CN111841609A - 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法 - Google Patents

一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法 Download PDF

Info

Publication number
CN111841609A
CN111841609A CN202010774171.5A CN202010774171A CN111841609A CN 111841609 A CN111841609 A CN 111841609A CN 202010774171 A CN202010774171 A CN 202010774171A CN 111841609 A CN111841609 A CN 111841609A
Authority
CN
China
Prior art keywords
tio
heterojunction
preparation
fto
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010774171.5A
Other languages
English (en)
Inventor
程琳
王顺利
郑海红
陈冠政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Zixin Photoelectric Co ltd
Original Assignee
Hangzhou Zixin Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Zixin Photoelectric Co ltd filed Critical Hangzhou Zixin Photoelectric Co ltd
Priority to CN202010774171.5A priority Critical patent/CN111841609A/zh
Publication of CN111841609A publication Critical patent/CN111841609A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

一种可见光催化剂Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,所述制备方法包括:在FTO玻璃表面溅射一层Cu,通过电镀氧化的方法得到Cu(OH)2纳米阵列,通过退火处理成Cu2O纳米阵列;并通过离心复合的方法,使C3N4与Cu2O纳米阵列复合,最后再溅射一层TiO2,形成多级异质结,促进层间电子空穴的分离传输,进而提高光催化剂的催化性能,以及电极材料的稳定性。

