CN108499599A - 烯烃的选择性低聚 - Google Patents

烯烃的选择性低聚 Download PDF

Info

Publication number
CN108499599A
CN108499599A CN201810161742.0A CN201810161742A CN108499599A CN 108499599 A CN108499599 A CN 108499599A CN 201810161742 A CN201810161742 A CN 201810161742A CN 108499599 A CN108499599 A CN 108499599A
Authority
CN
China
Prior art keywords
catalyst
alkene
zeolite
oligomeric
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810161742.0A
Other languages
English (en)
Inventor
A.埃尔迈尔
R.贝尔梅霍-德瓦尔
M.C.桑彻斯-桑彻斯
刘玥
J.A.勒赫尔
S.佩茨
G.施托赫尼奥尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of CN108499599A publication Critical patent/CN108499599A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7207A-type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7607A-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及烯烃的选择性低聚。本发明涉及用于使烯烃在包含镍的催化剂上低聚的催化剂体系、该催化剂的用途以及用于烯烃的低聚的方法。

Description

烯烃的选择性低聚
技术领域
本发明涉及用于使烯烃在包含镍的催化剂上低聚的催化剂体系、该催化剂的用途以及用于烯烃的低聚的方法。
背景技术
通常将低聚理解为是指烃与其自身的反应,由此相应地生成长链烃,即所谓的低聚物。具有2至8个碳原子的烯烃可以相当好地低聚。因此,例如可以通过两个具有3个碳原子的烯烃的低聚形成具有6个碳原子的烯烃(己烯)。两个分子彼此低聚也被称为二聚。
所得到的低聚物,特别是C3-C5-烯烃的二聚体,是例如用于制备醛、羧酸和醇的中间产物。
如果使正丁烯(其为具有4个碳原子的直链烯烃)经受低聚,则由此基本上生成具有8个碳原子的烯烃(更准确地说:二丁烯),和此外具有12个碳原子的烯烃(C12-烯烃,“三丁烯”),以及较少程度地生成具有多于12个碳原子的烯烃(C12+-烯烃)。由直链丁烯生成的C8-烯烃可以通过加氢甲酰基化和随后的氢化被转化为相应的壬醇,其又主要用于制备增塑剂。
烯烃的低聚在工业上在均相中借助于溶解的催化剂进行,或者借助于固体催化剂或用两相催化剂体系多相地进行。
对于多相催化方法,借助于酸催化剂(Kontakten)的低聚是长期已知的。例如,工业上使用沸石或在载体上的磷酸。在该情况中,得到支链烯烃的异构体混合物。在WO 92/13818中找到烯烃低聚的酸催化的一个实例。
对于具有高的二聚体选择性的非酸性多相催化的烯烃低聚,在本技术领域中经常使用在载体材料上的镍化合物。该种类的一种催化剂是镍-固定床-催化剂,其在Evoniklndustries AG的OCTOL工艺中使用(Hydrocarbon Process.,Int. Ed. (1988) 65 (2,Sect. 1,31-33)。用于此用途的负载型镍催化剂是已知的。例如,在WO 95/14647中记载了一种用于烯烃低聚的具有载体材料的镍催化剂,所述载体材料由氧化钛和/或氧化锆、氧化硅和任选的氧化铝、以及一些碱金属氧化物构成。借助于这些催化剂,直链丁烯的混合物以低于75%的选择率低聚成C8-烯烃。
使用沸石作为载体材料已被证明是不利的,因为其大都具有相对大的孔和高比例的质子。后者导致酸催化的副反应,特别是导致形成支链产物。
发明内容
