CN108339574A - 一种可见光催化降解罗丹明b的钛基复合材料及其制备 - Google Patents

一种可见光催化降解罗丹明b的钛基复合材料及其制备 Download PDF

Info

Publication number
CN108339574A
CN108339574A CN201810370958.8A CN201810370958A CN108339574A CN 108339574 A CN108339574 A CN 108339574A CN 201810370958 A CN201810370958 A CN 201810370958A CN 108339574 A CN108339574 A CN 108339574A
Authority
CN
China
Prior art keywords
tio
visible light
preparation
added
photocatalytic degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810370958.8A
Other languages
English (en)
Inventor
李艳霞
陈幼萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201810370958.8A priority Critical patent/CN108339574A/zh
Publication of CN108339574A publication Critical patent/CN108339574A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种可见光催化降解罗丹明B的钛基复合材料及其制备方法,属于环境污水处理技术领域,涉及光催化的新材料制备。具体是采用溶胶‑凝胶法制备TiO2纳米粉体,以Ag+为掺杂剂,以离子液体(IL)为修饰剂,液相共沉淀法制备TiO2/Ag+/IL纳米复合材料。可见光照下考察该复合纳米材料对于罗丹明B染料的光催化降解性能,经条件优化,其降解率可达到98.87%。该方法成本低廉、制备简便、对罗丹明B降解效果极佳,有效提高环境污水处理效率,实现社会效益、经济效益、环境效益的有机统一。

