CN106622322A - 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法 - Google Patents

一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN106622322A
CN106622322A CN201610981155.7A CN201610981155A CN106622322A CN 106622322 A CN106622322 A CN 106622322A CN 201610981155 A CN201610981155 A CN 201610981155A CN 106622322 A CN106622322 A CN 106622322A
Authority
CN
China
Prior art keywords
nano particles
catalyst
bimetal
hetero
bimetal nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610981155.7A
Other languages
English (en)
Other versions
CN106622322B (zh
Inventor
张火利
王燕
曹建亮
唐庆杰
贾建波
陈泽华
马名杰
宫雨晓
秦聪
申豆
张润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201610981155.7A priority Critical patent/CN106622322B/zh
Publication of CN106622322A publication Critical patent/CN106622322A/zh
Application granted granted Critical
Publication of CN106622322B publication Critical patent/CN106622322B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂,由光催化活性组分以及通过粘结剂均匀分布在光催化剂活性组分上的双金属纳米粒子组成,光催化剂活性组分为二维g‑C3N4纳米片,粘结剂为0.1~5wt.%的Nafion全氟化树脂溶液,双金属纳米粒子为Pd‑Ag双金属纳米粒子。本发明所述的复合光催化剂使用的原料均为环境友好型材料,而且,Pd‑Ag双金属纳米粒子异质结具有表面等离子体共振效应和界面肖特基效应,能更有效的利用可见光和抑制光生电子和空穴的复合,因而本发明所述的复合光催化剂应用于光催化分解水产氢活性高、稳定性好。

Description

一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂 及其制备方法
技术领域
本发明涉及光催化分解水产氢用催化剂领域,特别是一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法。
背景技术
目前,由于传统化石能源的储备有限以及使用它们带来的环境问题越来越突出,人们急需寻找新的替代能源。氢能由于其高效性和清洁性而备受重视。各国科学家竞相开发与氢能相关的产品,镍氢电池以及氢燃料电池汽车等相关产品正从实验室走向社会,氢能经济即将到来。
传统的制氢方式主要是通过煤、石油、天燃气的裂解产生氢气;或者通过电解水制得氢气;由于在氢气制备的过程中消耗了大量的化石燃料,且造成了区域环境污染和全球的变暖,所以开发出绿色清洁的制氢途径成为氢能源开发的目标之一。太阳能和水是地球上重要的两种可再生性资源,利用太阳能分解水来制备氢气是最清洁的制氢途径,一直是人类开发氢能的梦想。因此,新型光催化剂的研究是未来的发展方向。
中国专利公开号CN102641741A公开了一种以金属镉为核异质结构为壳的复合型光催化剂及制备方法。该复合型光催化剂以金属镉为核,半导体异质结构氧化锌和硫化镉为壳,金属镉的所占摩尔比例在50%~90%,氧化锌所占摩尔比例为5%,硫化镉所占摩尔比例为5%~45%;半导体异质结构氧化锌和硫化镉为壳,是指表面为硫化镉镶嵌着氧化锌颗粒的壳,硫化镉壳的厚度为5~50nm,氧化锌颗粒大小为3~50nm;其制备方法将含镉离子前驱体溶解在去离子水中,然后加入锌粉超声和磁力搅拌条件下,镉离子置换金属锌;水洗后,加入硫化盐水溶液硫化处理,或烘干后使用硫化氢气体硫化处理,得到产物为以金属镉为核,半导体异质结构氧化锌和硫化镉为壳的复合型光催化剂。该复合型光催化剂用于光催化分解水制氢,其具有较高的产氢速率。
中国专利公开号CN103316693A公开了一种含有助催化剂Cd的光催化剂Cd/CdS及其制备。该光催化剂是将3CdSO4·8H2O和Na2S2O3·5H2O溶于蒸馏水中,搅拌、超声使其充分分散,再在350~500W的氙灯下反应10~25h;然后在500~800W的微波炉中火5~25min,离心,洗涤固体沉淀,烘干,研磨,得到光催化剂Cd/CdS,其应用在光催化产氢反应中。
