述磷源为单质磷,比如红磷和白磷等。所述金属离子中的金属,可以是过渡金属,还可以是In、Pt、Pd、Rh、Re、Ir。可选地,所述过渡金属可以是铁、钴、镍、铜、锰、锌、铝等,还可以是铬、钼、钨等。
7.根据权利要求5~6任一所述的方法,其特征在于,所述导电的光电阴极基底可以是FTO和FTO/NiO。
8.根据权利要求5~7任一所述的方法,其特征在于,所述光电阴极的制备方法,包括先将光活性物质固定或者连接或者涂覆到相基底上得到导电的光电阴极基底,然后将光电阴极基底放置在含有金属离子供体和磷源的溶液中,排除体系中的氧气,将体系光照,反应结束后即得到本发明的含有含磷复合物的光电阴极。
9.根据权利要求5~8任一所述的方法,其特征在于,所述光电阴极为FTO/Cu2O/含磷复合物光电阴极或者和FTO/NiO/CdS/含磷复合物光电阴极。
10.权利要求1~7任一所述的光电阴极或权利要求5~9任一所述的制备方法在光电催化分解水析氢反应的应用。
CN201810157203.XA 2017-02-27 2018-02-24 一种包含含磷复合物的光电阴极及其制备方法 Active CN108505057B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710107024.0A CN107115876A (zh) 2017-02-27 2017-02-27 一种无定型磷化钴/硫化镉纳米棒复合催化剂的简便制备方法
CN2017101070240 2017-02-27
CN201710324701.4A CN107138173A (zh) 2017-05-10 2017-05-10 一种无定型磷化镍/类石墨烯碳氮化合物复合催化剂的简便制备方法
CN2017103247014 2017-05-10

Publications (2)

Publication Number Publication Date
CN108505057A true CN108505057A (zh) 2018-09-07
CN108505057B CN108505057B (zh) 2019-11-08

Family

ID=63375359

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810157038.8A Active CN108499585B (zh) 2017-02-27 2018-02-24 含磷复合物及其制备与应用
CN201810157203.XA Active CN108505057B (zh) 2017-02-27 2018-02-24 一种包含含磷复合物的光电阴极及其制备方法
CN201810157065.5A Active CN108502859B (zh) 2017-02-27 2018-02-24 一种复合电极的光化学制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810157038.8A Active CN108499585B (zh) 2017-02-27 2018-02-24 含磷复合物及其制备与应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810157065.5A Active CN108502859B (zh) 2017-02-27 2018-02-24 一种复合电极的光化学制备方法

Country Status (1)

Country Link
CN (3) CN108499585B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110158111A (zh) * 2019-06-19 2019-08-23 清华大学 一种自支撑型催化析氢电极及其制备方法
CN111841609A (zh) * 2020-08-04 2020-10-30 杭州紫芯光电有限公司 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法
CN112126945A (zh) * 2020-09-28 2020-12-25 上海交通大学 一种磷化物修饰的硅基光电阴极材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999866B (zh) * 2019-05-17 2020-12-25 福州大学 一维硫化镉/硫化铜/磷化镍光催化剂及其制备方法与应用
CN110075887B (zh) * 2019-05-31 2020-08-07 江南大学 用于甲醇催化燃烧的钯负载催化剂的制备方法及其应用
CN112007672B (zh) * 2020-09-11 2021-08-17 广西师范大学 一种CrP-Re2P析氢析氧电催化剂制备方法
CN112495379B (zh) * 2020-11-30 2022-06-24 重庆大学 一种Cu-TiO2复合材料及应用
CN112941554B (zh) * 2021-01-29 2022-04-22 苏州大学 复合催化电极及其制备方法及应用
CN113277594B (zh) * 2021-06-25 2022-03-04 浙江工商大学 一种复合污染物污染废水的处理方法及处理体系
CN115410838B (zh) * 2022-09-09 2023-11-24 三峡大学 磷、碳共修饰钴基氧化物的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用
CN106076383A (zh) * 2016-06-07 2016-11-09 江南大学 一种镍/类石墨烯碳氮化合物复合催化剂的简便制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854910A (zh) * 2016-05-20 2016-08-17 宁夏大学 一种CoP/CdS复合光催化剂及其制备和应用
CN106076383A (zh) * 2016-06-07 2016-11-09 江南大学 一种镍/类石墨烯碳氮化合物复合催化剂的简便制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUI ZHAO ET AL.,: "In situ light-assisted preparation of MoS2 on graphitic C3N4 nanosheets for enhanced photocatalytic H2 production from water", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
JUNYING XU ET AL.,: "Photocatalytic hydrogen evolution over Erythrosin B-sensitized graphitic carbon nitride with in situ grown molybdenum sulfide cocatalyst", 《INTERNATIONALJOURNAL OF HYDROGEN ENERGY》 *
LEI GE ET AL.,: "In situ synthesis of cobalt–phosphate (Co–Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
TINGMIN DI ET AL.,: "Enhanced photocatalytic H2production on CdS nanorod usingcobalt-phosphate as oxidation cocatalyst", 《APPLIED SURFACE SCIENCE》 *
任文坡 等: "过渡金属磷化物催化剂的研究进展", 《石化技术与应用》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110158111A (zh) * 2019-06-19 2019-08-23 清华大学 一种自支撑型催化析氢电极及其制备方法
CN111841609A (zh) * 2020-08-04 2020-10-30 杭州紫芯光电有限公司 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法
CN112126945A (zh) * 2020-09-28 2020-12-25 上海交通大学 一种磷化物修饰的硅基光电阴极材料及其制备方法
CN112126945B (zh) * 2020-09-28 2021-09-07 上海交通大学 一种磷化物修饰的硅基光电阴极材料及其制备方法