Description

一种可见光催化降解罗丹明B的钛基复合材料及其制备
技术领域
本发明属于TiO2基复合材料制备方法,具体涉及一种可见光催化降解罗丹明B的钛基复合材料及其制备方法。
背景技术
大自然的环境遭受着前所未有的污染,环境问题已成为热点问题,科学界也引起了一股“环境热”。纳米材料光催化技术在环境污水降解方面具有广阔的发展前景和应用空间。含有染料、农药、有机污染物等物质的环境污水,都可以进行光催化反应,通过脱色、光催化降解成对环境无害的小分子物质。相对于传统的物理化学处理方法,通过适当方法合成的纳米材料作为光催化剂对染料和有机物进行降解有许多显著优点,主要表现在结构本性、化学性能、光催化程度等方面。例如纳米材料的晶粒较小,聚集在表面的粒子数量多,形成了高浓度的晶界,从而提高光催化效率。
众多纳米材料中,TiO2纳米材料以其自身化学性质稳定、高催化活性和价格低廉等优点脱颖而出,成为纳米材料的研究主角。单一的TiO2的禁带宽带较低,电子空穴复合率较高,对可见光利用率低等限制了对这类纳米材料的应用。纳米光催化剂在可见光的照射下,可发生强氧化还原反应,有效的降解污染物。TiO2具有化学性质稳定、无毒、抗腐蚀性能强和成本低等优点而成为最具有潜力和应用前景的半导体光催化材料。纳米TiO2材料有较大的禁带宽度(3.0-3.2eV)和较低的量子效应,只能被紫外光所激发,吸附能力差,对可见光的利用度极低。TiO2产生的光生电子-空穴对催化剂内部和表面复合概率高,反而降低了光催化性能。再者,紫外光对人体皮肤有较大的伤害。
掺杂复合金属材料、非金属材料、表面贵金属沉积、离子液体等手段对TiO2进行修饰改性,拓宽纳米材料对可见光的禁带宽度,从而达到较高的光催化性能。 离子掺杂是对TiO2纳米光催化材料改性的方法之一,主要包括金属离子掺杂(稀土金属、过渡金属)和非金属材料掺杂。金属离子掺杂是利用过渡金属离子d电子对太阳光吸收的灵敏作用,在TiO2纳米材料中掺杂过渡金属离子,可以增大光催化剂对光的响应波长范围,从紫外光的局限性,延伸至可见光的应用范畴,从而增强了光催化能力。其次,TiO2微球是一种特殊的壳体,在其表面负载金属离子,向其表面引入电荷,降低了电子-空穴对的复合率和表面电荷的迁移率,从而提高TiO2纳米材料的光催化性能。一定量的金属离子掺杂可以使光催化材料出现“杂质能级”,可以作为电子跳跃的跳板,减少跃迁所需要的能量。常用的过渡金属离子有Fe、Cu、Mo、Re、Ag等,稀土金属掺杂有Ce、La、Nd等。
离子液体是由大的无机阴离子(BF4 -、PF6 -等)和氮、磷有机阳离子组成,在室温和相邻温度下,完全以离子态的形式存在。由于离子液体的阳离子和阴离子的数目相等,所以一般认为它是中性的,并且由于其中的离子高度不对称,所以很难积聚起来,导致它的结晶受阻,所以它在室温下呈液态,俗称“室温离子液体”。与有机溶剂相比,离子液体具有较高热稳定性、高化学稳定性、黏度低、低熔点、良好的电化学性、能溶解多种有机材料和无机材料等优势,逐渐在改良TiO2纳米材料中被应用。
发明内容
本发明的目的在于针对现有技术的不足,提供一种可见光催化降解罗丹明B的钛基复合材料及其制备方法。本发明所制备的TiO2/Ag+/IL复合材料可以有效地降解罗丹明B染料,使有机染料达到完全降解的目的,可见光催化降解功能显著高于单一的TiO2纳米材料。
为实现上述发明目的,本发明采用如下技术方案:
一种可见光催化降解罗丹明B的钛基复合材料的制备方法,先采用溶胶凝胶法制备TiO2纳米粉体,以Ag+为掺杂剂,以离子液体 (IL)为修饰剂,经液相共沉淀法制得TiO2/Ag+/IL纳米复合材料。
新型TiO2/Ag+/IL复合纳米材料要解决的问题是,Ag+的掺杂剂和离子液体 (IL)的修饰有效提高了该复合纳米材料对于罗丹明B染料的可见光催化降解性能。结果表明,在可见光照射下,TiO2/Ag+/IL复合材料对罗丹明B染料具有较高的选择性和光催化活性,在优化的条件下,其降解率可达到98.87%。
进一步的,一种可见光催化降解罗丹明B的钛基复合材料的制备方法,具体步骤如下:
1)溶胶-凝胶法制备活性TiO2纳米粉体
A溶液:于烧杯中加入去离子水,磁力搅拌下,逐步加入冰醋酸和无水乙醇,然后用保鲜膜盖住烧杯,搅拌10 min形成A溶液,其中水、冰乙酸和无水乙醇的体积比为 2:1:2;
B溶液:同时于另一干燥烧杯中,加入5 mL钛酸丁酯,磁力搅拌下加入20 mL无水乙醇,保鲜膜盖住烧杯,搅拌10 min形成B溶液;
激烈搅拌下,将B溶液缓慢倾倒入A溶液中,得到乳白色的透明溶胶,将胶体静置4-6h,于烘箱中低温60℃烘干24h,用研钵磨成粉末,置于马弗炉中,在250~600℃煅烧3~6h,即可得到TiO2纳米粉体。
