CN108467091A - 高催化活性Cu-Sn-Bi电极及其制备方法和用途 - Google Patents

高催化活性Cu-Sn-Bi电极及其制备方法和用途 Download PDF

Info

Publication number
CN108467091A
CN108467091A CN201810280982.2A CN201810280982A CN108467091A CN 108467091 A CN108467091 A CN 108467091A CN 201810280982 A CN201810280982 A CN 201810280982A CN 108467091 A CN108467091 A CN 108467091A
Authority
CN
China
Prior art keywords
catalytic activity
high catalytic
electrodes
electrode
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810280982.2A
Other languages
English (en)
Inventor
高维春
高陆璐
李丹
关银燕
梁吉艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201810280982.2A priority Critical patent/CN108467091A/zh
Publication of CN108467091A publication Critical patent/CN108467091A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • C02F1/4678Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction of metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

高催化活性Cu‑Sn‑Bi电极及其制备方法和用途,所述的电极由以下质量组分溶于去离子水中制备而成,其中:Bi(NO3)3·5H2O 56~61 g/L,CuP2O7 37~52.3g/L,SnP2O7 2.6~4.3g/L,KCl 45~65g/L,NaKC4H4O6·4H2O 45~65 g/L,EDTA‑2Na 85~92 g/L,C7H6O6S·2H2O 118~123g/L,K4O7P2 220~250g/L,Na2HPO4 26~31g/L,N(CH2COOH)3 25~30g/L。本发明制备电极所采用工艺在室温下即可施镀,工况易维护,且镀液配方简单,均为常用化学药品,价格低廉,无需二次合成,所获得的电极镀层与基体结合牢固,电极表面均匀。耐腐蚀更高、导电性能好。用于降解硝酸盐过程中,催化效率高。

