CN108502922A - 一种锐钛矿二氧化钛微球及其制备方法 - Google Patents

一种锐钛矿二氧化钛微球及其制备方法 Download PDF

Info

Publication number
CN108502922A
CN108502922A CN201810284799.XA CN201810284799A CN108502922A CN 108502922 A CN108502922 A CN 108502922A CN 201810284799 A CN201810284799 A CN 201810284799A CN 108502922 A CN108502922 A CN 108502922A
Authority
CN
China
Prior art keywords
microballoon
ethyl alcohol
tio
anatase titania
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810284799.XA
Other languages
English (en)
Other versions
CN108502922B (zh
Inventor
阳晓宇
黎新
肖洒
王永
郭定城
肖冰玉
钱心怡
王雪琴
王赫
匡玥
肖曼杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201810284799.XA priority Critical patent/CN108502922B/zh
Publication of CN108502922A publication Critical patent/CN108502922A/zh
Application granted granted Critical
Publication of CN108502922B publication Critical patent/CN108502922B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种锐钛矿二氧化钛微球及其制备方法,所述锐钛矿二氧化钛微球粒径均匀,平均粒径1~2μm,微球由平均粒径10~25nm的纳米颗粒组装而成,并且纳米颗粒粒径可调。其制备方法如下:以钛酸异丙酯为硅源,乙醇为溶剂,二乙烯三胺为封端剂,含氟离子液体和乙醇共同作为形貌调控剂进行溶剂热反应制备得到TiO2微球,将TiO2微球干燥、研磨、煅烧得到锐钛矿二氧化钛微球。本发明以乙醇为溶剂,乙醇同时和含氟离子液体共同作为形貌调控剂,通过溶剂热反应制备得到具备高能面的锐钛矿二氧化钛纳米颗粒,并且可以通过调节乙醇的用量来控制形貌。