Description

一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法
技术领域
本发明属于光电催化剂技术领域,具体涉及一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法。
背景技术
随着全球人口密度不断增加,社会高速发展,人类对能源的需求也随之日益增大。同时,煤炭、石油和天然气等化石能源日渐枯竭,寻找新能源作为代替传统化石能源,改变现有能源结构成为了二十一世纪人类面临的重大挑战。另外,随着化石能源的过度使用,大量二氧化碳排放导致的温室效应破坏着我们赖以生存的生态环境。因此,全世界的目光都聚焦在寻找着新型,低碳环保的可持续、可再生的清洁能源。在一次能源中,新一代可再生清洁一次能源主要包括:太阳能、风能、地热能、生物质能、潮汐能等等。其中,太阳能不仅取之不尽用之不竭,且清洁、无碳、无污染,同时具有极高的理论能量潜力(1.2×105TW),辐射地球一小时就能提供6.12×1017kJ的能量,足以满足全球一年的能量消费总和。因此,太阳能被视作未来人类代替日渐枯竭的传统化石能源的主要解决方案。
另一方面,氢能作为一种二次能源,也具有清洁、无碳、无污染的特点。不仅氢能本身具有很高的能量密度,并且随着燃料电池技术的飞跃发展,氢能在近期也展现出惊人的研究与实用前景。目前工业制氢主要为通过将煤炭、天然气、甲醇、氨气等转化而来,这些方法不仅对环境污染严重,同时也依赖于日渐枯竭的化石能源。因此,从20世纪中,科学家以植物的光合作用为灵感,提出了以太阳能为一次能源,分解水获得氢气为二次能源的未来能源结构构想。自1972年,日本科学家Honda与Fujishima发现了将二氧化钛与铂电极在电解池接通并施加一定的偏压后,同时在紫外光的照射下,二氧化钛电极发生了光电催化分解水的现象。这一体系被称为光电化学池(Photoelectrochemical Cell),在光电化学池中,二氧化钛光电极作为电解池的阳极,铂电极作为阴极,电解液为含有电解质的水溶液。在光电化学池中,光阳极发生氧化反应,产生氧气,阴极发生还原反应,产生氢气。在此之后,全世界科学家不断的改进并完善了光电化学池,并发现了许多新型的纳米光电极材料。
金属氧化物半导体由于其低成本、高丰度和简便的制备方法,在光催化和光电化学(PEC) 方法中都扮演着重要的角色。其中,Cu2O是最有前途的材料之一,Cu2O是一种具有优异性能的P型半导体材料,具备无毒,易制备等优点。其禁带宽度为2.0左右,在理论上能够吸收可见光进行光电催化反应,理论光电转换效率能够达到18%,其在水裂解反应中的PEC性能在所有氧化物中是最高的。
虽然Cu2O具有良好的带能位置可用于解水,但有两个主要的挑战阻碍了它作为高效持久的解水光电阴极的应用。第一个问题是稳定性,因为单价氧化铜还原和氧化的氧化还原电位在水裂解电位内,使材料在电解液中的光腐蚀比水裂解反应更有利。第二个问题是载流子扩散长度与光吸收深度的不利比。为了有效地吸收阳光,通常Cu2O薄膜必须至少有1um厚。然而,根据合成方法的不同,少数载流子(电子)扩散长度被限制在约200nm或更少。这导致了光生载流子的收集效率低下,严重影响了Cu2O的光电催化性能。
针对以上问题,可以通过制备Cu2O纳米阵列来解决载流子扩散长度和光吸收深度的问题,并通过制备P-n异质结,来提高界面电子空穴的分离效率,提高Cu2O的光电催化性能。
发明内容
为实现上述目的,本发明一方面提供一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法。
一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,其特征在于:包括以下步骤:
步骤一:以FTO玻璃作为衬底,把FTO玻璃切片,放入丙酮超声清洗干净,放入烘箱烘干备用;
步骤二:通过溅射的方法在FTO表面溅射铜,采用电化学工作站,采用恒电流模式,以 FTO/Cu作为工作电极,氧化汞为参比电极,铂片为对电极,NaOH为电解液,电镀制备Cu(OH) 2纳米阵列;
步骤三:把制备好的Cu(OH)2纳米阵列放入管式炉进行退火处理,制备Cu2O纳米阵列;
步骤四:C3N4的制备:称取尿素放入石英舟中,在氮气气氛下,煅烧得到C3N4,把得到的 C3N4溶解到甲醇/乙醇溶液中,用细胞粉碎机超声粉碎,得到超薄的C3N4纳米片;
步骤五:把制备好的Cu2O纳米阵列浸泡到C3N4溶液中,通过离心的方法使C3N4复合到Cu2O 纳米阵列得到Cu2O/C3N4异质结;
步骤六:把制备好的Cu2O/C3N4异质结放入ALD仪器中,通过ALD的方法溅射一层TiO2纳米颗粒,即得到Cu2O/C3N4/TiO2异质结可见光催化剂。
进一步地,所述步骤一中的FTO玻璃衬底为1x2cm,然后放入丙酮超声清洗20-30min,再放入烘箱烘干备用。
进一步地,所述步骤二中FTO表面溅射的铜为2um,NaOH为3mol,电镀电流为3mA-20mA,电镀2-30min。
进一步地,所述步骤三中退火处理温度设置为400-600摄氏度,在氩气气氛下,退火4-8 小时;。
进一步地,所述步骤四中的尿素为5g,煅烧温度为400-600摄氏度,煅烧时间为4-8h,甲醇与乙醇的比例为1:5-1:3,细胞粉碎机超声粉碎为30min-120min。
进一步地,所述步骤五中的离心速率为8000r/min,离心3min。
本发明又一方面提供一种Cu2O/C3N4/TiO2异质结可见光催化剂。
一种Cu2O/C3N4/TiO2异质结可见光催化剂,采用上述步骤制备而得。
与现有技术相比,本发明的有益效果:
(1)本发明通过模板法、原子层沉积技术等策略设计制备了三维Cu2O/C3N4/TiO2分级结构阵列光阳极,利用高电子传输特性的Cu2O纳米阵列结构作为导电骨架,并通过构建Cu2O/C3N4 p-n异质结大幅促进了载流子分离效率,有效减少了电子-空穴复合率,进一步通过原子层沉积TiO2层调控界面能级,促进光的吸收,构建FTO/Cu2O/C3N4/TiO2多能级结构。
(2)本发明制备的Cu2O/C3N4/TiO2异质结催化剂具有很好光电催化性能,三维有序纳米阵列结构提供直接快速的电子传输通道和高比表面积,并且ALD精确控制TiO2薄膜均匀性和厚度,构建type II异质结构可促进光生载流子的分离效率,使Cu2O/C3N4/TiO2异质结在光电催化产氢中具有有很大的应用价值。
附图说明
图1为本发明Cu(OH)2纳米阵列的扫描电子显微镜图。
图2为本发明退火处理制备Cu2O纳米阵列的扫描电子显微镜图。
图3为本发明Cu2O纳米阵列EDX能谱图的元素分布图。
图4为本发明Cu2O纳米阵列的EDX能谱图。
图5为本发明Cu2O/C3N4纳米阵列的EDX能谱图的元素分布图。
图6为本发明Cu2O/C3N4纳米阵列的EDX能谱图。
图7为本发明Cu2O/C3N4/TiO2异质结的扫描电子显微镜图。
图8为本发明FTO/Cu2O/C3N4/TiO2异质结的线性扫描伏安法的LSV曲线图。
图9为本发明FTO/Cu2O/C3N4/TiO2异质结的计时电流法的I-T曲线图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发现。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本发明提供一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法。
一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,包括以下步骤:
步骤一:将FTO玻璃作为衬底切成1x2cm,放入丙酮超声清洗20min,然后放入烘箱烘干备用;
步骤二:通过溅射的方法在FTO表面溅射2um铜,采用电化学工作站,采用恒电流模式,以FTO/Cu作为工作电极,氧化汞为参比电极,铂片为对电极,3mol的NaOH为电解液,电镀制备得到如图1所示的Cu(OH)2纳米阵列,其中,电镀电流为3mA-20mA,电镀2-30min;
步骤三:把制备好的Cu(OH)2纳米阵列放入管式炉进行退火处理,退火处理温度设置为 600摄氏度,在氩气气氛下,退火4小时,制备得到Cu2O纳米阵列;Cu2O纳米阵列形貌如图 2所示,如图3和4所示,证明所得的产物为Cu2O;
步骤四:C3N4的制备:称取5g尿素放入石英舟中,在氮气气氛下,600摄氏度煅烧4h得到C3N4,把得到的C3N4溶解到甲醇/乙醇溶液中,其中,甲醇与乙醇的比例为1:5,再用细胞粉碎机超声粉碎30min,得到超薄的C3N4纳米片;
步骤五:把制备好的Cu2O纳米阵列浸泡到C3N4溶液中,通过离心的方法使C3N4复合到Cu2O 纳米阵列得到Cu2O/C3N4异质结,其中,离心速率为8000r/min,离心3min;离心次数为1 次,如图5和6所示,证明C3N4成果复合到Cu2O上;
步骤六:把制备好的Cu2O/C3N4异质结放入ALD仪器中,通过ALD的方法溅射一层TiO2纳米颗粒,加强其光催化的性能,即得到Cu2O/C3N4/TiO2异质结可见光催化剂,如图7所示, Cu2O/C3N4的表面粗糙度变大了,但是ALD溅射的一层TiO2纳米颗粒对阵列结构并没有什么影响。