Description

高催化活性Cu-Sn-Bi电极及其制备方法和用途
技术领域
本发明涉及一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法,属于电催化技术领域,制备的电极可用于电催化降解水体中硝酸盐。
背景技术
由于大量氮素化肥的施用,以及动物粪便、生活污水和含氮工业废水的不合理处置,导致我国地下水受到硝酸盐的严重污染,而地下水又是重要的饮用水源,给人类健康带来极大危害,我国饮用水卫生标准严格规定硝酸盐浓度要低于10mg/L。常规的物理、化学、生物方法很难将硝酸盐还原成无毒N2,而且可能产生二次污染。电催化反硝化技术由于具有还原硝酸盐更加彻底,反应速度快、自动化程度高等特点,近年来在水处理领域引起广泛关注。
电催化还原硝酸盐技术的关键在于寻求催化活性高、稳定性好、抗腐蚀性的催化材料、贵金属材料电极如Pt、Pd、Ru等虽然具有较高的电催化活性,但是这些材料的成本之高限制了它们在电化学水处理领域的实际应用,因此寻找性能优越价格低廉的电极材料是电催化技术的重中之重。但目前还未见相关报道。
发明内容
发明目的
本发明旨在提供一种高催化活性Cu-Sn-Bi电极及其制备方法和用途,其目的是解决以往所存在的问题,且可用于水体中硝酸盐处理,解决以往处理效果不理想的问题。本发明制备电极所采用工艺在室温下即可施镀,工况易维护,且镀液配方简单,均为常用化学药品,价格低廉,无需二次合成,所获得的电极镀层与基体结合牢固,电极表面均匀。耐腐蚀更高、导电性能好。用于降解硝酸盐过程中,催化效率高。
技术方案
本发明目的通过如下技术方案实现:
一种高催化活性Cu-Sn-Bi电极,所述的电极由以下质量组分溶于去离子水中制备而成,其中:Bi(NO3)3·5H2O 56~61g/L,CuP2O7 37~52.3g/L,SnP2O7 2.6~4.3g/L,KCl 45~65g/L,NaKC4H4O6·4H2O 45~65g/L,EDTA-2Na 85~92g/L,C7H6O6S·2H2O 118~123g/L,K4O7P2 220~250g/L,Na2HPO4 26~31g/L,N(CH2COOH)3 25~30g/L。(这里的g/L是每升总混合溶液(电沉积液)中含有相应的组分的量!以Bi(NO3)3·5H2O为例,每升电沉积液中兑有Bi(NO3)3·5H2O 56~61g)
所述的焦磷酸钾为络合剂。乙二胺四乙酸二钠为主配位剂。氨三乙酸为光亮剂。
电沉积液液配置过程中保持pH为8~10,且静止24h后使用。
一种制备上述的高催化活性Cu-Sn-Bi电极的方法,该方法包括如下步骤:
步骤一:Bi(NO3)3·5H2O 56~61g/L,CuP2O7 37~52.3g/L,SnP2O7 2.6~4.3g/L,KCl 45~65g/L,NaKC4H4O6·4H2O 45~65g/L,EDTA-2Na 85~92g/L,C7H6O6S·2H2O 118~123g/L,K4O7P2 220~250g/L,Na2HPO4 26~31g/L,N(CH2COOH)3 25~30g/L,溶于去离子水中作为电沉积液;
步骤二、选用纯钛金属作为基体进行预处理,首先将钛板依次用120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛板在温度为75-80℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的10-15%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;
步骤三、将步骤二中预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将预处理后的基体与石墨浸入步骤一中所述的高催化活性Cu-Sn-Bi电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备高催化活性Cu-Sn-Bi电极。
所述步骤二中纯钛金属为TA1型的纯钛金属,其纯度为99.9%。
步骤四的恒电流电沉积参数为:电流密度4~10mA/cm2,搅拌强度450~1000rad/min,电沉积温度20~45℃,电沉积时间10~120min。
高催化活性Cu-Sn-Bi电极的用途,其特征在于:该高催化活性Cu-Sn-Bi电极用于降解硝酸盐。
高催化活性Cu-Sn-Bi电极用于降解硝酸盐的方法:将制备得到的高催化活性Cu-Sn-Bi电极作为阴极,钌铱电极作为阳极,以0.125~0.25mol/L Na2SO4为支持电解质,在电极间距20~40mm、搅拌强度450~1000rad/min、电流密度4~10mA/cm2、温度25~45℃条件下,在反应器中电催化降解水中硝酸盐。
优点效果:
与现有技术相比,本发明具有以下有益效果:
(1)本发明使用Ti板为基体,具有耐腐蚀性能、稳定性好、廉价易得,有利于提高电催化还原硝酸盐的效率,为电极电催化性能的提高提供基础。
(2)本发明采用的镀液配方简单、镀液稳定、无沉淀、保存时间长。
(3)本发明工艺简单,稳定,易于维护,节约能耗,所制备的Cu-Sn-Bi电极镀层成分均匀,致密性高。
本发明所述方法制备出的Cu-Sn-Bi电极对水体中硝酸盐降解性能好,催化活性高,具有很大应用前景。
附图说明
图1为钛基体扫描电子显微镜图像;
图2为本发明制得的Cu-Sn-Bi电极镀层扫描电子显微镜图像;
图3为Cu-Sn-Bi电极对硝酸盐去除率及副产物生成率随电解时间变化规律图。
具体实施方式
下面结合附图对本发明做进一步的说明:
近年来不少学者对非贵金属电极进行改性研究,Cu、Sn、Bi三种金属价格低廉,均为非贵金属材料,Cu可加快硝酸盐降解速率、Sn、Bi可提高N2选择性。因此,寻求价格低廉、性能优越的电极对研究废水处理具有很重要的意义。