2)TiO2/Ag+/IL纳米复合材料的制备
A液:于烧杯中加入10 mL去离子水,接着依次加入1g TiO2、0.001~0.300 g的AgNO3固体, 搅拌至完全溶解;
B液:于另一烧杯中加入20 mL去离子水,接着加入0.01~0.04g 离子液体IL,搅拌10min;
室温搅拌下,将B液缓慢加入A液中,搅拌45 min,离心分离,弃去上清液,将沉淀用去离子水清洗数次(3次以上),60℃烘干。
所用的离子液体IL为1-丁基-2-甲基-咪唑氯盐。
一种如上所述的制备方法制得的钛基复合材料,可用于可见光下,催化降解罗丹明B。
应用的具体过程为:于5mL罗丹明B溶液(浓度5~25 mg/L),添加5 ~25 mg TiO2/Ag+/IL纳米材料,可见光照下进行光催化降解,光照30~360min,离心分离,测定光照前后染料的吸光度,计算染料的脱色率。
所用的可见光可为白炽灯(30W)。
本发明的有益效果在于:
1)本发明新制备的TiO2/Ag+/IL复合纳米材料克服了传统光催化处理环境污水技术的低效率、高成本等问题,克服了传统TiO2纳米材料光催化效率低等不足,对罗丹明B降解效果极佳;并且该复合纳米材料的制备方法简便,原料成本低,经济效益高;
2)TiO2/Ag+/IL复合纳米材料是一种新型的复合结构,既有纳米粒子独特的性质,又有金属离子和离子液体的性质,三者结合产生新的性能;以Ag+为掺杂剂,以离子液体 (IL)为修饰剂,增加了纳米材料的响应波长范围,不再局限于紫外光,可充分利用可见光进行光催化降解,同时也提高了反应速率;TiO2/Ag+/IL复合材料能够显示明显的协同效应并有效提高其光催化活性;
3)在可见光照射下,TiO2/Ag+/IL复合材料对罗丹明B染料具有较高的选择性和光催化活性,在优化的条件下,其降解率可达到98.87%。
附图说明
图1 TiO2基系列纳米材料的透射电子显微图及衍射图;TiO2(a, b), TiO2/Ag+(c, d),TiO2/Ag+/IL (e, f)
图2 TiO2基系列纳米材料的XRD衍射图;TiO2(a), TiO2/Ag+ (b), TiO2/Ag+/IL (c);
图3 TiO2制备过程中煅烧温度对产物TiO2/Ag+/IL降解罗丹明B的降解效率;
图4 TiO2/Ag+/IL纳米复合材料可见光催化降解不同染料的降解效率。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
脱色率的计算依据以下公式:
脱色率(D)=(A0-A)/A0×100%
其中,A0为未降解前的染料初始吸光度;A为光照后的染料吸光度。
实施例1
溶胶-凝胶法制备活性TiO2纳米粉体
A溶液:取一干净的烧杯放在磁力搅拌器上,用量筒量取5 mL去离子水倒入烧杯中,在缓慢搅拌的情况下,依次量取2.5 mL冰醋酸和5 mL无水乙醇加入烧杯中,用保鲜膜盖住烧杯,搅拌10 min形成A溶液;
B溶液:另取一干净烧杯放在另一个磁力搅拌器上,用一干燥的量筒量取5 mL钛酸丁酯倒入烧杯中,在激烈搅拌下加入20 mL无水乙醇,保鲜膜盖住烧杯,搅拌10 min形成B溶液;
在激烈搅拌下,将B液缓慢倾倒入A溶液中,得到乳白色的透明溶胶,将胶体静置4小时,于烘箱中低温60℃烘干24h,得到黄色晶体,将晶体用研钵磨成粉末,置于马弗炉中,在300℃下煅烧4 h,即可得到TiO2纳米粉体。
实施例2
TiO2/Ag+纳米复合材料的制备
A液:取一个50 mL烧杯,量取10 mL去离子水倒入烧杯中,依次加入1g TiO2、0.214 g的AgNO3固体, 搅拌至完全溶解;
B液:取另一个50 mL烧杯,量取20 mL去离子水倒入烧杯中,搅拌10 min;
室温搅拌下,将B液缓慢加入A液中,搅拌45 min,离心分离,弃上清,将沉淀用去离子水洗4次,60℃烘干,得TiO2/Ag+纳米复合材料。
实施例3
TiO2/Ag+/IL 纳米复合材料的制备
A液:取一个50 mL烧杯,量取10 mL去离子水倒入烧杯中,依次加入1g实施例1制得的TiO2纳米粉体、0.214 g AgNO3固体,搅拌至完全溶解;
B液:取另一个50 mL烧杯,量取20 mL去离子水倒入烧杯中,再加入0.02 g 1-丁基-2-甲基-咪唑氯盐,搅拌10 min;
室温搅拌下,将B液缓慢加入A液中,搅拌45 min,离心分离,弃上清,将沉淀用去离子水洗4次,60℃烘干,得TiO2/Ag+/IL 纳米复合材料a。
性能检测