中国专利公开号CN 101623644A公开了一种复合空心球CdS-TiO2的制备及在光催化分解水制氢中的应用。该光催化剂制备方法利用Cd(NO3)2·4H2O为镉源和TiCl4为钛源依次采用水热法,二步浸渍法,溶胶凝胶法制得碳核上依次包裹有硫化镉和TiO2的核壳结构C-CdS-TiO2复合材料,然后在马弗炉中于400℃焙烧2h,得到复合空心球CdS-TiO2光催化剂,该催化剂将CdS与TiO2复合,拓宽了TiO2光谱响应范围,将其用于太阳能可见光催化分解水制氢的反应中,与TiO2光催化剂相比,太阳能光能利用率大幅度增加,产氢速率显著提高。
中国专利公开号CN 101623645A公开了一种p-n结空心球NiO-CdS纳米复合材料的制备及在光催化分解水制氢中的应用。该纳米复合材料的制备方法是将Ni(NO3)2·6H2O作为镍源和Cd(NO3)2·4H2O作为镉源,采用水热法合成法,四步浸渍法将n-NiO半导体与p-CdS半导体复合,制备出一种p-n结空心球NiO-CdS复合纳米材料,将其作为太阳能可见光催化分解水制氢的光催化剂,加速了光生电子的输送速率,大幅度提高了制氢产率。
中国专利公开号CN 101767021A公开了一种p-CoO/n-CdS复合半导体光催化剂的制备方法,该复合半导体光催化剂的制备方法是将铵盐、镉盐、硫脲与去离子水混合反应后,经过滤、洗涤、焙烧和研磨得到CdS固体粉末;再将钴盐、氨水与去离子水混合反应,再加入CdS三次固体粉末,经搅拌、超声分散、减压蒸馏、热处理、洗涤、过滤、焙烧和研磨得到p-CoO/n-CdS复合半导体光催化剂,该复合半导体光催化剂可用于光催化降解有机污染物、光催化分解水制氢和制造太阳能电池。
中国专利公开号CN102107904A公开了一种非模板法制备硫化镉、硫化锌空心纳米方块的方法。该方法是将摩尔比为1:1的无机镉源或无机锌源和硫粉加入到四氢呋喃溶液中,超声分散;再称取摩尔含量与硫粉相同的硼氢化钠,加入到四氢呋喃溶液中,超声分散;得到的溶液滴加到由无机镉源和硫粉加入到四氢呋喃溶液组成的溶液中,超声反应;所得到的反应产物用无水乙醇离心分离;真空干燥,得到最终的黄色产物即为硫化镉空心纳米方块,在光催化分解有毒、有害物质以及光催化分解水制氢反应中,空心纳米结构有利于提高其光催化性能。
中国专利公开号CN102489318A公开了一种多孔纳米p-CuS/n-CdS复合半导体光催化剂的制备方法,该方法按照铜盐、镉盐、含硫化合物、可升华的化合物模板和去离子水的质量百分比为(0.001%~75%)∶(0.00001%~90%)∶(0.001%~85%)∶(0.001%~75%)∶(0.001%~98%)的比例,依次经反应、离心分离、蒸馏水洗涤、超声分散、离心分离、超声处理、减压蒸馏、烘干、焙烧、自然冷却和研磨等过程,得到多孔纳米p-CuS/n-CdS复合半导体光催化剂,其应用于光催化分解水制氢、光催化降解有机污染物。
中国专利公开号CN103316714A公开了一种光催化分解水制氢用催化剂及其制备方法。该光催化分解水制氢用催化剂CdS/UiO-66或CdS/UiO-66(NH2)是由UiO-66或UiO-66(NH2)与CdS复合而成的,其中,所述CdS与所述UiO-66或UiO-66(NH2)的质量比为100:1-100,CdS/UiO-66以及CdS/UiO-66(NH2)两种原位复合光催化剂具有很高的产氢速率,与单纯CdS相比,产氢速率明显提高。
中国专利公开号CN103386317A公开了一种磷酸铋复合氧化石墨烯光催化剂BiPO4/RGO及其制备方法和应用。该光催化剂是磷酸铋BiPO4和氧化石墨烯GO的复合材料,BiPO4具有单斜晶型或六方晶型,GO在制备过程中被部分还原,以还原的氧化石墨烯RGO形式存在;GO与BiPO4的理论质量百分比为0.5~10:100,该磷酸铋复合氧化石墨烯光催化剂BiPO4/RGO应用于光解水制氢。
中国专利公开号CN103447024A一种铋基锶磁性光催化剂的制备方法及其铋基锶磁性光催化剂。该磁性光催化剂以硝酸铋和铁酸锶为原料,用十二烷基苯磺酸钠为分散剂,先制备铋基锶磁性光催化剂的前驱体,再经55~65℃烘干、500~600℃焙烧3~5h得铋基锶磁性光催化剂,其用于降解有机污染物、光催化分解水制氢和太阳能电池等领域中。
上述公开的这些光催化剂虽然均属于复合型光催化剂,但是这些光催化剂分别以传统材料硫化镉、磷酸铋或硝酸铋为基础制备的复合光催化剂,其中,镉元素和铋元素对人体有毒害作用,大量使用容易造成土壤、水体环境的污染。
因此,从避免造成环境污染的角度出发,本发明采用了环境友好的二维的有机半导体g-C3N4纳米片光催化材料和Pd-Ag双金属纳米粒子开发出了一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂。
发明内容
本发明的目的是要提供一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法,将Pd、Ag两种金属纳米粒子通过电子结构的互相调变获得双金属纳米粒子,再将其均匀复合到二维g-C3N4纳米片表面可以实现利用可见光进行光催化反应的目的。
为达到上述目的,本发明是按照以下技术方案实施的:一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂,该复合光催化剂由光催化活性组分以及通过粘结剂均匀分布在光催化剂活性组分上的双金属纳米粒子组成,所述光催化剂活性组分为二维g-C3N4纳米片,所述粘结剂为0.1~5wt.%的Nafion全氟化树脂溶液,双金属纳米粒子为Pd-Ag双金属纳米粒子,所述Pd-Ag双金属纳米粒子与光催化剂活性组分的重量百分比为0.01~10.0%,粘结剂与光催化剂活性组分的重量百分比为0.01~5.0%。
进一步的,所述二维g-C3N4纳米片的厚度为1~100nm,其比表面积大于40m2/g。
制备上述以双金属纳米粒子为异质结的二维纳米片复合光催化剂时,包括以下步骤:
步骤一、将所述的水溶性高分子稳定剂溶于去离子水中,充分搅拌溶解后,再分别加入水溶性的Pd和Ag的无机盐溶液,其中,高分子稳定剂:钯和银无机盐重量比为(1-10):1,调整pH值为6-9并充分混合均匀后,再利用回流搅拌装置保持80℃条件下用还原剂进行还原1-10h,再在40℃的恒温水浴锅中静置陈化若4-24h,得到含Pd-Ag双金属纳米粒子的溶液;
步骤二、将所述的光催化剂活性组分和粘结剂加入到步骤一得到的含Pd-Ag双金属纳米粒子的溶液中,其中,含Pd-Ag双金属纳米粒子的溶液中Pd-Ag双金属纳米粒子与光催化剂活性组分的重量百分比为0.01-10.0%,粘结剂与光催化剂活性组分的重量百分比为0.01-5.0%,进行超声分散10-60min,使光催化剂活性组分和粘结剂充分混合均匀后,然后在60-120℃进行真空干燥8-48h,即可得到以Pd-Ag双金属纳米粒子为异质结的二维纳米片复合光催化剂。
优选地,所述步骤一中水溶性高分子稳定剂为甲基纤维素、羧甲基纤维素、聚乙烯吡咯烷酮以及聚丙烯酰胺中的至少一种。
优选地,所述步骤一中Pd和Ag的水溶性金属无机盐为Pd和Ag的硝酸盐、醋酸盐或氯化物。
优选地,步骤一中还原剂为葡萄糖、柠檬酸钠、硼氢化钠以及氢气中的一种。
与现有的用于光催化分解水产氢的复合光催化剂相比,由于Pd、Ag纳米粒子的局域表面等离子体共振效应能影响其光通量和传导电子,在金属颗粒的表面,传导电子经光照射产生了较多能参与化学反应的高能电子,双金属纳米粒子的性质不是原有性能的“1+1”式的简单叠加,而是拥有新的功能特性,将Pd、Ag两种金属纳米粒子通过电子结构的互相调变,使其光电性能产生质变,使用双金属纳米粒子作为光催化剂异质结具有表面等离子体共振效应和界面肖特基效应,能更有效的利用可见光和抑制光生电子和空穴的复合,提高光催化效率,再将其均匀复合到二维g-C3N4纳米片光催化材料表面可以实现利用可见光进行光催化反应,本发明使用的原料均为环境友好型材料,制得的复合光催化剂应用于光催化分解水产氢活性高、稳定性好。
附图说明
图1为以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂的TEM照片。
图2(a)为以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂的EDX谱图(a),图2(b)为以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂的STEM照片(b)。
具体实施方式
下面结合具体实施例对本发明作进一步描述,在此发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1
称取10mg甲基纤维素溶于40mL去离子水中,充分搅拌溶解后,再分别加入1mL的含Pd为2mg/mL的硝酸钯水溶液和4mL的含Ag为2mg/mL的硝酸银水溶液,调整pH值至7.5,经充分的混合均匀后,再利用回流搅拌装置保持80℃条件下用含氢气为1%的氢气和氩气的混合气还原1h后,再在40℃的恒温水浴锅中静置陈化4h,得到含Pd-Ag双金属的纳米粒子的溶液;
在得到的含Pd-Ag双金属纳米粒子的溶液中,加入500mg二维g-C3N4纳米片和2mL的0.5wt.%全氟磺酸树脂溶液,进行超声分散30min,使其充分混合均匀后,然后保持在80℃进行真空干燥24h,得到以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂A。
实施例2
称取20mg甲基纤维素溶于40mL去离子水中,充分搅拌溶解后,再分别加入2mL的含Pd为2mg/mL的硝酸钯水溶液和4mL的含Ag为2mg/mL的硝酸银水溶液,调整pH值至7.5,经充分的混合均匀后,再利用回流搅拌装置保持80℃条件下用含氢气为1%的氢气和氩气的混合气还原1h后,再在40℃的恒温水浴锅中静置陈化4h,得到含Pd-Ag双金属的纳米粒子的溶液;