Description

一种锐钛矿二氧化钛微球及其制备方法
技术领域
本发明属于纳米材料技术领域,具体涉及一种锐钛矿二氧化钛微球及其制备方法。
背景技术
能源危机和环境污染是当今人类面临的两大难题。自1972年Ti02电极上光电催化分解水产氢被发现后,光催化技术在深度氧化降解各种有机污染物、还原重金属有毒离子以及抗菌、杀毒、抗生、能源转化等方面的应用逐渐成为研究热点。目前,以TiO2为基础的光催化技术在介电效应、光致变色、气敏、湿敏、表面自清洁和环境治理等领域已有了长足的发展和广泛的应用研究。
二氧化钛作为一种半导体材料,其化学性质相对比较稳定,具有氧化还原能力强、难溶于水、对环境无毒无污染、成本低廉等优良特点,被认为是一种绿色清洁的环境友好型光催化剂。但是在实际应用中由于TiO2的宽能带、对太阳光的利用率较低、较低的量子产率和光生载流子复合等缺陷限制了其在商业中的广泛推广和在工程中的实际应用。因此各国科学家为解决此难题提出了各种改良方法,包括贵金属掺杂,半导体复合和提高高能面比例等。而贵金属掺杂和半导体的复合步骤较复杂。
研究发现当TiO2暴露不同晶面或暴露晶面比例不同时,光催化反应过程中所产生的光生电子和空穴分别表现出不同程度的氧化性和还原性。研究表明,晶面是影响二氧化钛光催化活性的一个重要因素。根据密度泛函数理论(DFT)算得,锐钛矿TiO2各表面的平均表面能排序是{110}(1.09J/㎡)>{001}(0.90J/㎡)>{100}(0.53J/
㎡)>{101}(0.44J/㎡)。近年来该方面的研究主要集中在控制合成具有更大比例的高活性表面(如:{001}面,{100}面和{101}面)的Ti02纳米晶体上。根据晶体生长动力学机理,在晶体生长过程中,往往同时存在两种机理即取向附着(oriented
attachment,OA)和Ostwald熟化(Ostwald ripening,OR)。Ostwald熟化主要解释溶液中由扩散控制的较大尺寸的晶体生长过程,较大颗粒的生长主要以牺牲小颗粒为代价,其驱动力是粒子总表面积的降低所产生的总界面自由能的降低。即晶体生长过程中要满足表面能最低原则,因而具有较高表面能的晶面在生长过程中会逐渐消失,往往造成合成的锐钛矿单晶主要由热力学上更为稳定的{101}面,而不是活性很高的{110}和{001}面。因为第一原理计算表明锐钛矿TiO2的{001}面有可能具备比{101}面更加优越的光催化性能,所以合成高比例暴露{001}晶面的二氧化钛具有重要的现实意义。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种具备高能面的锐钛矿二氧化钛纳米颗粒及其制备方法。
为解决上述技术问题,本发明提供的技术方案是:
提供一种锐钛矿二氧化钛微球,所述锐钛矿二氧化钛微球粒径均匀,平均粒径1~2μm,微球由平均粒径10~25nm的纳米颗粒组装而成,并且纳米颗粒粒径可调。
本发明还提供上述锐钛矿二氧化钛微球的制备方法:以钛酸异丙酯为硅源,乙醇为溶剂,二乙烯三胺为封端剂,含氟离子液体和乙醇共同作为形貌调控剂进行溶剂热反应制备得到TiO2微球,将TiO2微球干燥、研磨、煅烧得到锐钛矿二氧化钛微球。
按上述方案,上述方法具体步骤如下:
1)制备TiO2微球:将乙醇、二乙烯三胺、含氟离子液体置于反应釜中搅拌均匀,随后搅拌加入钛酸异丙酯,其中乙醇、二乙烯三胺、含氟离子液体和钛酸异丙酯的体积比为20~40:0.024:1:2,搅拌均匀后进行溶剂热反应,反应结束后将反应液离心分离,所得沉淀物洗涤干燥后得到TiO2微球;
2)制备锐钛矿二氧化钛微球:将步骤1)所得TiO2微球研磨成粉末,然后放入马弗炉中煅烧得到锐钛矿二氧化钛微球。
按上述方案,步骤1)所述含氟离子液体为1-丁基-3-甲基咪唑四氟硼酸盐。
按上述方案,步骤1)所述溶剂热反应条件为:于160~200℃反应1~2天。
按上述方案,步骤2)所述煅烧条件为:以1~3℃/min的速率升温至500~600℃,然后保温4~6h。
本发明的原理在于:本发明以乙醇为溶剂,乙醇同时和含氟离子液体共同作为形貌调控剂,并控制乙醇、二乙烯三胺、含氟离子液体和钛酸异丙酯的体积比为20~40:0.024:1:2,其中适量的离子液体可促使Ti-F键产生取代部分Ti-O键,形成TiO2-IL的共聚物,获得尺寸可调的纳米颗粒,在溶剂热调节下这些纳米颗粒自组装形成结构最稳定的球形结构,并且其可抑制(001)面的生长,使得其高能面暴露比例提高,随着乙醇加入量的增加,产生的Ti-F键减少,束缚(Ti-F键的作用力)变小,不足以产生足够的Ti-F键用于替换TiO2,因此TiO2会发生畸变放大。同时,由于含氟离子液体与乙醇具有很好的相融性,随着含氟离子液体与钛源的结合,乙醇与离子液体的互混一定程度上促进Ti-F键的产生,束缚增大,从而抑制二氧化钛的进一步增长,当锻烧去除离子液体后,TiO2-IL的共聚物随着离子液体的去除而消失,使得氧空位的产生,氧空位的产生有助于提高二氧化钛的光催化性能。