将实施例1-3所制备的三种系列TiO2基纳米材料,于玛瑙研钵中磨碎,均匀分散在乙醇溶液中,进行透射电子显微镜扫描,结果如图1所示,可以看出TiO2和TiO2/Ag+的形貌及TEM衍射图基本无差距,说明Ag+的掺杂不影响TiO2的晶体结构,从衍射图中可以看出此时的TiO2粉末为锐钛矿结构与金红石结构多晶共存态。TiO2/Ag+/IL纳米复合材料TEM衍射斑点增多,证明新的晶型产生,XRD衍射图也进一步证实这一结果,图2 TiO2(a),TiO2/Ag+ (b),的XRD衍射图基本无差别,图2中c曲线可以看出AgCl面心立方结构的衍射峰,证明在TiO2/Ag+/IL纳米复合材料合成过程中有AgCl晶格析出,AgCl作为一种光敏材料,进一步促进TiO2/Ag+/IL对染料罗丹明B的光催化活性。
实施例4
1)改变实施例1的煅烧温度,分别改为500℃、700℃,制备TiO2纳米粉体,按实施例3的方法制备TiO2/Ag+/IL纳米复合材料b、c;
2)罗丹明B的可见光催化降解
取15 mg TiO2/Ag+/IL a添加到5mL 15 mg/mL的罗丹明B溶液中,30W的白炽灯光照射下,光照2 h,离心分离,测定光照前后染料的吸光度,计算染料的脱色率。复合材料b、c也按照上述方法测定脱色率。
结果如图3所示,TiO2制备过程中煅烧温度对产物TiO2/Ag+/IL降解罗丹明B的降解效率相差较大,其中300℃煅烧温度下制备的产物TiO2/Ag+/IL对罗丹明B的降解效果最佳,显著高于500℃ 和700℃的煅烧温度,这与TiO2的晶型有关。
实施例5
将实施例3制备的材料a分别用于处理亚甲基蓝和甲基橙,按照实施例4的方法测定光照前后染料吸光度,计算脱色率,结果如图4所示,表明所制备的TiO2/Ag+/IL对罗丹明B的降解效果显著高于亚甲基蓝和甲基橙染料,证明TiO2/Ag+/IL对染料的可将光催化降解具有一定的选择性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种可见光催化降解罗丹明B的钛基复合材料的制备方法,其特征在于:先采用溶胶-凝胶法制得TiO2纳米粉体,然后以Ag+为掺杂剂,以离子液体IL为修饰剂,通过液相共沉淀法制得TiO2/Ag+/IL纳米复合材料。
2.根据权利要求1所述的一种可见光催化降解罗丹明B的钛基复合材料的制备方法,其特征在于:具体步骤如下:
1)溶胶-凝胶法制备TiO2纳米粉体
2)TiO2/Ag+/IL 纳米复合材料的制备:于烧杯中加入10 mL去离子水,然后依次加入1gTiO2、0.001~0.300g AgNO3, 搅拌至完全溶解,得混合液1;于另一烧杯中加入20 mL去离子水,接着加入0.01 ~ 0.04 g的离子液体IL,搅拌10 min,得混合液2;室温搅拌下,将混合液2缓慢加入混合液1中,搅拌45 min,离心分离,弃去上清液,然后将沉淀用去离子水清洗后,于60℃烘干,得TiO2/Ag+/IL纳米复合材料。
3.根据权利要求2所述的一种可见光催化降解罗丹明B的钛基复合材料的制备方法,其特征在于:步骤1)具体为:于烧杯中加入去离子水,磁力搅拌下,逐步加入冰醋酸和无水乙醇,用保鲜膜盖住烧杯,搅拌10 min形成A溶液;其中去离子水、冰乙酸和无水乙醇的体积比为:2:1:2;同时于另一烧杯中,加入5 mL钛酸丁酯,磁力搅拌下加入20 mL无水乙醇,保鲜膜盖住烧杯,搅拌10 min形成B溶液;激烈搅拌下,将B溶液缓慢倾倒入A溶液中,得到乳白色的透明溶胶,将透明溶胶静置4-6h后,于烘箱中60℃烘干24 h,用研钵磨成粉末,置于马弗炉中,在250~600℃下煅烧3~6 h,即可得到TiO2纳米粉体。
4.根据权利要求1所述的一种可见光催化降解罗丹明B的钛基复合材料的制备方法,其特征在于:所述的离子液体IL为1-丁基-2-甲基咪唑氯盐。
5.一种如权利要求1所述的制备方法制得的可见光催化降解罗丹明B的钛基复合材料。
6.一种如权利要求5所述的复合材料的应用,其特征在于:在可见光照下,用于降解罗丹明B。
CN201810370958.8A 2018-04-24 2018-04-24 一种可见光催化降解罗丹明b的钛基复合材料及其制备 Pending CN108339574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810370958.8A CN108339574A (zh) 2018-04-24 2018-04-24 一种可见光催化降解罗丹明b的钛基复合材料及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810370958.8A CN108339574A (zh) 2018-04-24 2018-04-24 一种可见光催化降解罗丹明b的钛基复合材料及其制备

Publications (1)

Publication Number Publication Date
CN108339574A true CN108339574A (zh) 2018-07-31

Family

ID=62956108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810370958.8A Pending CN108339574A (zh) 2018-04-24 2018-04-24 一种可见光催化降解罗丹明b的钛基复合材料及其制备

Country Status (1)

Country Link
CN (1) CN108339574A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404590A (zh) * 2019-08-19 2019-11-05 王世扬 一种有机盐掺杂的Ir负载g-C3N4合TiO2光催化半导体材料
CN113198480A (zh) * 2021-04-27 2021-08-03 上海应用技术大学 一种La/Co@TiO2纳米球催化剂及其制备方法与应用
CN113429222A (zh) * 2021-07-16 2021-09-24 重庆大学 一种Ag/TiO2光催化瓷砖及其制备方法
CN114455664A (zh) * 2021-07-20 2022-05-10 杭州同晨环保科技有限公司 一种可见光照增强型杀菌脱色双功能水处理剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2754162A1 (en) * 2009-02-16 2010-08-19 Crc Care Pty Ltd Photocatalyst and method for production
CN105797754A (zh) * 2016-04-22 2016-07-27 东北师范大学 一种氯化银-二氧化钛纳米管复合材料及其制备方法和应用
CN107456983A (zh) * 2017-07-17 2017-12-12 山东大学 一种Ag/AgCl/TiO2复合光催化材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2754162A1 (en) * 2009-02-16 2010-08-19 Crc Care Pty Ltd Photocatalyst and method for production
CN105797754A (zh) * 2016-04-22 2016-07-27 东北师范大学 一种氯化银-二氧化钛纳米管复合材料及其制备方法和应用
CN107456983A (zh) * 2017-07-17 2017-12-12 山东大学 一种Ag/AgCl/TiO2复合光催化材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANGBO LI ET AL.: "Synthesis of Ag/AgCl/TiO2 nanotubes: a highly efficient visible light photocatalyst", 《JOURNAL OF MATERIALS SCIENCE:MATERIALS IN ELECTRONICS》 *
THAMMADIHALLI NANJUNDAIAH RAVISHANKAR ET AL.: "Hydrogen generation and degradation of trypan blue using fern-like structured silver-doped TiO2 nanoparticles", 《NEW JOURNAL OF CHEMISTRY》 *
冯文林等: "《近代物理实验教程》", 28 February 2015, 重庆:重庆大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404590A (zh) * 2019-08-19 2019-11-05 王世扬 一种有机盐掺杂的Ir负载g-C3N4合TiO2光催化半导体材料
CN113198480A (zh) * 2021-04-27 2021-08-03 上海应用技术大学 一种La/Co@TiO2纳米球催化剂及其制备方法与应用
CN113429222A (zh) * 2021-07-16 2021-09-24 重庆大学 一种Ag/TiO2光催化瓷砖及其制备方法
CN113429222B (zh) * 2021-07-16 2023-02-21 重庆大学 一种Ag/TiO2光催化瓷砖及其制备方法
CN114455664A (zh) * 2021-07-20 2022-05-10 杭州同晨环保科技有限公司 一种可见光照增强型杀菌脱色双功能水处理剂
CN114455664B (zh) * 2021-07-20 2024-02-20 茂名众和国颂水处理技术有限公司 一种可见光照增强型杀菌脱色双功能水处理剂

Similar Documents

Publication Publication Date Title
Lv et al. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhanced and stable visible light photocatalyst
Sharma et al. Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants
Li et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis
Sabzehmeidani et al. Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning
Pudukudy et al. Influence of CeO2 loading on the structural, textural, optical and photocatalytic properties of single-pot sol-gel derived ultrafine CeO2/TiO2 nanocomposites for the efficient degradation of tetracycline under visible light irradiation
CN108339574A (zh) 一种可见光催化降解罗丹明b的钛基复合材料及其制备
CN101792117B (zh) 钨掺杂锐钛矿型纳米二氧化钛复合粉末的制备方法
Gan et al. Impact of Cu particles on adsorption and photocatalytic capability of mesoporous Cu@ TiO2 hybrid towards ciprofloxacin antibiotic removal
Di et al. Preparation of Z-scheme Au-Ag2S/Bi2O3 composite by selective deposition method and its improved photocatalytic degradation and reduction activity
CN103691433B (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
CN110227453B (zh) 一种AgCl/ZnO/GO复合可见光催化剂的制备方法
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN106334554A (zh) 一种在可见光下具有高效光催化活性的ZnO/Ag复合纳米光催化剂
Yasin et al. Influence of TixZr (1− x) O2 nanofibers composition on the photocatalytic activity toward organic pollutants degradation and water splitting
Tang et al. In-situ growth UiO-66 on Bi2O3 to fabrication pp heterojunction with enhanced visible-light degradation of tetracycline
CN105664914A (zh) 一种二氧化钛/二氧化锡复合光催化剂材料的制备方法
Xue et al. Yb-substitution triggered BiVO4-Bi2O3 heterojunction electrode for photoelectrocatalytic degradation of organics
CN1583255A (zh) 含铋复合氧化物BiMO4和Bi2NO6型半导体光催化剂及制备和应用
Zhang et al. UV-Vis-NIR-light-driven Ag2O/Ag2S/CuBi2O4 double Z-scheme configuration for enhanced photocatalytic applications
CN108502922A (zh) 一种锐钛矿二氧化钛微球及其制备方法
CN105728008A (zh) 一种制备AgCl/Bi2O2CO3复合光催化材料的方法及其产品
CN109012663A (zh) 一种纳米银/碳复合光催化材料及其制备方法和应用
CN101966450A (zh) 一种高效复合光催化剂及其制备方法
CN103272592A (zh) 一维载银二氧化钛纳米棒光催化剂的制备方法
CN105195143A (zh) 一种介孔光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180731