Also Published As

Publication number Publication date
CN108502859B (zh) 2020-05-08
CN108502859A (zh) 2018-09-07
CN108505057B (zh) 2019-11-08
CN108499585A (zh) 2018-09-07
CN108499585B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN108505057B (zh) 一种包含含磷复合物的光电阴极及其制备方法
Wu et al. Noble-metal-free nickel phosphide modified CdS/C 3 N 4 nanorods for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation
Lu et al. Engineering MPx (M= Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions
Fei et al. Facile fabrication of ZnO/MoS2 pn junctions on Ni foam for efficient degradation of organic pollutants through photoelectrocatalytic process
Wang et al. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo prussian blue analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution
Wang et al. Bi spheres decorated g-C3N4/BiOI Z-scheme heterojunction with SPR effect for efficient photocatalytic removal elemental mercury
Mu et al. Metal-organic framework-derived rodlike AgCl/Ag/In2O3: A plasmonic Z-scheme visible light photocatalyst
You et al. Preparation, visible light-driven photocatalytic activity, and mechanism of multiphase CdS/C3N4 inorganic-organic hybrid heterojunction
He et al. Enhanced photoelectrocatalytic activity of direct Z-scheme porous amorphous carbon nitride/manganese dioxide nanorod arrays
Yang et al. Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles
Soni et al. Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion
Qiu et al. Integrated pn/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@ TiO2-Cu2O ternary hybrids with steering charge transfer
Huang et al. Ti3C2 MXene supporting platinum nanoparticles as rapid electrons transfer channel and active sites for boosted photocatalytic water splitting over g-C3N4
CN108103525A (zh) 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
Sun et al. In situ synthesis of Cu3P/g-C3N4 heterojunction with superior photocatalytic hydrogen evolution
CN106622322A (zh) 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法
Jing et al. Design and synthesis of Mo2C/MoO3 with enhanced visible-light photocatalytic performance for reduction of Cr (VI) and degradation of organic pollutants
Cai et al. Enhanced performance of photoelectrochemical water oxidation using a three-dimensional interconnected nanostructural photoanode via simultaneously harnessing charge transfer and coating with an oxygen evolution catalyst
Bhavani et al. Skeletal Cu7S4 nanocages wrapped by few‐layered black phosphorus nanosheets as an efficient H2 production photocatalyst
Li et al. Noble-metal-free NiS decorated organic-inorganic hybrid ZnxCd1− xSe-diethylenetriamine solid solution for hydrogen evolution
Zhang et al. Fabricated ZnO@ ZnIn2S4 S-scheme heterojunction photocatalyst for enhanced electron-transfer and CO2 reduction
Gu et al. Construction of dual Z-scheme UNiMOF/BiVO4/S-C3N4 photocatalyst for visible-light photocatalytic tetracycline degradation and Cr (VI) reduction
Zhang et al. Synthesize magnetic ZnFe2O4@ C/Cd0. 9Zn0. 1S catalysts with S-scheme heterojunction to achieve extraordinary hydrogen production efficiency
Yuan et al. Bubble-propelled plasmon-reinforced Pt-ZnIn 2 S 4 micromotors for stirring-free photocatalytic water purification
Zeb et al. Enhanced photoelectrochemical performance of P-doped g‑C3N4/Zn0. 5Cd0. 5S heterojunction photocathode for water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant