CN108484156B - 一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法 - Google Patents

一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法 Download PDF

Info

Publication number
CN108484156B
CN108484156B CN201810330151.1A CN201810330151A CN108484156B CN 108484156 B CN108484156 B CN 108484156B CN 201810330151 A CN201810330151 A CN 201810330151A CN 108484156 B CN108484156 B CN 108484156B
Authority
CN
China
Prior art keywords
mgo
powder
ceramic
slurry
nal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810330151.1A
Other languages
English (en)
Other versions
CN108484156A (zh
Inventor
王皓
张和
王为民
傅正义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Hailing Huizhi New Materials Co ltd
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201810330151.1A priority Critical patent/CN108484156B/zh
Publication of CN108484156A publication Critical patent/CN108484156A/zh
Application granted granted Critical
Publication of CN108484156B publication Critical patent/CN108484156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法。它包括如下步骤:1)单相MgO·nAl2O3粉体用硬脂酸改性得到硬脂酸改性粉体T‑MgO·nAl2O3;2)配置料浆:事先配置pH为11~12的先后加有两性表面活性剂、单体、交联剂、分散剂的水溶液,将步骤1)中所得的改性粉体T‑MgO·nAl2O3加入以上预混液中搅拌制得陶瓷料浆,然后再加入引发剂,真空除泡;3)固化注模;4)将步骤3)中脱模所得的陶瓷生坯先后进行冷等静压和排胶处理后制备得到形状完好的MgO·nAl2O3透明陶瓷素坯,烧结得到样品。该方法条件易控,制备得到的MgO·nAl2O3透明陶瓷素坯形状完好、显微结构均匀,烧结得到的一系列组成的MgO·nAl2O3透明陶瓷样品光学透过性好。