其中,金属Cu来源广泛且价格低廉,耐腐蚀性能很好,对硝酸盐催化活性高,Bi电极处理硝酸盐废水电流效率高,Sn电极可提高硝酸盐降解过程中N2选择性,Cu-Sn-Bi电极可结合三种金属的性能优势,有效提高电极性能,因此本发明首次提出一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法。
与浸渍法、热分解法制备电极相比,电沉积法制备的电极可使镀层结晶细化、提高电极性能,且电极寿命长。
实施例
实施例1:
一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法,具体步骤如下:
步骤一、将57g/L Bi(NO3)3·5H2O,38g/L CuP2O7,2.7g/L SnP2O7,50g/L KCl,45g/L NaKC4H4O6·4H2O,86g/L EDTA-2Na,120/L C7H6O6S·2H2O,225g/L K4O7P2,28g/L Na2HPO4以及25g/L N(CH2COOH)3溶于去离子水作为电沉积液;
步骤二、切割钛板,使其表面积为40mm×50mm,依次经过120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛基体在温度为80℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的10%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;
步骤三、将预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将基体与石墨浸入电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备Cu-Sn-Bi电极,电流密度为4mA/cm2,搅拌强度为450rad/min,电沉积温度为25℃,电沉积时间为15min;
步骤五、将步骤四获得的电极作为阴极,钌铱电极作为阳极,以0.125mol/L Na2SO4为支持电解质,在电极间距20mm、搅拌强度450rad/min、电流密度4mA/cm2、温度25℃条件下,硝酸盐初始浓度100mg/L,电解过程中,硝酸盐的去除率达到77%。
实施例2:
一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法,具体步骤如下:
步骤一、将60g/L Bi(NO3)3·5H2O,42g/L CuP2O7,2.6g/L SnP2O7,60g/L KCl,60g/L NaKC4H4O6·4H2O,90g/L EDTA-2Na,120/L C7H6O6S·2H2O,240g/L K4O7P2,30g/L Na2HPO4以及30g/L N(CH2COOH)3溶于去离子水作为电沉积液
步骤二、切割钛板,使其表面为40mm×50mm,依次经过120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛基体在温度为80℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的10%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;。
步骤三、将预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将基体与石墨浸入电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备Cu-Sn-Bi电极,电流密度为7mA/cm2,搅拌强度为500rad/min,电沉积温度为30℃,电沉积时间为45min;
步骤五、将步骤四获得的电极作为阴极,钌铱电极作为阳极,以0.125mol/L Na2SO4为支持电解质,在电极间距20mm、搅拌强度450rad/min、电流密度6mA/cm2、温度25℃条件下,硝酸盐初始浓度100mg/L,电解过程中,硝酸盐的去除率达到80%。
实施例3:
一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法,具体步骤如下:
步骤一、将58g/L Bi(NO3)3·5H2O,45g/L CuP2O7,4.2g/L SnP2O7,55g/L KCl,65g/L NaKC4H4O6·4H2O,88g/L EDTA-2Na,121/L C7H6O6S·2H2O,230g/L K4O7P2,27g/L Na2HPO4以及25g/L N(CH2COOH)3溶于去离子水作为电沉积液;
步骤二、切割钛板,使其表面为40mm×50mm,依次经过120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛基体在温度为80℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的10%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;
步骤三、将预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将基体与石墨浸入电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备Cu-Sn-Bi电极,电流密度为6mA/cm2,搅拌强度为650rad/min,电沉积温度为25℃,电沉积时间为60min;