本发明的目的是,提供改进的催化剂体系,其可以克服上述缺点,并特别是在低聚中用作催化剂时可以产生对于直链二聚体而言改进的转化率依赖性(umsatzabhängigen)的选择性。
已出人意料地发现,根据本发明的催化剂体系达成了该目的。
相应地,本发明的第一主题是烯烃低聚的方法,其中,烯烃以气体形式或超临界形式存在,并且其中使用Ni-离子-交换的林德A型沸石(Zeolithen des Typs Linde Typ A)作为催化剂。
已出人意料地表明,可以通过使用特定的Ni-离子-交换的小孔林德A型沸石获得直链二聚体的高收率。就这点而言,这是出人意料的,因为恰恰是在沸石中由于酸催化而发生作为典型副反应的高比例支链产物的形成。
在本发明范围内,使用Ni-离子-交换的林德A型沸石(简称为LTA)作为催化剂。林德A型沸石经常也被简称为沸石A。其基于化学式|Na+12 (H2O)27|8 [Al12Si12 O48]8,并且具有立方晶胞,带有相对小的开孔(8-MR)。该沸石类型的准确描述可以通过“国际分子筛协会”(www.iza-online.org) 获得。林德A型沸石的合成记载于H. Robson, K. P.Lillerud, Verified Synthesis of zeolitic materials, 第二修订版, 2001,Elsevier, 第179页及其以后几页。LTA优选以其钾-、钠-或钙-形式,特别是以其钠-或钙-形式来使用。这种沸石是商购可得的,例如在Sigma Aldrich。
存在不同的方法用于沸石的离子交换。在此,初始含于沸石中的钾、钠或钙的阳离子被希望的阳离子例如镍交换。这本身是易于办到的,因为沸石中的阳离子仅通过离子相互作用与阴离子骨架键合。通过镍进行的离子交换可以例如借助于液体离子交换由相应的含镍盐的溶液进行。
在本发明范围内,离子交换特别优选通过液体离子交换来进行。
在本发明的最简单的实施方式中,将基于钠或钙的LTA与含镍盐的溶液混合。所述含镍盐的溶液优选为镍盐,特别是相应的硝酸盐、卤化物、硫酸盐、乙酸盐、柠檬酸盐、碳酸盐的水溶液,其中特别优选的是硝酸盐。
含镍盐的溶液中的镍盐的浓度在0.001 mol/l至2.5 mol/l、特别是0.005 mol/l至0.5 mol/l的范围,其中特别优选的是0.01 mol/l至0.1 mol/l。
用镍进行的液体离子交换通常进行2至48小时、优选12至36小时的时间,其中非常特别优选20至28小时。在此有利的是在60至100℃、优选在80℃的温度下进行液体离子交换。
接着,可以按照本领域技术人员已知的方法加工催化剂。优选在液体离子交换后洗涤催化剂,优选用水。随后,推荐煅烧催化剂,特别是在400至600℃的温度下、优选在约500℃的温度下。所述煅烧在此可以优选在空气存在下进行。
根据本发明的催化剂中的镍的比例在1和10 重量%之间、优选2至8 重量%、并且非常特别优选在4和7 重量%之间。在此,镍不以其金属形式存在,而是作为Ni2+以氧化形式存在,这不是必须必然以化学计量存在(NiOx,其中x ≤ 1)。
在本发明的另一实施方式中,含于沸石中的钾、钠或钙的阳离子可以被其他碱金属阳离子和/或碱土金属阳离子额外地至少部分地交换。所述碱金属离子和/或碱土金属离子特别优选为锂和/或镁。
在本发明范围内,已出人意料地发现,通过用锂和/或镁离子额外地交换,提高了转化率和/或改进了二聚体的异构体结构,由此整个方法可以更经济地运行。
用碱金属离子和/或碱土金属离子进行的交换优选在用镍进行的液体离子交换之前进行。在本发明的最简单的实施方式中,用碱金属离子和/或碱土金属离子进行的交换也通过液体离子交换进行。为此,将所使用的LTA与相应的碱金属盐和/或碱土金属盐的溶液混合。其优选是相应的碱金属盐和/或碱土金属盐的水溶液,其中可以使用相应的硝酸盐、卤化物、硫酸盐、乙酸盐、柠檬酸盐、碳酸盐,其中,特别优选的是相应的碱金属卤化物和/或碱土金属卤化物的溶液。非常特别优选使用氯化锂和氯化镁。
在用碱金属离子和/或碱土金属离子进行的液体离子交换的情况中,也可以按照本领域技术人员已知的方法后处理沸石。优选地,在液体离子交换后洗涤沸石,同样优选用水洗涤。随后,此处还推荐煅烧催化剂,特别是在400-600℃,优选在500℃的温度下。所述煅烧在此可以优选在空气存在下进行。