Description

一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透 明陶瓷制备方法
技术领域
本发明涉及一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法,属于透明陶瓷材料制备领域。
背景技术
随着现代科技的进步,对更高光学应用的需求重新激起了人们对透明多晶陶瓷研究的兴趣。透明多晶陶瓷因同时具有优异的光学性能和陶瓷特征性能(高强度、高绝缘、耐高温、耐腐蚀等),被广泛应用于民用及军工领域。透明多晶镁铝尖晶石是其中的典型代表(K.E.Green,J.L.Hastert,and D.W.Roy,Polycrystalline MgAl2O4 Spinel A Broad BandOptical Material For Offensive Environments,Window and Dome Technologies andMaterials,1989,1112,14-74.),它在紫外线(UV)到中波红外(MVIR)波段均具有高的透过率,并同时具有足够高的机械性能,可作为蓝宝石的替代材料。
在合适的温度下,尖晶石晶格中会存在间隙阳离子或阳离子空位,并且在非化学计量尖晶石MgO·nAl2O3中,n的组成范围为0.6≤n≤9.1(B.Hallstedt,ThermodynamicAssessment of the System MgO–Al2O3,Journal of the American Ceramic Society,1992,75(11),1497-1507.),从而引起一系列本征性能的改变。例如,与n=1相比,MgO·1.8Al2O3尖晶石中铝组成的变化可以导致晶格参数的降低,这与Tu等人的理论预测结果是一致的(B.Tu,H.Wang,X.Liu,W.Wang,and Z.Fu,Theoretical predictions ofcomposition-dependent structure and properties of alumina-rich spinel,Journalof the European Ceramic Society,2016,36(4),1073-1079.)。
到目前为止,近五十年来的大多数研究都集中在MgAl2O4(n=1)的透明陶瓷。尽管如此,近年来非化学计量的镁铝尖晶石MgO·nAl2O3(n≠1)的研究也取得了一些进展,主要制备方法是通过反应热压烧结(M.Rubat du Merac,H.-J.Kleebe,M.M.Müller,andI.E.Reimanis,Fifty Years of Research and Development Coming to Fruition;Unraveling the Complex Interactions during Processing of TransparentMagnesium Aluminate(MgAl2O4)Spinel,Journal of the American Ceramic Society,2013,96(11),3341-3365.)。根据Krell等人的研究,当n>1.5时,尖晶石中铝含量越高,在反应烧结过程中,过量氧化铝(Al2O3)的辅助烧结作用也会更明显。此外,当n=2和2.5时,尖晶石在可见光波长下具有较高的透过率值(>82%)(A.C.Sutorik,C.Cooper,G.Gilde,andM.Cinibulk,Visible Light Transparency for Polycrystalline Ceramics of MgO·2Al2O3 and MgO·2.5Al2O3 Spinel Solid Solutions,Journal of the AmericanCeramic Society,2013,96(12),3704-3707.)。而且,Tu等人通过理论计算发现提高铝组分的含量可以提高尖晶石的弹性模量,这也得到了Mitchell等人实验数据的验证(T.E.Mitchell,Dislocations and Mechanical Properties of MgO–Al2O3 SpinelSingle Crystals,Journal of the American Ceramic Society,1999,82(12),3305-3316.)。此外,据报道通常情况下富铝尖晶石在3000nm附近不存在化学计量镁铝尖晶石中常见的吸收峰。然而,氧化铝和氧化镁通过反应烧结形成尖晶石相时会不可避免地产生约8%的体积膨胀,这使得通过一步反应烧结来获得致密的尖晶石陶瓷变得很困难。此外,通过反应烧结工艺很难获得组成可控且高均匀性的陶瓷,尤其是制备大尺寸复杂形状的尖晶石透明陶瓷。然而研究也表明,通过先合成单相陶瓷粉体,再结合无压预烧和热等静压这种两步烧结方式可以较好地解决上述问题(X.Liu,H.Wang,B.Tu,W.Wang,Z.Fu,and A.Krell,Highly Transparent Mg0.27Al2.58O3.73N0.27 Ceramic Prepared by PressurelessSintering,Journal of the American Ceramic Society,2014,97(1),63-66.)。
成型工艺是将陶瓷粉末转化为预设形状坯体的关键步骤,也是获得高透过率和高均匀性陶瓷的重要环节。而通过凝胶注模成型工艺可以获得近净尺寸的陶瓷坯体,这可以大大降低烧结后期昂贵的加工成本。此外,选取水基溶液提供了一些环保和经济效益。但不幸的是,由于镁铝尖晶石本身水解的特性,使得高固相量(≥50vol%)低粘度(≤1Pa·s)料浆的制备变得相当困难。因为严重的水解反应会使陶瓷粉体在水中团聚和沉降导致最终的固相量只能达到30vol%左右。我们知道,低固含量(<50vol%)的料浆可能导致获得的生坯密度低、强度低、坯体均匀性差。为了解决这个问题,一方面,需要对粉体进行抗水化处理以便制备高固含量(≥50vol%)的稳定悬浮液。另一方面,为了最终获得高透过率的尖晶石陶瓷,我们必须确保在排胶脱脂过程中添加到悬浮液中的所有有机添加剂都能被消除(A.Goldstein,Correlation between MgAl2O4-spinel structure,processing factorsand functional properties of transparent parts(progress review),Journal ofthe European Ceramic Society,2012,32(11),2869-2886.)。
Ganesh等人使用H3PO4和Al(H2PO4)3作为抗水化试剂钝化处理MgAl2O4,可以在粉体表面形成紧凑的单分子磷酸隔离层,来隔离溶液中去离子水和粉体表面的直接接触,使水解现象几乎消除(I.Ganesh,S.M.Olhero,P.M.C.Torres,and J.M.F.Ferreira,Gelcastingof Magnesium Aluminate Spinel Powder,Journal of the American Ceramic Society,2009,92(2),350-357.)。但这一抗水解处理方案存在的问题是,在随后的排胶脱脂过程中,改性过程中形成的磷酸盐几乎无法消除。同时,对于镁铝尖晶石固溶体而言,由于改性过程引入的Al(H2PO4)3将使MgO·nAl2O3中的铝组成变得不可控。
发明内容
本发明的主要目的是针对现有技术的不足而提供一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法,该方法条件易控,制备得到的MgO·nAl2O3透明陶瓷素坯形状完好、显微结构均匀,烧结得到的MgO·nAl2O3透明陶瓷样品光学透过性好。
为实现上述发明目的,本发明采取的技术方案如下:
一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法,它包括如下步骤:
1)单相MgO·nAl2O3粉体用硬脂酸改性得到硬脂酸改性粉体T-MgO·nAl2O3
2)配置料浆:事先配置pH为11~12的先后加有两性表面活性剂、分散剂、单体、交联剂的水溶液,将步骤1)中所得的改性粉体T-MgO·nAl2O3加入以上预混液中搅拌制得陶瓷料浆,然后再加入引发剂,真空除泡;
3)固化注模:在步骤2)中所得的陶瓷料浆中加入交联固化所用催化剂,在尽量不产生新气泡的前提下手动搅拌,然后将以上悬浮浆料注入到模具中静置固化;
4)将步骤3)中脱模所得的陶瓷生坯先后进行冷等静压和排胶处理后制备得到形状完好的MgO·nAl2O3透明陶瓷素坯,烧结得到MgO·nAl2O3透明陶瓷块体样品。
按上述方案,所述步骤1)中的MgO·nAl2O3中n=1.0~2.33。
按上述方案,所述步骤1)中为在以硬脂酸为改性剂的预混液中加入单相MgO·nAl2O3粉体,室温搅拌改性,用旋转蒸发仪除去溶剂,然后干燥过筛,得到改性粉体T-MgO·nAl2O3
按上述方案,所述步骤1)中预混液中的溶剂为甲苯;所述步骤1)中的MgO·nAl2O3粉体质量(g):甲苯体积(ml):硬脂酸质量(g)=100:200:0.2~0.4,改性条件为:室温,50~60分钟。
按上述方案,所述步骤2)中水溶液的pH是通过加入浓氨水调节得到的。
按上述方案,所述步骤2)中的搅拌时间为2~6小时。
按上述方案,所述步骤2)中pH为11~12的先后加有两性表面活性剂、单体、交联剂、分散剂的水溶液的配置方法:先用浓氨水调节去离子水溶液pH为11~12,然后按照顺序先后加入两性表面活性剂、单体、交联剂、分散剂,并且每加入一种物质后充分搅拌均匀后再加入下一种。
按上述方案,所述步骤2)中的两性表面活性剂为吐温80(C67H128O26,Tween 80),其用量按质量百分数计为陶瓷粉体(即所述步骤1)中获得的硬脂酸改性粉体T-MgO·nAl2O3)的0.6~1.2wt%;分散剂为四甲基氢氧化铵(C4H13NO,TMAH),其用量按质量百分数计为陶瓷粉体的1.0~2.0wt%。
按上述方案,所述步骤2)中MgO·nAl2O3陶瓷浆料中MgO·nAl2O3的固相量为50~60vol%。
按上述方案,所述步骤2)中的单体为甲基丙烯酰胺(Methacrylamide,MAM),其用量按质量百分数计为料浆溶剂的15~20wt%;交联剂为N,N′-亚甲基双丙烯酰胺(Methylenebisacrylamide,MBAM),其用量按质量百分数计为所加单体质量的1/10;引发剂为过氧二硫酸铵(Amonium persulfate,APS),其用量按体积百分数计为料浆溶剂体积的0.6~1.2vol%。
按上述方案,所述步骤2)中的真空除泡条件:真空度(0.08MPa),真空除泡时间为30分钟,其中:搅拌除泡25分钟,静置除泡5分钟。
按上述方案,所述步骤3)中的交联固化所用催化剂为N,N,N′,N′-四甲基乙二胺(Tetramethylethylenediammine,TEMED),其用量按体积百分数计为料浆溶剂体积的0.2~0.6vol%,模具中静置固化时间为24小时。
按上述方案,所述步骤3)中的固化干燥过程分为两步进行,第一步在25℃下慢速固化干燥24小时;第二步在100℃、0.5℃/min条件下快速干燥。
按上述方案,所述步骤4)中的冷等静压CIP条件及马弗炉中的排胶制度分别为CIP(200MPa,5min)、排胶(630℃,1℃/min,10h)。
按上述方案,所述步骤4)中的烧结为无压预烧结合热等静压烧结,其中无压预烧条件及热等静压HIP条件分别为无压预烧(1700℃,6℃/min,2h,N2)、热等静压HIP(1880℃,180MPa,5h,Ar)。
本发明的有益效果:
本发明采用硬脂酸改性MgO·nAl2O3粉体,很好地解决了尖晶石固溶体粉体在水中水解聚沉的问题,然后利用合适的两性表面活性剂Tween 80和分散剂TMAH,并优化凝胶注模成型过程中各参数及用量,成功制得了高固相量低黏度的稳定悬浮料浆,由此有利于制得均匀性好强度高的坯体。同时该成型工艺由于制得的坯体具有足够的强度便于加工,可以很好地降低加工成本。与传统方法相比适用范围广,为其它存在水解问题陶瓷体系粉体的抗水化处理提出了一个新的思路。同时所有有机物均可在排胶脱脂中除去,不会对透明陶瓷的组成和光学性能产生影响,由此,本发明基于凝胶注模胶态成型及热等静压烧结的透明陶瓷制备工艺获得了一系列组成的光学透过率接近理论值的MgO·nAl2O3尖晶石透明陶瓷,可适用于大尺寸、复杂形状的透明陶瓷部件的制备;制备方法简单,条件易控。
附图说明
图1为本发明实施例1中的MgO·1.8Al2O3粉体在室温下与水接触72小时的改性前后形貌对比图。(a)图是原始MgO·1.8Al2O3粉体在与去离子水接触72小时后进行冷冻干燥后样品的SEM形貌,(b)图T-MgO·1.8Al2O3粉体在与去离子水接触72小时后进行冷冻干燥后样品的SEM形貌。由图1可看出改性后的粉体T-MgO·1.8Al2O3在与水72小时后分散性很好,很好地解决了粉体在水中的团聚问题。
图2为本发明实施例1中的MgO·1.8Al2O3粉体在pH=11.5的水溶液中的改性前后pH值随时间的变化图。由图2可看出改性后的T-MgO·1.8Al2O3粉体在pH=11.5的水溶液中浸泡31小时后pH值由11.5变为11.1,基本保持不变,不会对后期维持料浆稳定的溶液pH造成影响,这也是我们想要的改性效果。
图3为本发明实施例1中的MgO·1.8Al2O3粉体改性前后的pH-zeta电位变化图。由图3可看出改性后的粉体T-MgO·1.8Al2O3在两性表面活性剂Tween 80和分散剂TMAH的作用下在pH=11.5左右时zeta电位的绝对值大于40mV,浆料的稳定性较好。
图4为本发明实施例1所配制的50vol%MgO·1.8Al2O3陶瓷浆料在加入不同用量Tween 80和TMAH后的粘度关系图。
图5为本发明实施例1所制备的MgO·1.8Al2O3陶瓷素坯烧结得到的MgO·1.8Al2O3陶瓷成品的透过率图谱和表观照片。
图6为本发明实施例中排胶脱脂前后的MgO·1.8Al2O3陶瓷素坯的SEM图。
具体实施方式
为了更好地理解本发明,下面结合附图、实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
将0.3g硬脂酸加入到200ml甲苯中,用磁力搅拌器充分搅拌待硬脂酸充分溶解后,将100g MgO·1.8Al2O3粉体(粉体质量(g):甲苯体积(ml):硬脂酸质量(g)=100:200:0.30)加入到上述溶液中,在室温下搅拌55min后,将以上混合液经过旋转蒸发器处理除去多余甲苯,然后放在65℃干燥箱里干燥24h后过200目筛得到改性粉体T-MgO·1.8Al2O3。将0.436gTween 80(两性表面活性剂为待成型的改性粉体T-MgO·1.8Al2O3质量的0.8wt%)溶解于15ml事先用浓氨水已调节pH至11.6的去离子水中,搅拌均匀配制预混液。图1是MgO·1.8Al2O3粉体在室温下与水接触72小时后经过冷冻干燥所拍得的改性前后形貌对比图,由图1也可看出改性后的粉体T-MgO·1.8Al2O3在与水72小时后分散性很好,很好地解决了粉体在水中的团聚问题。图2是MgO·1.8Al2O3粉体在pH=11.6的水溶液中的改性前后pH随时间的变化图,由图2可看出改性后的粉体T-MgO·1.8Al2O3在pH=11.6的水溶液中浸泡31小时后pH基本保持不变,不会对后期维持料浆稳定的溶液pH造成影响,这也是我们想要的改性效果。图3是MgO·1.8Al2O3粉体改性前后在上述含有两性表面活性剂的预混液体系中加0.818g TMAH(分散剂为粉体T-MgO·1.8Al2O3质量的1.5wt%)的混合体系的pH-zeta电位变化图,由图3可看出改性后的粉体T-MgO·1.8Al2O3在两性表面活性剂Tween 80和分散剂TMAH的作用下在pH=11.5左右时zeta电位的绝对值大于40mV,浆料的稳定性较好。
在以上预混液中依次加入2.7g MAM(单体为所配料浆溶剂质量的18wt%)、0.27gMBAM(交联剂用量为所加单体质量的1/10)、0.818g TMAH(分散剂为待成型的改性粉体T-MgO·1.8Al2O3质量的1.5wt%),上述提到的每一种有机物添加剂在加入之后都要待其充分搅拌均匀、有机物完全溶化之后再加入下一种有机物。然后向以上溶液中加入改性粉体T-MgO·1.8Al2O3 54.5g(50vol%),使用磁力搅拌器搅拌2h后加入150μl APS(引发剂为所配料浆溶剂体积的1.0vol%)。图4为在实施例所配制的50vol%的T-MgO·1.8Al2O3陶瓷浆料中加入不同含量的Tween 80和TMAH后的粘度关系图。由图4可看出Tween 80和TMAH的含量分别为0.8wt%和1.5wt%时粘度值最低为363mPa·s,此时料浆流动性好、稳定性高、注模容易。随后将上述溶液放在真空除泡机里在0.08MPa真空度下真空除泡30min(搅拌除泡25min,静置除泡5min),之后加入75μl TEMED(催化剂为所配料浆溶剂体积的0.5vol%)并手动缓慢搅拌5min防止产生新的气泡。将以上浆料注入钢制模具中,置于25℃下静置固化干燥24h后脱模并放置在空气中25℃下干燥24h后置于干燥箱(100℃,0.5℃/min,10h)中继续干燥,然后对其先后进行冷等静压CIP(200MPa,5min)和排胶脱脂(630℃,0.5℃/min,10h)处理,得到MgO·1.8Al2O3陶瓷坯体。排胶脱脂前后的素坯的SEM见图6,图6可以看出:经排胶脱脂处理,有机物均可充分被除去,排胶脱脂后的素坯显微结构均匀,不会对透明陶瓷的组成和光学性能产生影响。将本实施例得到的MgO·1.8Al2O3陶瓷素坯先后经过无压预烧(1700℃,6℃/min,2h,N2)和热等静压HIP(1880℃,180MPa,5h,Ar)烧结、经打磨抛光处理得到MgO·1.8Al2O3陶瓷成品,其透过率图谱及表观照片见图5,由图5可看出MgO·1.8Al2O3陶瓷在无论是在可见光范围还是在红外区域都具有较好的光学透过性,基本接近理论值。
实施例2:
将0.40g硬脂酸加入到200ml甲苯中,用磁力搅拌器充分搅拌待硬脂酸充分溶解后,将100g MgAl2O4(n=1.0)粉体(粉体质量(g):甲苯体积(ml):硬脂酸质量(g)=100:200:0.40)加入到上述溶液中,在室温下搅拌60min后,将以上混合液经过旋转蒸发器处理除去多余甲苯,然后放在65℃干燥箱里干燥24h后过200目筛得到改性粉体T-MgAl2O4。将0.644gTween 80(两性表面活性剂为待成型的改性粉体T-MgAl2O4质量的1.2wt%)溶解于15ml事先用浓氨水已调节pH至12的去离子水中,搅拌均匀配制预混液。在以上预混液中依次加入2.25g MAM(单体为所配料浆溶剂质量的15wt%)、0.23g MBAM(交联剂用量为所加单体质量的1/10)、1.074g TMAH(分散剂为待成型的改性粉体T-MgAl2O4质量的2.0wt%),上述提到的每一种有机物添加剂在加入之后都要待其充分搅拌均匀、有机物完全溶化之后再加入下一种有机物。然后向以上溶液中加入改性粉体T-MgAl2O453.7g(50vol%),使用磁力搅拌器搅拌4h后加入90μl APS(引发剂为所配料浆溶剂体积的0.6vol%)。当Tween 80和TMAH的含量分别为1.2wt%和2.0wt%时粘度值为387mPa·s,此时料浆流动性好、稳定性高、注模容易。随后将上述溶液放在真空除泡机里在0.06MPa真空度下真空除泡30min(搅拌除泡25min,静置除泡5min),之后加入30μl TEMED(催化剂为所配料浆溶剂体积的0.2vol%)并手动缓慢搅拌5min防止产生新的气泡。将以上浆料注入钢制模具中,置于25℃下静置固化干燥24h后脱模并放置在空气中25℃下干燥24h后置于干燥箱(100℃,0.5℃/min,10h)中继续干燥,然后对其先后进行冷等静压CIP(200MPa,5min)和排胶脱脂(630℃,0.5℃/min,10h)处理,得到MgAl2O4陶瓷坯体。将本实施例得到的MgAl2O4陶瓷素坯先后经过无压预烧(1700℃,6℃/min,2h,N2)和热等静压HIP(1880℃,180MPa,5h,Ar)烧结、经打磨抛光处理得到MgAl2O4(n=1.0)陶瓷,其无论是在可见光范围还是在红外区域都具有较好的光学透过性,基本接近理论值。
实施例3:
将0.35g硬脂酸加入到200ml甲苯中,用磁力搅拌器充分搅拌待硬脂酸充分溶解后,将100g MgO·1.19Al2O3粉体(粉体质量(g):甲苯体积(ml):硬脂酸质量(g)=100:200:0.35)加入到上述溶液中,在室温下搅拌55min后,将以上混合液经过旋转蒸发器处理除去多余甲苯,然后放在65℃干燥箱里干燥24h后过200目筛得到改性粉体T-MgAl2O4。将0.659gTween 80(两性表面活性剂为待成型的改性粉体T-MgO·1.19Al2O3质量的1.0wt%)溶解于15ml事先用浓氨水已调节pH至12的去离子水中,搅拌均匀配制预混液。在以上预混液中依次加入2.7g MAM(单体为所配料浆溶剂质量的18wt%)、0.27g MBAM(交联剂用量为所加单体质量的1/10)、1.318g TMAH(分散剂为待成型的改性粉体T-MgO·1.19Al2O3质量的2.0wt%),上述提到的每一种有机物添加剂在加入之后都要待其充分搅拌均匀、有机物完全溶化之后再加入下一种有机物。然后向以上溶液中加入改性粉体T-MgO·1.19Al2O365.9g(55vol%),使用磁力搅拌器搅拌4h后加入120μl APS(引发剂为所配料浆溶剂体积的0.8vol%)。当Tween 80和TMAH的含量分别为1.0wt%和2.0wt%时粘度值为478mPa·s,此时料浆流动性好、稳定性高、注模容易。随后将上述溶液放在真空除泡机里在0.06MPa真空度下真空除泡30min(搅拌除泡25min,静置除泡5min),之后加入60μl TEMED(催化剂为所配料浆溶剂体积的0.4vol%)并手动缓慢搅拌5min防止产生新的气泡。将以上浆料注入钢制模具中,置于25℃下静置固化干燥24h后脱模并放置在空气中25℃下干燥24h后置于干燥箱(100℃,0.5℃/min,10h)中继续干燥,然后对其先后进行冷等静压CIP(200MPa,5min)和排胶脱脂(630℃,0.5℃/min,10h)处理,得到MgO·1.19Al2O3陶瓷坯体。将本实施例得到的MgO·1.19Al2O3陶瓷素坯先后经过无压预烧(1700℃,6℃/min,2h,N2)和热等静压HIP(1880℃,180MPa,5h,Ar)烧结、经打磨抛光处理得到MgO·1.19Al2O3陶瓷,其无论是在可见光范围还是在红外区域都具有较好的光学透过性,基本接近理论值。
实施例4:
将0.35g硬脂酸加入到200ml甲苯中,用磁力搅拌器充分搅拌待硬脂酸充分溶解后,将100g MgO·1.44Al2O3粉体(粉体质量(g):甲苯体积(ml):硬脂酸质量(g)=100:200:0.35)加入到上述溶液中,在室温下搅拌55min后,将以上混合液经过旋转蒸发器处理除去多余甲苯,然后放在65℃干燥箱里干燥24h后过200目筛得到改性粉体T-MgO·1.44Al2O3。将0.652g Tween 80(两性表面活性剂为待成型的改性粉体T-MgO·1.44Al2O3质量的0.8wt%)溶解于15ml事先用浓氨水已调节pH至11.6的去离子水中,搅拌均匀配制预混液。在以上预混液中依次加入3.0g MAM(单体为所配料浆溶剂质量的20wt%)、0.30gMBAM(交联剂用量为所加单体质量的1/10)、1.223g TMAH(分散剂为待成型的改性粉体T-MgO·1.44Al2O3质量的1.5wt%),上述提到的每一种有机物添加剂在加入之后都要待其充分搅拌均匀、有机物完全溶化之后再加入下一种有机物。然后向以上溶液中加入改性粉体T-MgO·1.44Al2O381.5g(60vol%),使用磁力搅拌器搅拌6h后加入180μl APS(引发剂为所配料浆溶剂体积的1.2vol%)。