在得到的含Pd-Ag双金属纳米粒子的溶液中,加入500mg二维g-C3N4纳米片和2mL的0.5wt.%全氟磺酸树脂溶液,进行超声分散30min,使其充分混合均匀后,然后保持在80℃进行真空干燥24h,得到以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂B。
实施例3
称取20mg甲基纤维素溶于40mL去离子水中,充分搅拌溶解后,再分别加入4mL的含Pd为2mg/mL的硝酸钯水溶液和4mL的含Ag为2mg/mL的硝酸银水溶液,调整pH值至7.5,经充分的混合均匀后,再利用回流搅拌装置保持80℃条件下用含氢气为1%的氢气和氩气的混合气还原1h后,再在40℃的恒温水浴锅中静置陈化4h,得到含Pd-Ag双金属的纳米粒子的溶液;
在得到的含Pd-Ag双金属纳米粒子的溶液中,加入500mg二维g-C3N4纳米片和2mL的0.5wt.%全氟磺酸树脂溶液,进行超声分散30min,使其充分混合均匀后,然后保持在80℃进行真空干燥24h,得到以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂C。
实施例4
称取20mg甲基纤维素溶于40mL去离子水中,充分搅拌溶解后,再分别加入5mL的含Pd为2mg/mL的硝酸钯水溶液和5mL的含Ag为2mg/mL的硝酸银水溶液,调整pH值至7.5,经充分的混合均匀后,再利用回流搅拌装置保持80℃条件下用含氢气为1%的氢气和氩气的混合气还原2h后,再在40℃的恒温水浴锅中静置陈化4h,得到含Pd-Ag双金属的纳米粒子的溶液;
在得到的含Pd-Ag双金属纳米粒子的溶液中,加入500mg二维g-C3N4纳米片和2mL的0.5wt.%全氟磺酸树脂溶液,进行超声分散30min,使其充分混合均匀后,然后保持在80℃进行真空干燥24h,得到以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂D。
实施例5
称取20mg聚乙烯吡咯烷酮溶于40mL去离子水中,充分搅拌溶解后,再分别加入5mL的含Pd为2mg/mL的硝酸钯水溶液和5mL含Ag为2mg/mL的硝酸银水溶液,调整pH值至7.5,经充分混合均匀后,再利用回流搅拌装置保持80℃条件下缓慢的滴加20mL浓度为1mg/mL的硼氢化钠水溶液进行还原1h,再在40℃恒温水浴锅中静置陈化4h,得到含Pd-Ag双金属的纳米粒子的溶液;
在得到的含Pd-Ag双金属纳米粒子的溶液中,加入500mg二维g-C3N4纳米片和2mL的0.5wt.%全氟磺酸树脂溶液,进行超声分散30min,使其充分混合均匀后,然后保持在80℃进行真空干燥24h,得到以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂E。
实施例6
称取10mg羧甲基纤维素溶于40mL的去离子水中,充分搅拌溶解后,再分别加入2mL的含Pd为2mg/mL的硝酸钯水溶液和3mL含Ag为2mg/mL的硝酸银水溶液,调整pH值至7.5,经充分混合均匀后,再利用回流搅拌装置保持80℃条件下缓慢的滴加10mL浓度为1mg/mL的硼氢化钠水溶液进行还原1h,再在40℃恒温水浴锅中静置陈化4h,得到含Pd-Ag双金属的纳米粒子的溶液;
在得到的含Pd-Ag双金属纳米粒子的溶液中,加入500mg二维g-C3N4纳米片和2mL的0.5wt.%全氟磺酸树脂溶液,进行超声分散30min,使其充分混合均匀后,然后保持在80℃进行真空干燥24h,得到以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂F。
检测实验:
取上述实施例1-6中任一制得的以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂在高倍透射电子显微镜得到以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂的TEM照片,如图1所示,从图1中可以看出,Pd-Ag双金属纳米粒子在高倍透射电子显微镜下显示为小于10nm的球形粒子,并且,可以清楚的看到Pd-Ag双金属纳米粒子异质结均匀的分布在g-C3N4纳米片上;图2(a)为以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂的EDX谱图(a),图2(b)为以Pd-Ag双金属纳米粒子为异质结的二维g-C3N4纳米片复合光催化剂的STEM照片(b),通过对图2(b)中矩形框内的区域1进行线扫描能谱分析,得出的谱图为图2(a),从图2(a)中可知,得到异质结是Pd与Ag的纳米粒子结构。
将实施例1-6制备的复合光催化剂用于光催化分解水产氢,反应条件如下:
分别取上述实施例1-6制备的的复合光催化剂分别放入不同的石英瓶中,加入300mL的蒸馏水,再加入4g硫化钠与2g亚硫酸钠溶于其中作为光催化牺牲剂,实验使用的光源为500W氙灯模拟太阳光,光强为100mW·cm-2,反应前需先通入氮气进行吹扫30min,然后,开始光催化连续反应48h,收集所产生的气体,测量其体积并用气相色谱分析气体组成。实施例1-6制备的复合光催化剂产氢量见表1:
表1光催化产氢反应结果
实施例 样品 连续反应时间(h) 产氢量(μmol)
实施例1 复合光催化剂A 48 381
实施例2 复合光催化剂B 48 508
实施例3 复合光催化剂C 48 626
实施例4 复合光催化剂D 48 779
实施例5 复合光催化剂E 48 574
实施例6 复合光催化剂F 48 463
从表1中可知,在实施例1-6中不同Pd与Ag的比例、不同还原方式、不同高分子稳定剂所制备的复合光催化剂均有光催化分解水产氢的效果。
本发明的技术方案不限于上述具体实施例的限制,凡是根据本发明的技术方案做出的技术变形,均落入本发明的保护范围之内。

Claims (6)

1.一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂,其特征在于:该复合光催化剂由光催化活性组分以及通过粘结剂均匀分布在光催化剂活性组分上的双金属纳米粒子组成,所述光催化剂活性组分为二维g-C3N4纳米片,所述粘结剂为0.1~5wt.%的Nafion全氟化树脂溶液,双金属纳米粒子为Pd-Ag双金属纳米粒子,所述Pd-Ag双金属纳米粒子与光催化剂活性组分的重量百分比为0.01~10.0%,粘结剂与光催化剂活性组分的重量百分比为0.01~5.0%。
2.根据权利要求1所述的以双金属纳米粒子为异质结的二维纳米片复合光催化剂,其特征在于:所述二维g-C3N4纳米片的厚度为1~100nm,其比表面积大于40m2/g。
3.一种如权利要求1或2所述的以双金属纳米粒子为异质结的二维纳米片复合光催化剂制备方法,其特征在于,包括以下步骤:
步骤一、将所述的水溶性高分子稳定剂溶于去离子水中,充分搅拌溶解后,再分别加入水溶性的Pd和Ag的无机盐溶液,其中,高分子稳定剂:钯和银无机盐重量比为(1-10):1,调整pH值为6-9并充分混合均匀后,再利用回流搅拌装置保持80℃条件下用还原剂进行还原1-10h,再在40℃的恒温水浴锅中静置陈化若4-24h,得到含Pd-Ag双金属纳米粒子的溶液;
步骤二、将所述的光催化剂活性组分和粘结剂加入到步骤一得到的含Pd-Ag双金属纳米粒子的溶液中,其中,含Pd-Ag双金属纳米粒子的溶液中Pd-Ag双金属纳米粒子与光催化剂活性组分的重量百分比为0.01-10.0%,粘结剂与光催化剂活性组分的重量百分比为0.01-5.0%,进行超声分散10-60min,使光催化剂活性组分和粘结剂充分混合均匀后,然后在60-120℃进行真空干燥8-48h,即可得到以Pd-Ag双金属纳米粒子为异质结的二维纳米片复合光催化剂。
4.根据权利要求3所述的以双金属纳米粒子为异质结的二维纳米片复合光催化剂制备方法,其特征在于:步骤一中水溶性高分子稳定剂为甲基纤维素、羧甲基纤维素、聚乙烯吡咯烷酮以及聚丙烯酰胺中的至少一种。
5.根据权利要求3所述的以双金属纳米粒子为异质结的二维纳米片复合光催化剂制备方法,其特征在于:所述步骤一中Pd和Ag的水溶性金属无机盐为Pd和Ag的硝酸盐、醋酸盐或氯化物。
6.根据权利要求3所述的以双金属纳米粒子为异质结的二维纳米片复合光催化剂制备方法,其特征在于:所述步骤一中还原剂为葡萄糖、柠檬酸钠、硼氢化钠以及氢气中的一种。
CN201610981155.7A 2016-11-08 2016-11-08 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法 Expired - Fee Related CN106622322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610981155.7A CN106622322B (zh) 2016-11-08 2016-11-08 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610981155.7A CN106622322B (zh) 2016-11-08 2016-11-08 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106622322A true CN106622322A (zh) 2017-05-10
CN106622322B CN106622322B (zh) 2019-01-04

Family

ID=58805381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610981155.7A Expired - Fee Related CN106622322B (zh) 2016-11-08 2016-11-08 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106622322B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579791A (zh) * 2018-05-28 2018-09-28 北京林业大学 一种Pd和碳纳米管共掺杂石墨相氮化碳的三元复合催化剂及其制备方法与应用