步骤五、将步骤四获得的电极作为阴极,钌铱电极作为阳极,以0.125mol/LNa2SO4为支持电解质,在电极间距40mm、搅拌强度650rad/min、电流密度6mA/cm2、温度25℃条件下,硝酸盐初始浓度50mg/L,电解过程中,硝酸盐的去除率达到63%。
实施例4:
一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法,具体步骤如下:
步骤一、将57g/L Bi(NO3)3·5H2O,50g/L CuP2O7,3.2g/L SnP2O7,50g/L KCl,60g/L NaKC4H4O6·4H2O,88g/L EDTA-2Na,118/LC7H6O6S·2H2O,230g/L K4O7P2,29g/L Na2HPO4以及26g/L N(CH2COOH)3溶于去离子水作为电沉积液;
步骤二、切割钛板,使其表面为40mm×50mm,依次经过120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛基体在温度为80℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的10%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;
步骤三、将预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将基体与石墨浸入电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备Cu-Sn-Bi电极,电流密度为5mA/cm2,搅拌强度为1000rad/min,电沉积温度为45℃,电沉积时间为30min;
步骤五、将步骤四获得的电极作为阴极,钌铱电极作为阳极,以0.25mol/LNa2SO4为支持电解质,在电极间距30mm、搅拌强度650rad/min、电流密度6mA/cm2、温度30℃条件下,硝酸盐初始浓度100mg/L,电解过程中,硝酸盐的去除率达到85%。
实施例5:
一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法,具体步骤如下:
步骤一、将56g/L Bi(NO3)3·5H2O,52.3g/L CuP2O7,4.3g/L SnP2O7,45g/L KCl,60g/L NaKC4H4O6·4H2O,85g/L EDTA-2Na,123/L C7H6O6S·2H2O,220g/L K4O7P2,31g/LNa2HPO4以及30g/L N(CH2COOH)3溶于去离子水作为电沉积液
步骤二、切割钛板,使其表面为40mm×50mm,依次经过120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛基体在温度为75℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的10%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;。
步骤三、将预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将基体与石墨浸入电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备Cu-Sn-Bi电极,电流密度为10mA/cm2,搅拌强度为700rad/min,电沉积温度为20℃,电沉积时间为120min;
步骤五、将步骤四获得的电极作为阴极,钌铱电极作为阳极,以0.25mol/LNa2SO4为支持电解质,在电极间距30mm、搅拌强度1000rad/min、电流密度4mA/cm2、温度45℃条件下,硝酸盐初始浓度100mg/L,电解过程中,硝酸盐的去除率达到83%。
实施例6:
一种Cu-Sn-Bi电极制备及其降解硝酸盐的方法,具体步骤如下:
步骤一、将61g/L Bi(NO3)3·5H2O,37g/L CuP2O7,4.2g/L SnP2O7,65g/L KCl,65g/L NaKC4H4O6·4H2O,92g/L EDTA-2Na,121/L C7H6O6S·2H2O,250g/L K4O7P2,26g/L Na2HPO4以及27g/L N(CH2COOH)3溶于去离子水作为电沉积液;
步骤二、切割钛板,使其表面为40mm×50mm,依次经过120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛基体在温度为80℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的15%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;
步骤三、将预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将基体与石墨浸入电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备Cu-Sn-Bi电极,电流密度为8mA/cm2,搅拌强度为850rad/min,电沉积温度为35℃,电沉积时间为10min;
步骤五、将步骤四获得的电极作为阴极,钌铱电极作为阳极,以0.125mol/L Na2SO4为支持电解质,在电极间距40mm、搅拌强度650rad/min、电流密度10mA/cm2、温度25℃条件下,硝酸盐初始浓度50mg/L,电解过程中,硝酸盐的去除率达到65%。
综上:
本发明首次采用电沉积法制备Cu-Sn-Bi电极并应用于水体中硝酸盐的还原,电沉积液稳定、无沉淀、保存时间长,制得的电极与Pd、Pt、Rh等贵金属电极相比成本低,且电极表面均匀致密、稳定性好,对硝酸盐具有较强的还原能力。