当Tween 80和TMAH的含量分别为0.8wt%和1.5wt%时粘度值为687mPa·s,此时料浆流动性好、稳定性高、注模容易。随后将上述溶液放在真空除泡机里在0.08MPa真空度下真空除泡30min(搅拌除泡25min,静置除泡5min),之后加入90μl TEMED(催化剂为所配料浆溶剂体积的0.6vol%)并手动缓慢搅拌5min防止产生新的气泡。将以上浆料注入钢制模具中,置于25℃下静置固化干燥24h后脱模并放置在空气中25℃下干燥24h后置于干燥箱(100℃,0.5℃/min,10h)中继续干燥,然后对其先后进行冷等静压CIP(200MPa,5min)和排胶脱脂(630℃,0.5℃/min,10h)处理,得到MgO·1.44Al2O3陶瓷坯体。将本实施例得到的MgO·1.44Al2O3陶瓷素坯先后经过无压预烧(1700℃,6℃/min,2h,N2)和热等静压HIP(1880℃,180MPa,5h,Ar)烧结、经打磨抛光处理得到MgO·1.44Al2O3陶瓷,其无论是在可见光范围还是在红外区域都具有较好的光学透过性,基本接近理论值。
实施例5:
将0.25g硬脂酸加入到200ml甲苯中,用磁力搅拌器充分搅拌待硬脂酸充分溶解后,将100g MgO·2.0Al2O3粉体(粉体质量(g):甲苯体积(ml):硬脂酸质量(g)=100:200:0.25)加入到上述溶液中,在室温下搅拌50min后,将以上混合液经过旋转蒸发器处理除去多余甲苯,然后放在65℃干燥箱里干燥24h后过200目筛得到改性粉体T-MgO·2.0Al2O3。将0.328g Tween 80(两性表面活性剂为待成型的改性粉体T-MgO·2.0Al2O3质量的0.6wt%)溶解于15ml事先用浓氨水已调节pH至11.0的去离子水中,搅拌均匀配制预混液。在以上预混液中依次加入2.25g MAM(单体为所配料浆溶剂质量的15wt%)、0.23g MBAM(交联剂用量为所加单体质量的1/10)、0.546g TMAH(分散剂为待成型的改性粉体T-MgO·2.0Al2O3质量的1.0wt%),上述提到的每一种有机物添加剂在加入之后都要待其充分搅拌均匀、有机物完全溶化之后再加入下一种有机物。然后向以上溶液中加入改性粉体T-MgO·2.0Al2O354.6g(50vol%),使用磁力搅拌器搅拌4h后加入180μl APS(引发剂为所配料浆溶剂体积的1.2vol%)。当Tween 80和TMAH的含量分别为0.6wt%和1.0wt%时粘度值为465mPa·s,此时料浆流动性好、稳定性高、注模容易。随后将上述溶液放在真空除泡机里在0.10MPa真空度下真空除泡30min(搅拌除泡25min,静置除泡5min),之后加入90μl TEMED(催化剂为所配料浆溶剂体积的0.6vol%)并手动缓慢搅拌5min防止产生新的气泡。将以上浆料注入钢制模具中,置于25℃下静置固化干燥24h后脱模并放置在空气中25℃下干燥24h后置于干燥箱(100℃,0.5℃/min,10h)中继续干燥,然后对其先后进行冷等静压CIP(200MPa,5min)和排胶脱脂(630℃,0.5℃/min,10h)处理,得到MgO·2.0Al2O3陶瓷坯体。将本实施例得到的MgO·2.0Al2O3陶瓷素坯先后经过无压预烧(1700℃,6℃/min,2h,N2)和热等静压HIP(1880℃,180MPa,5h,Ar)烧结、经打磨抛光处理得到MgO·2.0Al2O3陶瓷,其无论是在可见光范围还是在红外区域都具有较好的光学透过性,基本接近理论值。
实施例6:
将0.2g硬脂酸加入到200ml甲苯中,用磁力搅拌器充分搅拌待硬脂酸充分溶解后,将100g MgO·2.33Al2O3粉体(粉体质量(g):甲苯体积(ml):硬脂酸质量(g)=100:200:0.20)加入到上述溶液中,在室温下搅拌50min后,将以上混合液经过旋转蒸发器处理除去多余甲苯,然后放在65℃干燥箱里干燥24h后过200目筛得到改性粉体T-MgO·2.33Al2O3。将0.401g Tween 80(两性表面活性剂为待成型的改性粉体T-MgO·2.33Al2O3质量的0.6wt%)溶解于15ml事先用浓氨水已调节pH至11.0的去离子水中,搅拌均匀配制预混液。在以上预混液中依次加入2.7g MAM(单体为所配料浆溶剂质量的18wt%)、0.27gMBAM(交联剂用量为所加单体质量的1/10)、0.668g TMAH(分散剂为待成型的改性粉体T-MgO·2.33Al2O3质量的1wt%),上述提到的每一种有机物添加剂在加入之后都要待其充分搅拌均匀、有机物完全溶化之后再加入下一种有机物。然后向以上溶液中加入改性粉体T-MgO·2.33Al2O3 66.8g(55vol%),使用磁力搅拌器搅拌2h后加入150μl APS(引发剂为所配料浆溶剂体积的1.0vol%)。当Tween 80和TMAH的含量分别为0.6wt%和1.0wt%时粘度值为465mPa·s,此时料浆流动性好、稳定性高、注模容易。随后将上述溶液放在真空除泡机里在0.10MPa真空度下真空除泡30min(搅拌除泡25min,静置除泡5min),之后加入60μl TEMED(催化剂为所配料浆溶剂体积的0.4vol%)并手动缓慢搅拌5min防止产生新的气泡。将以上浆料注入钢制模具中,置于25℃下静置固化干燥24h后脱模并放置在空气中25℃下干燥24h后置于干燥箱(100℃,0.5℃/min,10h)中继续干燥,然后对其先后进行冷等静压CIP(200MPa,5min)和排胶脱脂(630℃,0.5℃/min,10h)处理,得到MgO·2.33Al2O3陶瓷坯体。将本实施例得到的MgO·2.33Al2O3陶瓷素坯先后经过无压预烧(1700℃,6℃/min,2h,N2)和热等静压HIP(1880℃,180MPa,5h,Ar)烧结、经打磨抛光处理得到MgO·2.33Al2O3陶瓷,其无论是在可见光范围还是在红外区域都具有较好的光学透过性,基本接近理论值。
本发明所列举的各原料,以及本发明各原料的上下限、工艺参数的上下限、区间取值都能实现本发明,在此不一一列举实施例。

Claims (7)

1.一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法,其特征在于:它包括如下步骤:
1)单相MgO·nAl2O3粉体用硬脂酸改性得到硬脂酸改性粉体T-MgO·nAl2O3n =1.0~2.33;
2)配置料浆:事先配置pH为11~12的加有两性表面活性剂、单体、交联剂、分散剂的水溶液,将步骤1)中所得的改性粉体T-MgO·nAl2O3加入以上溶液中搅拌2-6h制得固相量为50~60vol%陶瓷料浆,然后再加入引发剂,真空除泡;所述两性表面活性剂为吐温 80,其用量按质量百分数计为陶瓷粉体的0.6~1.2wt%;分散剂为四甲基氢氧化铵,其用量按质量百分数计为陶瓷粉体的1.0~2.0wt%;
3)固化注模:在步骤2)中所得的陶瓷料浆中加入交联固化所用催化剂,在尽量不产生新气泡的前提下手动搅拌使催化剂均匀分散,然后将以上悬浮浆料注入到钢制模具中静置固化;
4)将步骤3)中脱模所得的陶瓷生坯先后进行冷等静压和排胶后制备得到形状完好的MgO·nAl2O3透明陶瓷素坯,烧结得到MgO·nAl2O3透明陶瓷块体样品。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤1)为:在以硬脂酸为改性剂的预混液中加入单相MgO·nAl2O3粉体,室温搅拌改性,用旋转蒸发仪除去溶剂,然后干燥过筛,得到改性粉体T-MgO·nAl2O3
3.根据权利要求2所述的制备方法,其特征在于:所述预混液中的溶剂为甲苯;所述MgO·nAl2O3粉体质量:甲苯体积:硬脂酸质量= 100 g:200 ml:0.2~0.4 g,改性条件为:室温,500r/min下搅拌50~60分钟。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤2)中水溶液的pH是加入浓氨水调节得到的;所述步骤2)中pH为11~12的先后加有两性表面活性剂、单体、交联剂、分散剂的水溶液的配置方法:先用浓氨水调节去离子水溶液pH为11~12,然后按照先后顺序加入两性表面活性剂、单体、交联剂、分散剂,每加入一种物质后充分搅拌均匀后再加入下一种。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤2)中的单体为甲基丙烯酰胺,其用量按质量百分数计为料浆溶剂的15~20wt%;交联剂为N, N′-亚甲基双丙烯酰胺,其用量按质量百分数计为单体质量的1/10;引发剂为过氧二硫酸铵,其用量按体积百分数计为料浆溶剂体积的0.6~1.2vol%。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤3)中的催化剂N, N, N′,N′-四甲基乙二胺,其用量按体积百分数计为料浆溶剂体积的0.2~0.6vol%,模具中静置固化时间为24小时;
所述的固化干燥过程分为两步进行,第一步在25℃下慢速固化干燥24小时;第二步在100℃、0.5℃/min条件下快速干燥。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤4)中的冷等静压条件和排胶的制度分别为CIP:200MPa,5min、排胶:630℃,1℃/min,10h;
步骤4)中的烧结为无压预烧结合热等静压烧结,其中无压预烧条件及热等静压HIP条件分别为无压预烧:1700℃,6℃/min,2h,N2、热等静压HIP:1880℃,180MPa,5h,Ar。
CN201810330151.1A 2018-04-12 2018-04-12 一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法 Active CN108484156B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810330151.1A CN108484156B (zh) 2018-04-12 2018-04-12 一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810330151.1A CN108484156B (zh) 2018-04-12 2018-04-12 一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法