Cu2O/C3N4/TiO2异质结的光电催化性能测试
以Na2SO4,K2HPO4为电解液,如图7所示,在一个太阳光强下进行光电性能测试,C3N4的负载量是通过多次离心增加的,其中,图中是离心一次,离心两次,离心三次的数据。
从图7中可以看出随着C3N4加入,构建p-n异质结,有利于促进层间电子空穴的分离,使其光电流增加。如图8所示,施加恒电压为-0.6v,可以看出随着光电催化时间的延长,异质结的稳定性是得到提高,异质结的构建大大提高了层间电子空穴的传输,进而避免了电极的光腐蚀,提高了复合电极材料的稳定性。相比单纯的Cu2O其稳定性大大提高,使得Cu2O/C3N4/TiO2异质结在光电极中具有更广泛的应用价值。
实施例2
一种Cu2O/C3N4/TiO2异质结可见光催化剂,采用上述方法制备而得。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,其特征在于:包括以下步骤:
步骤一:以FTO玻璃作为衬底,把FTO玻璃切片,放入丙酮超声清洗干净,放入烘箱烘干备用;
步骤二:通过溅射的方法在FTO表面溅射铜,采用电化学工作站,采用恒电流模式,以FTO/Cu作为工作电极,氧化汞为参比电极,铂片为对电极,NaOH为电解液,电镀制备Cu(OH)2纳米阵列;
步骤三:把制备好的Cu(OH)2纳米阵列放入管式炉进行退火处理,制备Cu2O纳米阵列;
步骤四:C3N4的制备:称取尿素放入石英舟中,在氮气气氛下,煅烧得到C3N4,把得到的C3N4溶解到甲醇/乙醇溶液中,用细胞粉碎机超声粉碎,得到超薄的C3N4纳米片;
步骤五:把制备好的Cu2O纳米阵列浸泡到C3N4溶液中,通过离心的方法使C3N4复合到Cu2O纳米阵列得到Cu2O/C3N4异质结;
步骤六:把制备好的FTO/Cu2O/C3N4异质结放入ALD仪器中,通过ALD的方法溅射一层TiO2纳米颗粒,即得到Cu2O/C3N4/TiO2异质结可见光催化剂。
2.根据权利要求1所述的一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,其特征在于:所述步骤一中的FTO玻璃衬底为1x2 cm,然后放入丙酮超声清洗20-30min,再放入烘箱烘干备用。
3.根据权利要求1所述的一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,其特征在于:所述步骤二中FTO表面溅射的铜为2um,NaOH为3mol,电镀电流为3mA-20mA,电镀2-30min。
4.根据权利要求1所述的一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,其特征在于:所述步骤三中退火处理温度设置为400-600摄氏度,在氩气气氛下,退火4-8小时。
5.根据权利要求1所述的一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,其特征在于:所述步骤四中的尿素为5g,煅烧温度为400-600摄氏度,煅烧时间为4-8h,甲醇与乙醇的比例为1:5-1:3,细胞粉碎机超声粉碎为30min-120min。
6.根据权利要求1所述的一种Cu2O/C3N4/TiO2异质结可见光催化剂的制备方法,其特征在于:所述步骤五中的离心速率为8000r/min,离心3min。
7.一种Cu2O/C3N4/TiO2异质结可见光催化剂,其特征在于:采用权利要求1-6任一项制备方法制备而得。
CN202010774171.5A 2020-08-04 2020-08-04 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法 Pending CN111841609A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010774171.5A CN111841609A (zh) 2020-08-04 2020-08-04 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010774171.5A CN111841609A (zh) 2020-08-04 2020-08-04 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN111841609A true CN111841609A (zh) 2020-10-30