本发明的有益效果在于:1、本发明以乙醇为溶剂,乙醇同时和含氟离子液体共同作为形貌调控剂,通过溶剂热反应制备得到具备高能面的锐钛矿二氧化钛纳米颗粒,并且可以通过调节乙醇的用量来控制形貌,适当增加乙醇的量可减小纳米颗粒的尺寸,制备方法绿色环保。2、本发明制备的锐钛矿二氧化钛纳米颗粒(001)
晶面的暴露比大,有很高的结晶度,并具有氧空位缺陷,表现出优异的催化性能。
附图说明
图1为本发明实施例1所制备的TiO2(20mL乙醇)的SEM图;
图2为实施例1所制备的TiO2的SEM图;
图3为实施例2所制备的TiO2(30mL乙醇)的SEM图;
图4为实施例3所制备的TiO2(35mL乙醇)的SEM图;
图5为实施例4所制备的TiO2(40mL乙醇)的SEM图;
图6为对比例1所制备的TiO2(35mL水)的SEM图;
图7为实施例1-4及对比例1所制备的TiO2的XRD图;
图8为实施例1-4及对比例1所制备的降解亚甲基蓝的光催化性能图;
图9为实施例3所制备的TiO2(35mL乙醇)的EPR图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
实施例1
一种锐钛矿型纳米二氧化钛的绿色合成方法,包含以下步骤:
(1)在反应釜中加入20mL的乙醇为溶剂,加入24μL的二乙烯三胺,再加入1mL的1-丁基-3-甲基咪唑四氟硼酸盐,然后放在磁力搅拌器上搅拌,搅拌10-15分钟后,边搅拌边加入2mL钛源钛酸异丙酯,加完后继续搅拌5-10分钟,最后放入200℃烘箱中反应24h。
(2)停止反应后,将反应溶液取出,离心得到沉淀,并用乙醇清洗沉淀三次,然后将沉淀放到70℃烘箱中干燥24小时,再将干燥好的样品磨成粉末并将其放入马弗炉中以3℃/min的速率升温至600℃,然后保温4h得到二氧化钛样品。
图1和图2为本实施例制备的TiO2的SEM图,由图可见本实施例合成的样品为纳米颗粒堆积而成的二氧化钛微球,微球平均粒径为2μm,纳米颗粒平均粒径为10nm,按照本实施方法能有效制备锐钛矿二氧化钛微球。
实施例2
采用与实施例1相似的方法制备锐钛矿二氧化钛微球,不同之处在于乙醇用量为30mL。
本实施例制备的TiO2的SEM图如图3所示,可见微球平均粒径为2μm,纳米颗粒平均粒径为18nm。
实施例3
采用与实施例1相似的方法制备锐钛矿二氧化钛微球,不同之处在于乙醇用量为35mL。
本实施例制备的TiO2的SEM图如图4所示,可见微球平均粒径为2μm,纳米颗粒平均粒径为22nm。
实施例4
采用与实施例1相似的方法制备锐钛矿二氧化钛微球,不同之处在于乙醇用量为40mL。
本实施例制备的TiO2的SEM图如图5所示,可见微球平均粒径为2μm,纳米颗粒平均粒径为25nm。由图1-5可知,微球表面纳米颗粒随着乙醇含量从20mL增加到40mL,纳米颗粒逐渐变大。
对比例1
采用与实施例1相似的方法制备锐钛矿二氧化钛微球,不同之处在于以35mL水代替20mL乙醇。
本对比例制备的TiO2的SEM图如图6所示,可见微球平均粒径为2μm,纳米颗粒平均粒径为16nm。
从图1到图6各样品的SEM图可以看出,随着乙醇用量的增加,各样品的微球尺寸基本不变,大约在2μm左右。而微球表面的纳米颗粒的尺寸在逐渐变小。
如图7所示为实施例1-4及对比例1所制备的TiO2的XRD图,可知所制备的都为锐钛矿结构的TiO2,从图7样品600℃煅烧后的XRD图可以看出,随着乙醇含量从20mL增加到40mL,纳米颗粒001面的半峰宽变小,增加乙醇的用量后,样品的结晶度明显变高,其中在加入35mL的乙醇条件下得到的样品结晶度最高。并且从图中可以看出,35mL的乙醇条件下的样品的高能面{001}面的半峰宽要比其他样品小(004对应的是001面),说明在此乙醇用量条件下晶体高能面的暴露比相对其他样品都更高。
利用对亚甲基蓝染料的降解来表征样品的光催化性能,具体实验条件:分别取0.02g实施例1-4及对比例1所制备的TiO2样品溶于100mL的0.01g/L的亚甲基蓝溶液中,在搅拌、避光的条件下暗反应30min,再在18A光强的全光条件下进行光反应,每隔10min采点进行UV测试,各样品降解亚甲基蓝的光催化性能图如图8所示,可知在一定范围内增加乙醇的用量,样品的光催化性能明显提高,光降解反应速率常数比P25(P25是市场上常用的一种性能优异的二氧化钛光催化剂)还要大,其中35mL乙醇和含氟离子液体体系下合成出的样品的光催化性能最好。
通过图8降解亚甲基蓝的光催化性能图,可知实施例1-4及对比例1所制备的TiO2样品中实施例3所制备的TiO2(35mL乙醇)光催化性能最好。
图9为实施例3所制备的TiO2(35mL乙醇)的常温电子顺磁共振性能(EPR)图,通过图可以得到两个g值,即g1=1.986,g2=2.011,分别代表的是Ti3+和氧空位,说明通过离子液体可以得到氧空位缺陷。该氧空位缺陷的存在能够促进锐钛矿二氧化钛纳米颗粒的光催化性能。