CN109507256A (zh) * 2018-11-06 2019-03-22 商丘师范学院 一种检测癌胚抗原的无标记电化学发光适配体传感器及其制备方法和使用方法
CN110433841A (zh) * 2019-07-22 2019-11-12 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
CN110913987A (zh) * 2017-05-12 2020-03-24 威廉马歇莱思大学 由等离激元天线和反应性催化表面组成的多组分等离激元光催化剂:天线-反应器效应
CN112121836A (zh) * 2020-09-22 2020-12-25 上海纳米技术及应用国家工程研究中心有限公司 钯钴/氮化碳复合材料的制备方法及其产品和应用
CN113398971A (zh) * 2021-06-15 2021-09-17 华东理工大学 二维RuNi/g-C3N4复合光催化剂及其制备方法和应用
IT202000015478A1 (it) * 2020-06-26 2021-12-26 Luciano Terzi Procedimento di produzione di un nanocomposito comprendente nanoparticelle di argento e relativi prodotti
CN115445649A (zh) * 2022-09-13 2022-12-09 西安工程大学 一种Bi基S型异质结的微波快速制备方法及其光降解应用
CN115463654A (zh) * 2022-08-31 2022-12-13 广东工业大学 一种Pd-Ag负载的g-C3N4纳米片光催化剂及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302302A (zh) * 2012-03-14 2013-09-18 国家纳米科学中心 一种Pd@Ag核壳纳米材料及其制备方法
CN103623855A (zh) * 2013-11-12 2014-03-12 江苏大学 一种化学还原剂还原制备氮化碳/银纳米复合材料的方法
CN104492431A (zh) * 2014-12-10 2015-04-08 青岛农业大学 一种Au-Pd/TiO2 NBs光催化剂的制备方法
CN105664997A (zh) * 2016-03-18 2016-06-15 中国海洋大学 一种氮化碳异质结光催化剂的制备方法和应用
CN106025303A (zh) * 2016-07-29 2016-10-12 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302302A (zh) * 2012-03-14 2013-09-18 国家纳米科学中心 一种Pd@Ag核壳纳米材料及其制备方法
CN103623855A (zh) * 2013-11-12 2014-03-12 江苏大学 一种化学还原剂还原制备氮化碳/银纳米复合材料的方法
CN104492431A (zh) * 2014-12-10 2015-04-08 青岛农业大学 一种Au-Pd/TiO2 NBs光催化剂的制备方法
CN105664997A (zh) * 2016-03-18 2016-06-15 中国海洋大学 一种氮化碳异质结光催化剂的制备方法和应用
CN106025303A (zh) * 2016-07-29 2016-10-12 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANGCUN HAN ET AL.: "AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation", 《CARBON》 *
CHANGCUN HAN ET AL.: "Novel PtCo alloy nanoparticle decorated 2D g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
JINJU FENG ET AL.: "Bimetallic AuPd nanoclusters supported on graphitic carbon nitride: One-pot synthesis and enhanced electrocatalysis for oxygen reduction and hydrogen evolution", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913987A (zh) * 2017-05-12 2020-03-24 威廉马歇莱思大学 由等离激元天线和反应性催化表面组成的多组分等离激元光催化剂:天线-反应器效应