Family

ID=73475824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010774171.5A Pending CN111841609A (zh) 2020-08-04 2020-08-04 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111841609A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024128A (zh) * 2021-03-31 2021-06-25 桂林理工大学 一种二硫化锡-c3n4纳米片阵列光阳极及其制备方法
CN113649042A (zh) * 2021-07-20 2021-11-16 青岛农业大学 光催化电极制备方法、光催化反应器及污染流体处理方法
WO2024198152A1 (zh) * 2023-03-28 2024-10-03 复旦大学 一种异质结构及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032468A (zh) * 2015-08-03 2015-11-11 中南大学 一种Cu2O-TiO2/g-C3N4三元复合物及其制备和应用方法
US20170025555A1 (en) * 2014-04-04 2017-01-26 Tufts University Cupric oxide semiconductors
CN108505057A (zh) * 2017-02-27 2018-09-07 江南大学 一种包含含磷复合物的光电阴极及其制备方法
CN111266127A (zh) * 2020-03-10 2020-06-12 广州大学 一种氧化亚铜纳米线阵列复合氮化碳负载铜网复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170025555A1 (en) * 2014-04-04 2017-01-26 Tufts University Cupric oxide semiconductors
CN105032468A (zh) * 2015-08-03 2015-11-11 中南大学 一种Cu2O-TiO2/g-C3N4三元复合物及其制备和应用方法
CN108505057A (zh) * 2017-02-27 2018-09-07 江南大学 一种包含含磷复合物的光电阴极及其制备方法
CN111266127A (zh) * 2020-03-10 2020-06-12 广州大学 一种氧化亚铜纳米线阵列复合氮化碳负载铜网复合材料及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JINGSHAN LUO ET AL: "Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting", 《NANO LETTERS》 *
ZIYAN MIN ET AL: "A highly efficient visible-light-responding Cu2O-TiO2/g-C3N4 photocatalyst for instantaneous discolorations of organic dyes", 《MATERIALS LETTERS》 *
崔玉民: "《氮化碳光催化材料合成及应用》", 31 March 2018, 中国书籍出版社 *
崔玉民等: "《二氧化钛光催化技术》", 31 December 2010, 中国书籍出版社 *
赵丽等, 厦门大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024128A (zh) * 2021-03-31 2021-06-25 桂林理工大学 一种二硫化锡-c3n4纳米片阵列光阳极及其制备方法
CN113649042A (zh) * 2021-07-20 2021-11-16 青岛农业大学 光催化电极制备方法、光催化反应器及污染流体处理方法
CN113649042B (zh) * 2021-07-20 2023-10-10 青岛农业大学 光催化电极制备方法、光催化反应器及污染流体处理方法
WO2024198152A1 (zh) * 2023-03-28 2024-10-03 复旦大学 一种异质结构及其制备方法和应用

Similar Documents

Publication Publication Date Title
Chatterjee et al. Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review
Wang et al. Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation
Liu et al. Tandem cells for unbiased photoelectrochemical water splitting
Tahir et al. A perspective on the fabrication of heterogeneous photocatalysts for enhanced hydrogen production
CN111841609A (zh) 一种Cu2O/C3N4/TiO2异质结可见光催化剂及其制备方法
WO2016136374A1 (ja) 光触媒構造体および光電池
Li et al. Recent progress in hydrogen: From solar to solar cell
Kim et al. Hetero-tandem organic solar cells drive water electrolysis with a solar-to-hydrogen conversion efficiency up to 10%
CN112410814A (zh) 一种钒酸铋光阳极及其制备方法与应用
Tahir et al. Recent development in sustainable technologies for clean hydrogen evolution: Current scenario and future perspectives
Fu et al. Recent surficial modification strategies on BiVO4 based photoanodes for photoelectrochemical water splitting enhancement
CN111334812B (zh) 基于水合羟基氧化铁的非晶硅薄膜光电极及其制备方法
CN103219565B (zh) 逆光电化学电池
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN111525142A (zh) 一种用于光催化燃料电池的CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极
CN114351176B (zh) 一种水分解制氢的方法及其装置
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
CN209741126U (zh) 人工光合作用系统
Yi et al. Emerging metal oxide/nitride protection layers for enhanced stability of silicon photoelectrodes in photoelectrochemical catalysis: Recent advancements and challenges
CN107570195B (zh) 用于光电催化产氢的六方纳米片状ZnO-g-C3N4薄膜的制备方法
CN113061906B (zh) 一种光电催化分解水制氢的方法
Das et al. Understanding the Fundamentals and Classifications of Scalable Solar Hydrogen Production
Filiz et al. Solar–Hydrogen Coupling Hybrid Systems for Green Energy
CN114457348B (zh) 一种有序多孔钛基氧化铁薄膜光电催化材料及其制备方法和应用
Van de Krol et al. Photo-electrochemical production of hydrogen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201030