Claims (6)

1.一种锐钛矿二氧化钛微球,其特征在于:所述锐钛矿二氧化钛微球粒径均匀,平均粒径1~2μm,微球由平均粒径10~25nm的纳米颗粒组装而成,并且纳米颗粒粒径可调。
2.一种权利要求1所述的锐钛矿二氧化钛微球的制备方法,其特征在于:以钛酸异丙酯为硅源,乙醇为溶剂,二乙烯三胺为封端剂,含氟离子液体和乙醇共同作为形貌调控剂进行溶剂热反应制备得到TiO2微球,将TiO2微球干燥、研磨、煅烧得到锐钛矿二氧化钛微球。
3.根据权利要求2所述的制备方法,其特征在于,具体步骤如下:
1)制备TiO2微球:将乙醇、二乙烯三胺、含氟离子液体置于反应釜中搅拌均匀,随后搅拌加入钛酸异丙酯,其中乙醇、二乙烯三胺、含氟离子液体和钛酸异丙酯的体积比为20~40:0.024:1:2,搅拌均匀后进行溶剂热反应,反应结束后将反应液离心分离,所得沉淀物洗涤干燥后得到TiO2微球;
2)制备锐钛矿二氧化钛微球:将步骤1)所得TiO2微球研磨成粉末,然后放入马弗炉中煅烧得到锐钛矿二氧化钛微球。
4.根据权利要求3所述的制备方法,其特征在于步骤1)所述含氟离子液体为1-丁基-3-甲基咪唑四氟硼酸盐。
5.根据权利要求3所述的制备方法,其特征在于步骤1)所述溶剂热反应条件为:于160~200℃反应1~2天。
6.根据权利要求3所述的制备方法,其特征在于步骤2)所述煅烧条件为:以1~3℃/min的速率升温至500~600℃,然后保温4~6h。
CN201810284799.XA 2018-04-02 2018-04-02 一种锐钛矿二氧化钛微球及其制备方法 Expired - Fee Related CN108502922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810284799.XA CN108502922B (zh) 2018-04-02 2018-04-02 一种锐钛矿二氧化钛微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810284799.XA CN108502922B (zh) 2018-04-02 2018-04-02 一种锐钛矿二氧化钛微球及其制备方法

Publications (2)

Publication Number Publication Date
CN108502922A true CN108502922A (zh) 2018-09-07
CN108502922B CN108502922B (zh) 2021-02-19

Family

ID=63380090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810284799.XA Expired - Fee Related CN108502922B (zh) 2018-04-02 2018-04-02 一种锐钛矿二氧化钛微球及其制备方法

Country Status (1)