US11958043B2 (en) 2017-05-12 2024-04-16 William Marsh Rice University Multicomponent plasmonic photocatalysts consisting of a plasmonic antenna and a reactive catalytic surface: the antenna-reactor effect
CN108579791A (zh) * 2018-05-28 2018-09-28 北京林业大学 一种Pd和碳纳米管共掺杂石墨相氮化碳的三元复合催化剂及其制备方法与应用
CN108579791B (zh) * 2018-05-28 2020-10-30 北京林业大学 一种Pd和碳纳米管共掺杂石墨相氮化碳的三元复合催化剂及其制备方法与应用
CN109507256A (zh) * 2018-11-06 2019-03-22 商丘师范学院 一种检测癌胚抗原的无标记电化学发光适配体传感器及其制备方法和使用方法
CN109507256B (zh) * 2018-11-06 2021-01-26 商丘师范学院 一种检测癌胚抗原的无标记电化学发光适配体传感器及其制备方法和使用方法
CN110433841A (zh) * 2019-07-22 2019-11-12 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
CN110433841B (zh) * 2019-07-22 2022-01-25 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
IT202000015478A1 (it) * 2020-06-26 2021-12-26 Luciano Terzi Procedimento di produzione di un nanocomposito comprendente nanoparticelle di argento e relativi prodotti
EP3929236A1 (en) * 2020-06-26 2021-12-29 Luciano Terzi A method of producing a nanocomposite comprising silver nanoparticles and related products
CN112121836A (zh) * 2020-09-22 2020-12-25 上海纳米技术及应用国家工程研究中心有限公司 钯钴/氮化碳复合材料的制备方法及其产品和应用
CN113398971A (zh) * 2021-06-15 2021-09-17 华东理工大学 二维RuNi/g-C3N4复合光催化剂及其制备方法和应用
CN113398971B (zh) * 2021-06-15 2022-07-22 华东理工大学 二维RuNi/g-C3N4复合光催化剂及其制备方法和应用
CN115463654A (zh) * 2022-08-31 2022-12-13 广东工业大学 一种Pd-Ag负载的g-C3N4纳米片光催化剂及制备方法和应用
CN115463654B (zh) * 2022-08-31 2024-02-20 广东工业大学 一种Pd-Ag负载的g-C3N4纳米片光催化剂及制备方法和应用
CN115445649A (zh) * 2022-09-13 2022-12-09 西安工程大学 一种Bi基S型异质结的微波快速制备方法及其光降解应用

Also Published As

Publication number Publication date
CN106622322B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN106622322B (zh) 一种以双金属纳米粒子为异质结的二维纳米片复合光催化剂及其制备方法
Cao et al. Metal phosphides as co‐catalysts for photocatalytic and photoelectrocatalytic water splitting
Shen et al. Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy
Wu et al. Noble-metal-free nickel phosphide modified CdS/C 3 N 4 nanorods for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation
CN106622318B (zh) 一种以双金属纳米粒子为异质结的层状复合光催化剂及其制备方法