在根据本发明的催化剂中借助液体离子交换引入的碱金属离子和/或碱土金属离子的比例在0.02和8.8 重量%之间,优选在0.1和3 重量%之间,非常特别优选在0.2和1.5重量%之间。
作为用于根据本发明的方法的反应物物流可以使用包含C2-至C10-,优选C2-至C6-烯烃或其混合物的物流。合适的反应物物流尤其可以包含α-烯烃、内烯烃(例如2-烯烃或3-烯烃)和环烯烃或其混合物。在一个特别优选的实施方式中,反应物物流是丁烯的混合物,其可以包含正丁烷和/或异丁烷、以及少量的其他C4-烃。
反应物物流优选包含少量其它不饱和化合物,并且实际上不包含多不饱和化合物如二烯烃或乙炔衍生物,优选少于100 重量ppm,基于反应物物流中的烯烃计。此外优选使用包含少于5质量%、特别是少于2质量%的支链烯烃的烯烃混合物,基于烯烃含量计。
丙烯在工业上通过石脑油的裂解来制备,并且是容易获得的基础化学品。C5-烯烃含于来自精炼器或裂化器的轻汽油馏分中。包含直链C4烯烃的工业混合物是来自精炼器的轻汽油馏分、来自FC裂化器或蒸汽裂化器的C4馏分、来自费托合成的混合物、来自丁烷脱氢化的混合物和通过复分解或由其他工业过程产生的混合物。例如,适合于根据本发明的方法的直链丁烯的混合物可得自蒸汽裂化器的C4馏分。在该情况中,在第一步骤中去除丁二烯。这通过丁二烯的萃取或萃取蒸馏或者通过对其选择性加氢来实现。在这两种情况中,获得了实际上不含丁二烯的C4馏分、萃余液I。在第二步骤中,由C4物流中去除异丁烯,例如通过制备甲基叔丁基醚(MTBE),其通过与甲醇的反应来进行。其他可能性是来自萃余液I的异丁烯与水生成叔丁醇的反应,或者生成二异丁烯的异丁烯酸催化低聚。现在不含异丁烯的C4馏分,萃余液II,如期望般含有直链丁烯和任选的丁烷。任选地,还可以蒸馏除去1-丁烯。具有丁-1-烯或具有丁-2-烯的两种馏分均可在根据本发明的方法中使用。
在另一个优选的实施方式中,将含烯烃的材料物流如粗丁烷作为反应物物流供入工艺中。其他适合的反应物物流尤其是萃余液I(蒸汽裂化器的不含丁二烯的C4馏分)以及萃余液II(蒸汽裂化器的不含丁二烯和异丁烯的C4馏分)。
制备合适的反应物物流的另一可能性在于,在反应塔中加氢异构化萃余液I、萃余液II或类似组成的烃混合物。在此尤其可以制得由2-丁烯、较小比例的1-丁烯和任选的正丁烷以及异丁烷和异丁烯构成的混合物。
本发明的另一主题是催化剂体系,其包含具有1至10 重量%的Ni含量的Ni离子交换的林德A型沸石(基于催化剂的总重量计)。
在一个特别优选的实施方式中,根据本发明的催化剂是Ni离子交换的林德A型沸石,其具有1至10 重量%、优选4至7 重量%(基于催化剂的总重量计)的Ni含量,和在0.02和8.8 重量%之间、优选在0.1和3 重量%之间、非常特别优选在0.2和1.5 重量%之间的碱金属离子或碱土金属离子含量。特别优选的是对于锂而言在0.2 重量%和/或对于镁而言在1.5重量%范围的含量(基于催化剂的总重量计)。
本发明的主题此外是正丁烯低聚的方法,其包括下述步骤:
A) 提供根据本发明的催化剂体系;
B) 通过催化剂体系与含正丁烯的混合物的接触使正丁烯低聚。
正丁烯的合适来源已在上文提及。
在一个实施方式中,基于已反应的反应物计,二聚体的比例(也称为“基于二聚计的百分比选择性”)为至少60%、更优选至少85%、特别优选至少90%、特别是至少95%。在一个特别优选的实施方式中,二聚体的比例是至少96%、更优选至少98%、特别优选至少99%。
按照根据本发明的方法制备的低聚物尤其用于制备醛、醇和羧酸。因此,例如,直链丁烯的二聚体通过加氢甲酰基化得到壬醛混合物。其通过氧化提供了相应的羧酸,或者通过氢化提供了C9-醇混合物。C9-酸混合物可以用于生产润滑剂或干燥剂。C9-醇混合物是用于生产增塑剂、特别是邻苯二甲酸二壬酯的前体。C9醇的尽可能高的直链度和因此为此必需的C8烯烃的直链度恰恰对于增塑剂的优化性能起着决定性的作用。直链度通常通过ISO指数来确定。
二聚体馏分的直链度通过ISO指数来描述,并且表示二聚体中的甲基支链的平均数的值。例如,对于C8馏分的ISO指数,正辛烯贡献0,甲基庚烯贡献1,和二甲基己烯贡献2。ISO指数越低,则构成各自馏分的分子越直链。ISO指数根据下述通式来计算:
相应地,具有平均1.0的ISO指数的二聚体混合物恰好每二聚体分子具有1个甲基支链。约1.0的ISO指数是含Ni催化剂体系中的标准。还已知的是,这些ISO指数是转化率依赖性的,即在降低的每次通过的转化率(即在直通道中通过催化剂床的转化率(der Umsatz imgeraden Durchgang durch das Katalysatorbett)的情况下),二聚体馏分变得更直链。但是,因为由于经济上的考虑,不能选择任意小的转化率,所以必须始终选择转化效率(空时收率、每单位催化剂质量和时间的产物质量)和产物的直链度之间的折衷。
但是,现已发现根据本发明的催化剂体系,在其用于烯烃低聚中时,由其获得的产物混合物(二聚体馏分)具有明显小于1的ISO指数,而每次通过的转化率没有明显低于通常。甚至在>10%、优选>15%、特别优选>20%的每次通过的转化率下,用根据本发明的催化剂体系,在低聚工艺中获得了小于0.8、优选小于0.7、非常特别优选小于0.65的ISO指数。
所述低聚通常在150至180℃范围、优选在155至170℃范围的温度下,和在40至60bar、优选45至55 bar的压力下进行。基于重量的空间速度(每单位催化剂质量每单位时间的反应物质量;重量时空速度(WHSV))在1.5 g反应物每g催化剂和每h (h-1)与1900 h-1之间、优选在4 h-1和350 h-1之间、特别优选在6 h-1和125 h-1之间的范围。
甚至不需要进一步的说明,也认为本领域技术人员能够最大程度地使用上述说明。优选的实施方式和实施例因此仅被解释为说明性的公开,在任何情况下也不被解释为以任何方式限制性的公开。
在下文中借助实施例更详细地说明本发明。类似地可获得本发明的替代实施方式。
具体实施方式
实施例
催化剂合成:
将钠形式或钙形式的林德A型沸石(LTA)(Sigma Aldrich公司)在500℃下预煅烧4 h(加热速率:5℃/分钟,在100 ml/分钟空气下的空气物流中),并且直接用于用镍离子交换(“在Na-LTA上的Ni”和“在Ca-LTA上的Ni”),或者在镍交换前用其他共阳离子交换。为了该交换,将沸石与LiCl或MgCl2的0.5M水溶液混合4次(20 g/g沸石),并每次在80℃下搅拌4小时。在每次交换步骤后,通过离心去除液体,并添加新鲜的溶液。在最后的交换步骤之后,将沸石用去离子水(2 l)洗涤,干燥过夜,并煅烧(500℃下8小时,加热速率:5℃/分钟,在100ml/分钟空气下的空气物流中)。
为了镍交换,将LTA前体与浓度为0.01至0.1M的硝酸镍水溶液混合(20 g/g 催化剂),并在80℃下搅拌24 h。接着,将催化剂前体用水(2 l)洗涤,干燥并煅烧(500℃下8 h,加热速率:5℃/分钟,在100 ml/分钟空气下的空气物流中)。
反应过程:
在装到反应器中之前,将催化剂在100℃下干燥至少1 h。然后,将10-200 mg的催化剂用碳化硅(SiC)稀释,以达到800 mg的总重量。将该批料安置在具有0.152英寸内径的30 cm长的管式反应器的中间。使用SiC,以固定催化剂床。将催化剂在450℃下(加热速率:10℃/分钟)在流动的空气(100 ml/分钟)中活化2 h。用N2吹扫后,用N2加载该批料,然后借助注射泵(ISCO SYRINGE PUMP 500 D;包括用以维持14℃的冷却装置)掺入反应物混合物(85% 1-丁烯、15%异丁烷)。设定期望的流量(0.03-0.2 ml/分钟),并开始加热。借助在线GC分析在直通道中通过该催化剂床形成的产物。在GC注射前,供入100 ml/分钟H2,以在环境压力下通过Pt/Al2O3催化剂使产物物流氢化。
结果
总而言之,本结果示出,Ni离子交换的林德A型沸石在丁烯二聚中是高活性的,并且具有对直链和单支链的二聚体的高选择性。该活性和选择性可以通过共阳离子的量和类型来调整。在此应始终根据比产物性能(die spezifische Produktleistung)(也为:空时收率)来安排,即整体考虑反应器中每单位空间和时间形成多少产物。因此,从经济的观点出发,低WHSV和/或低转化率下的高选择性绝对不是更好的,因为与在较高WHSV下和/或在较高转化率下具有较低选择性的可比反应相比,每时间单位形成了更少的产物。在此,用其他碱金属离子或碱土金属离子交换的根据本发明的林德A型沸石尤其表现出高选择性(ISO指数)与同时高空时收率的特别好的组合。
该特定的沸石用于高选择性烯烃低聚的用途迄今为止对于本领域技术人员而言是未知的。

Claims (9)

1.催化剂体系,其包含Ni离子交换的林德A型沸石,具有1至10 重量%的Ni含量(基于催化剂的总质量计),其特征在于,含于沸石中的钾、钠、或钙的阳离子被其他碱金属离子或碱土金属离子额外地至少部分地交换,其中,所引入的碱金属离子和/或碱土金属离子的比例为0.02-8.8 重量%。
2.根据权利要求1所述的催化剂体系,其特征在于,用Ni离子进行的交换通过液体离子交换来实现。
3.根据权利要求1或2所述的催化剂体系,其特征在于,所述碱金属离子或碱土金属离子选自锂和/或镁。
4.根据权利要求1至3中一项或多项所述的催化剂体系,其特征在于,用碱金属离子和/或碱土金属离子进行的交换通过液体离子交换来实现。
5.用于烯烃的低聚的方法,其中,烯烃以气体形式或超临界形式存在,其中,使用具有1至10 重量%的Ni含量(基于催化剂的总质量计)的Ni离子交换的林德A型沸石作为催化剂,并且,其中在>10%的每次通过的转化率下获得小于0.8的ISO指数。
6.根据权利要求5所述的方法,其特征在于,作为烯烃使用C2-至C6-烯烃或其混合物。
7.根据权利要求5或6所述的方法,其特征在于,所述烯烃是正丁烯。
8.用于正丁烯的低聚的方法,其包括下述步骤:
A) 提供根据权利要求1所述的催化剂体系;
B) 通过使所述催化剂体系与含正丁烯的混合物接触而使正丁烯低聚。
9.根据权利要求8所述的方法,其特征在于,所述低聚在150至180℃的温度下和在40至60 bar的压力下进行。
CN201810161742.0A 2017-02-27 2018-02-26 烯烃的选择性低聚 Pending CN108499599A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17158066.5 2017-02-27
EP17158066 2017-02-27

Publications (1)

Publication Number Publication Date
CN108499599A true CN108499599A (zh) 2018-09-07

Family

ID=58191325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810161742.0A Pending CN108499599A (zh) 2017-02-27 2018-02-26 烯烃的选择性低聚

Country Status (10)

Country Link
US (1) US10647628B2 (zh)
EP (1) EP3366643A1 (zh)
JP (1) JP2018140391A (zh)
KR (1) KR20180099514A (zh)
CN (1) CN108499599A (zh)
BR (1) BR102018003835A2 (zh)
RU (1) RU2018106907A (zh)
SG (1) SG10201801477SA (zh)
TW (1) TW201837062A (zh)
ZA (1) ZA201801183B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943798A (zh) * 2019-05-14 2020-11-17 赢创运营有限公司 用于抑制c3-至c5-烯烃的低聚的方法
CN112409120A (zh) * 2019-08-21 2021-02-26 赢创运营有限公司 借助于优化的蒸馏使烯烃低聚的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3666748B1 (de) * 2018-12-13 2024-07-31 Evonik Oxeno GmbH & Co. KG Verfahren zur oligomerisierung mit trockener handhabung des katalysators vor dem einfüllen in den reaktor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177282A (en) * 1989-05-05 1993-01-05 Huels Aktiengesellschaft Oligomerization of olefins
CN1432056A (zh) * 2000-06-02 2003-07-23 伊尼奥斯硅石有限公司 沸石组合物及其用途
CN101460428A (zh) * 2006-06-07 2009-06-17 巴斯夫欧洲公司 共二聚烯烃的方法
US20110306812A1 (en) * 2010-06-15 2011-12-15 Basf Se Process for the cooligomerization of olefins
US20150367336A1 (en) * 2014-06-18 2015-12-24 Basf Corporation Molecular Sieve Catalyst Compositions, Catalyst Composites, Systems, And Methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9102513D0 (en) 1991-02-06 1991-03-27 Exxon Chemical Patents Inc Hydrocarbon production
DE4339713A1 (de) 1993-11-22 1995-05-24 Basf Ag Verfahren zur Oligomerisierung von Olefinen zu hochlinearen Oligomeren und Katalysatoren dafür
MY129122A (en) 1997-11-14 2007-03-30 Basf Ag Method for producing essentially unbranched octenes and dodecenes by oligomerising of unbranched butenes
DE19922038A1 (de) 1999-05-12 2000-11-16 Basf Ag Verfahren zur Oligomerisierung von C2- bis C8-Olefinen
DE10015002A1 (de) 2000-03-25 2001-09-27 Basf Ag Verfahren zur Herstellung von Oligomeren
DE10229763A1 (de) 2002-07-03 2004-01-29 Basf Ag Verfahren zur Oligomerisierung von Alkenen in mehreren aufeinander folgenden, heterogenen Katalysatorzonen
DE10310483A1 (de) 2003-03-11 2004-09-23 Basf Ag Verfahren zur Herstellung von Oligomeren von Alkenen mit 4 bis 8 Kohlenstoffatomen
DE102009029284A1 (de) 2009-09-08 2011-03-10 Evonik Oxeno Gmbh Verfahren zur Oligomerisierung von Olefinen
US8680353B2 (en) 2011-11-21 2014-03-25 Basf Se Process for preparing oligomers of butene
DE102013212481A1 (de) 2013-06-27 2014-12-31 Evonik Industries Ag Oligomerisierung von C4-Strömen mit geringstem Gehalt an 1-Buten
DE102014209536A1 (de) 2014-05-20 2015-11-26 Evonik Degussa Gmbh Herstellung qualitativ hochwertiger Oxo-Alkohole aus unsteten Rohstoffquellen
US9821297B2 (en) * 2015-03-10 2017-11-21 California Institute Of Technology Methods to produce molecular sieves with LTA topology and compositions derived therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177282A (en) * 1989-05-05 1993-01-05 Huels Aktiengesellschaft Oligomerization of olefins
CN1432056A (zh) * 2000-06-02 2003-07-23 伊尼奥斯硅石有限公司 沸石组合物及其用途
CN101460428A (zh) * 2006-06-07 2009-06-17 巴斯夫欧洲公司 共二聚烯烃的方法
US20110306812A1 (en) * 2010-06-15 2011-12-15 Basf Se Process for the cooligomerization of olefins
US20150367336A1 (en) * 2014-06-18 2015-12-24 Basf Corporation Molecular Sieve Catalyst Compositions, Catalyst Composites, Systems, And Methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. NKOSI, F.T.T. NG ET AL.: "The oligomerization of butenes with partially alkali exchanged NiNaY zeolite catalysts", 《APPLIED CATALYSIS A: GENERAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943798A (zh) * 2019-05-14 2020-11-17 赢创运营有限公司 用于抑制c3-至c5-烯烃的低聚的方法
CN112409120A (zh) * 2019-08-21 2021-02-26 赢创运营有限公司 借助于优化的蒸馏使烯烃低聚的方法

Also Published As

Publication number Publication date
KR20180099514A (ko) 2018-09-05
EP3366643A1 (de) 2018-08-29
RU2018106907A (ru) 2019-08-27
TW201837062A (zh) 2018-10-16
SG10201801477SA (en) 2018-09-27
US10647628B2 (en) 2020-05-12
US20180251410A1 (en) 2018-09-06
JP2018140391A (ja) 2018-09-13
BR102018003835A2 (pt) 2018-10-30
ZA201801183B (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6297142B2 (ja) 1−ブテン含分が非常に少ないc4流のオリゴマー化
EP2367777B1 (en) Process to make alpha olefins from ethanol
EP1993981B1 (en) Oligomerization of isobutene-containing feedstocks
EP3527551B1 (en) Methods for the production of alpha,beta-unsaturated carboxylic acids and salts thereof
CN107586247A (zh) 从乙烯制备至少1‑己烯和辛烯
CN1914138A (zh) 制备包含8~12个碳原子的烯烃的方法
JP4728577B2 (ja) オレフィンのオリゴマー化の方法
CN108499599A (zh) 烯烃的选择性低聚
JP2003531877A (ja) アルケンのオリゴマー化法
JP5826257B2 (ja) オレフィンをコオリゴマー化するための方法
JP2011148720A (ja) ブタジエンの製造方法
US20170247298A1 (en) Process for the production of oligomerized olefins
JP2011510918A (ja) アルケンをオリゴマー化する方法
KR20160089289A (ko) 에텐으로부터 부텐 및 옥텐의 조합 제조
BRPI0913770A2 (pt) processo para a produção de etileno glicol a partir de um oxalato
US20070100186A1 (en) Conversion of ethers to olefins
CN105214643B (zh) 用于复分解反应的催化剂
CN104275193A (zh) 复分解催化剂
EP3536678B1 (en) Process for producing propylene and alkylate
CN112441865B (zh) 一种由异丁烯制备丁烯-2的方法
WO2024132737A1 (en) Regeneration of a nickel containing olefin oligomerization catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Essen, Germany

Applicant after: Evonik Operations Ltd.

Address before: Essen, Germany

Applicant before: EVONIK DEGUSSA GmbH

CB02 Change of applicant information
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180907

WD01 Invention patent application deemed withdrawn after publication