Country Link
CN (1) CN108502922B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111994950A (zh) * 2020-09-14 2020-11-27 四川轻化工大学 一种锐钛矿型纳米二氧化钛微球的制备方法
CN112062152A (zh) * 2020-08-17 2020-12-11 湖北工业大学 一种高能晶面暴露的二氧化钛介孔微球及其制备方法
CN113753947A (zh) * 2021-09-06 2021-12-07 山东大学 自掺杂TiO2-x纳米颗粒/氧化还原染料光致变色体系及其应用
CN114672365A (zh) * 2022-03-24 2022-06-28 中国科学院物理研究所 一种空位主导型巨电流变液及其制备方法
CN118005421A (zh) * 2024-04-03 2024-05-10 浙江伊诺环保集团股份有限公司 一种有机废水处理用陶瓷颗粒及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698505A (zh) * 2016-11-28 2017-05-24 天津城建大学 一种制备单分散TiO2微球纳米粉体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698505A (zh) * 2016-11-28 2017-05-24 天津城建大学 一种制备单分散TiO2微球纳米粉体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIN LIU ET AL.: ""Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production"", 《ENERGY ENVIRON. SCI.》 *
SHENGLI YU ET AL.: ""Ionic Liquid Assisted Chemical Strategy to TiO2 Hollow Nanocube Assemblies with Surface-Fluorination and Nitridation and High Energy Crystal Facet Exposure for Enhanced Photocatalysis"", 《ACS APPL. MATER. INTERFACES》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062152A (zh) * 2020-08-17 2020-12-11 湖北工业大学 一种高能晶面暴露的二氧化钛介孔微球及其制备方法
CN112062152B (zh) * 2020-08-17 2022-06-07 湖北工业大学 一种高能晶面暴露的二氧化钛介孔微球及其制备方法
CN111994950A (zh) * 2020-09-14 2020-11-27 四川轻化工大学 一种锐钛矿型纳米二氧化钛微球的制备方法
CN113753947A (zh) * 2021-09-06 2021-12-07 山东大学 自掺杂TiO2-x纳米颗粒/氧化还原染料光致变色体系及其应用
CN114672365A (zh) * 2022-03-24 2022-06-28 中国科学院物理研究所 一种空位主导型巨电流变液及其制备方法
CN114672365B (zh) * 2022-03-24 2022-11-11 中国科学院物理研究所 一种空位主导型巨电流变液及其制备方法
CN118005421A (zh) * 2024-04-03 2024-05-10 浙江伊诺环保集团股份有限公司 一种有机废水处理用陶瓷颗粒及其制备方法

Also Published As

Publication number Publication date
CN108502922B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN108502922A (zh) 一种锐钛矿二氧化钛微球及其制备方法
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
CN103785434B (zh) 一种g-C3N4纳米片/CdS复合可见光催化剂
Filippo et al. Enhanced photocatalytic activity of pure anatase TiO 2 and Pt-TiO 2 nanoparticles synthesized by green microwave assisted route
Naghizadeh-Alamdari et al. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts
CN108525667A (zh) 金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法
Gan et al. Impact of Cu particles on adsorption and photocatalytic capability of mesoporous Cu@ TiO2 hybrid towards ciprofloxacin antibiotic removal
CN108993604B (zh) 高可见光活性AgIn5S8/UIO-66-NH2复合材料及其制备方法和应用
Dontsova et al. Enhanced photocatalytic activity of TiO2/SnO2 binary nanocomposites
CN108855131B (zh) 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
Zhao et al. Salt templated synthesis of NiO/TiO2 supported carbon nanosheets for photocatalytic hydrogen production
He et al. Construction of Schottky-type Ag-loaded fiber-like carbon nitride photocatalysts for tetracycline elimination and hydrogen evolution
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
Liu et al. Fabrication of highly efficient heterostructured Ag-CeO2/g-C3N4 hybrid photocatalyst with enhanced visible-light photocatalytic activity
CN109967074A (zh) 一种银负载的二氧化钛光催化剂的制备方法与应用
Zhang et al. Z-scheme TiO2− x@ ZnIn2S4 architectures with oxygen vacancies-mediated electron transfer for enhanced catalytic activity towards degradation of persistent antibiotics
CN105854863A (zh) 一种C/ZnO/TiO2复合纳米光催化材料的制备方法
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
CN108654607A (zh) 核壳结构的银纳米颗粒/碳/二氧化钛纳米复合物的制备方法
CN105664914A (zh) 一种二氧化钛/二氧化锡复合光催化剂材料的制备方法
CN108355692A (zh) 碳自掺杂的石墨相氮化碳/二氧化钛纳米复合材料及其制备方法、应用
CN110615470A (zh) 一维金属掺杂金红石二氧化钛纳米线及其制备方法
CN108339574A (zh) 一种可见光催化降解罗丹明b的钛基复合材料及其制备
Li et al. Hierarchical flower-like 0D/3D g-C3N4/TiO2 S-scheme heterojunction with enhanced photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210219