Wang et al. In situ surface engineering of ultrafine Ni 2 P nanoparticles on cadmium sulfide for robust hydrogen evolution
Liu et al. Modulation of the excited-electron recombination process by introduce g-C3N4 on Bi-based bimetallic oxides photocatalyst
Jian et al. Photoelectron directional transfer over a gC 3 N 4/CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution
CN107649150B (zh) 一种富含硫空位的Cd/CdS异质结可见光催化剂的制备方法及其应用
Xu et al. Montmorillonite-hybridized g-C3N4 composite modified by NiCoP cocatalyst for efficient visible-light-driven photocatalytic hydrogen evolution by dye-sensitization
Zou et al. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution
CN108505057B (zh) 一种包含含磷复合物的光电阴极及其制备方法
Mu et al. Metal-organic framework-derived rodlike AgCl/Ag/In2O3: A plasmonic Z-scheme visible light photocatalyst
Huang et al. BiVO4 microplates with oxygen vacancies decorated with metallic Cu and Bi nanoparticles for CO2 photoreduction
CN111729675B (zh) ZIF-67衍生的Co3S4与ZnIn2S4形成的复合光催化剂的制备方法及应用
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
CN107138173A (zh) 一种无定型磷化镍/类石墨烯碳氮化合物复合催化剂的简便制备方法
Jin et al. Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution
Zhao et al. Fabrication of hierarchical Co9S8@ ZnAgInS heterostructured cages for highly efficient photocatalytic hydrogen generation and pollutants degradation
Liu et al. Noble-metal-free visible light driven hetero-structural Ni/Zn x Cd 1− x S photocatalyst for efficient hydrogen production
Long et al. Optimizing hydrogen adsorption of NixB cocatalyst by integrating P atom for enhanced photocatalytic H2-production activity of CdS
CN108043436A (zh) 碳化钼/硫铟锌复合光催化剂的制备方法及其应用
Wang et al. Zero-dimensional/two-dimensional Au25 (Cys) 18 nanoclusters/g-C3N4 nanosheets composites for enhanced photocatalytic hydrogen production under visible light
CN109821562B (zh) 一种MoP-Zn3In2S6复合纳米材料的制备方法
Mao et al. PdS quantum dots as a hole attractor encapsulated into the MOF@ Cd0. 5Zn0. 5S heterostructure for boosting photocatalytic hydrogen evolution under visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190104

Termination date: 20191108

CF01 Termination of patent right due to non-payment of annual fee