Publications (2)

Publication Number Publication Date
CN108484156A CN108484156A (zh) 2018-09-04
CN108484156B true CN108484156B (zh) 2021-03-23

Family

ID=63316108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810330151.1A Active CN108484156B (zh) 2018-04-12 2018-04-12 一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法

Country Status (1)

Country Link
CN (1) CN108484156B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024252A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 白光激光照明用多级孔结构陶瓷荧光体及其制备方法
CN114031391B (zh) * 2021-11-26 2023-03-07 天津津航技术物理研究所 一种高强度镁铝尖晶石透明陶瓷制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121158A (ja) * 1982-12-27 1984-07-13 日本碍子株式会社 多結晶透明スピネル焼結体の製造法
CN1143060A (zh) * 1995-08-11 1997-02-19 李谊大 镁铝尖晶石高温涂层吹氧管
CN104311116A (zh) * 2014-10-21 2015-01-28 武汉科技大学 一种镁铝尖晶石泡沫陶瓷及其制备方法
CN104496493A (zh) * 2014-10-10 2015-04-08 长兴正发热电耐火材料有限公司 一种耐高温复合铝镁不烧砖及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1224293A1 (ru) * 1984-11-27 1986-04-15 Харьковский Ордена Ленина Политехнический Институт Им.В.И.Ленина Огнеупорна масса
CN101415654A (zh) * 2003-07-14 2009-04-22 苏珀尔西尔有限公司 疏水性复合材料和颗粒以及它们的应用
CN105732050A (zh) * 2016-01-13 2016-07-06 广东工业大学 一种净尺寸复杂形状透明陶瓷件的制备工艺
CN105906346A (zh) * 2016-05-06 2016-08-31 武汉理工大学 一种凝胶注模制备MgAlON透明陶瓷小球的方法
CN106278232A (zh) * 2016-07-26 2017-01-04 武汉理工大学 一种富铝锌尖晶石透明陶瓷的制备方法
CN106747399A (zh) * 2016-12-12 2017-05-31 天津津航技术物理研究所 一种细晶宽频镁铝尖晶石透明陶瓷的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121158A (ja) * 1982-12-27 1984-07-13 日本碍子株式会社 多結晶透明スピネル焼結体の製造法
CN1143060A (zh) * 1995-08-11 1997-02-19 李谊大 镁铝尖晶石高温涂层吹氧管
CN104496493A (zh) * 2014-10-10 2015-04-08 长兴正发热电耐火材料有限公司 一种耐高温复合铝镁不烧砖及其制备方法
CN104311116A (zh) * 2014-10-21 2015-01-28 武汉科技大学 一种镁铝尖晶石泡沫陶瓷及其制备方法

Also Published As

Publication number Publication date
CN108484156A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
JPH07149597A (ja) セラミックス複合材料
CN109400123B (zh) 一种细晶氧化铝陶瓷及其制备方法和应用
CN108516818A (zh) 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN108484156B (zh) 一种基于粉体抗水解处理及凝胶注模成型的尖晶石固溶体透明陶瓷制备方法
KR20010023855A (ko) 수성공정에 의한 지르코니아계 구조재료의 사출주조법
CN108530057B (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
CN109761614A (zh) 一种AlON陶瓷的凝胶注模成型方法
DE3523801A1 (de) Verfahren zur herstellung von germanium-codierit-keramikkoerpern
JPH07187893A (ja) セラミックス複合材料
CN113968732A (zh) 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料
RU2584187C1 (ru) Способ получения прозрачной керамики алюмоиттриевого граната
GB2216546A (en) Zirconium oxide sinter for forming thin film thereof and method for production of the same
CN105777083A (zh) 氧化铝生物陶瓷及其制备方法和应用
CN113979729B (zh) 一种锂硅化合物增强生物活性陶瓷材料及其制备方法
US3666851A (en) Preparing high density magnesia refractories
CN107759240B (zh) 一种Si3N4/BAS复相陶瓷材料的制备方法
JPH10203839A (ja) 微細気泡含有不透明石英ガラス及びその製造方法
EP3484836A1 (en) Low-cost process of manufacturing transparent spinel
CN113526947A (zh) 利用圭亚那矾土制备高纯均质矾土熟料的方法及其产品
CN113105216A (zh) 一种注塑成型的锆铝复合陶瓷及其制备方法
CN108358628B (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法
CN114133252B (zh) AlON透明陶瓷保形红外头罩及其制备方法
US2131374A (en) Dolomitic magnesium carbonate composition and method of preparation
CN1113831C (zh) 原位合成TiN/O′-Sialon复相材料的制备方法
JPH06144925A (ja) 透光性イットリウム−アルミニウム−ガーネット焼結体およびその製造方法並びに時計用窓材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230906

Address after: Inside Building 34, Jindiwei Xinjiangxia Zhizao Park, No. 6 Hejiahu Street, Daqiao Modern Industrial Park, Jiangxia District, Wuhan City, Hubei Province, 430200

Patentee after: Wuhan Hailing Huizhi New Materials Co.,Ltd.

Address before: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122

Patentee before: WUHAN University OF TECHNOLOGY

TR01 Transfer of patent right