Claims (10)

1.一种高催化活性Cu-Sn-Bi电极,其特征在于:所述的电极由以下质量组分溶于去离子水中制备而成,其中:Bi(NO3)3·5H2O 56~61g/L,CuP2O7 37~52.3g/L,SnP2O7 2.6~4.3g/L,KCl 45~65g/L,NaKC4H4O6·4H2O 45~65g/L,EDTA-2Na 85~92g/L,C7H6O6S·2H2O118~123g/L,K4O7P2 220~250g/L,Na2HPO4 26~31g/L,N(CH2COOH)3 25~30g/L。
2.根据权利要求1所述的高催化活性Cu-Sn-Bi电极,其特征在于:所述的焦磷酸钾为络合剂。
3.根据权利要求1所述的高催化活性Cu-Sn-Bi电极,其特征在于:乙二胺四乙酸二钠为主配位剂。
4.根据权利要求1所述的高催化活性Cu-Sn-Bi电极,其特征在于:氨三乙酸为光亮剂。
5.根据权利要求1所述的高催化活性Cu-Sn-Bi电极,其特征在于:电沉积液液配置过程中保持pH为8~10,且静止24h后使用。
6.一种制备权利要求1所述的高催化活性Cu-Sn-Bi电极的方法,其特征在于:该方法包括如下步骤:
步骤一:Bi(NO3)3·5H2O 56~61g/L,CuP2O7 37~52.3g/L,SnP2O7 2.6~4.3g/L,KCl 45~65g/L,NaKC4H4O6·4H2O 45~65g/L,EDTA-2Na 85~92g/L,C7H6O6S·2H2O 118~123g/L,K4O7P2 220~250g/L,Na2HPO4 26~31g/L,N(CH2COOH)3 25~30g/L,溶于去离子水中作为电沉积液;
步骤二、选用纯钛金属作为基体进行预处理,首先将钛板依次用120目、240目两种不同规格砂纸进行打磨,然后将打磨好的钛板在温度为75-80℃的40%NaOH溶液中处理1h进行表面除油,再放入微沸的10-15%草酸溶液中处理1h进行酸洗蚀刻,并用去离子水清洗干净,保存于超纯水中备用;
步骤三、将步骤二中预处理后的基体与直流电源负极相连,石墨与直流电源正极相连,将预处理后的基体与石墨浸入步骤一中所述的高催化活性Cu-Sn-Bi电沉积液中,形成回路;
步骤四、进行恒电流电沉积制备高催化活性Cu-Sn-Bi电极。
7.根据权利要求6所述的高催化活性Cu-Sn-Bi电极的制备方法,其特征在于:所述步骤二中纯钛金属为TA1型的纯钛金属,其纯度为99.9%。
8.根据权利要求6所述的高催化活性Cu-Sn-Bi电极的制备方法,其特征在于:步骤四的恒电流电沉积参数为:电流密度4~10mA/cm2,搅拌强度450~1000rad/min,电沉积温度20~45℃,电沉积时间10~120min。
9.如权利要求6制备的高催化活性Cu-Sn-Bi电极的用途,其特征在于:该高催化活性Cu-Sn-Bi电极用于降解硝酸盐。
10.根据权利要求9所述的高催化活性Cu-Sn-Bi电极的用途,其特征在于:高催化活性Cu-Sn-Bi电极用于降解硝酸盐的方法:将制备得到的高催化活性Cu-Sn-Bi电极作为阴极,钌铱电极作为阳极,以0.125~0.25mol/L Na2SO4为支持电解质,在电极间距20~40mm、搅拌强度450~1000rad/min、电流密度4~10mA/cm2、温度25~45℃条件下,在反应器中电催化降解水中硝酸盐。
CN201810280982.2A 2018-04-02 2018-04-02 高催化活性Cu-Sn-Bi电极及其制备方法和用途 Pending CN108467091A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810280982.2A CN108467091A (zh) 2018-04-02 2018-04-02 高催化活性Cu-Sn-Bi电极及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810280982.2A CN108467091A (zh) 2018-04-02 2018-04-02 高催化活性Cu-Sn-Bi电极及其制备方法和用途

Publications (1)

Publication Number Publication Date
CN108467091A true CN108467091A (zh) 2018-08-31

Family

ID=63262303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810280982.2A Pending CN108467091A (zh) 2018-04-02 2018-04-02 高催化活性Cu-Sn-Bi电极及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN108467091A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761314A (zh) * 2019-02-14 2019-05-17 四川大学 反应性多孔锡铋电极的制备方法和多孔锡铋电极及其应用
ES2713374A1 (es) * 2018-12-21 2019-05-21 Univ Alicante PROCEDIMIENTO PARA LA REDUCCION ELECTROQUIMICA DE NITRATOS EN AGUA MEDIANTE COMBINACIONES DE Bi Y Sn
CN110436583A (zh) * 2019-08-27 2019-11-12 辽宁拓启环保科技有限公司 一种深度去除水中硝酸盐的电化学装置及其使用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039125A (zh) * 2009-10-13 2011-05-04 中国科学院生态环境研究中心 一种去除水中硝酸盐的双金属负载型催化剂的制备和使用方法
KR101771368B1 (ko) * 2016-09-08 2017-09-05 포항공과대학교 산학협력단 전기화학적 이산화탄소 환원을 위한 조촉매가 코팅된 3차원 금속 촉매 전극의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039125A (zh) * 2009-10-13 2011-05-04 中国科学院生态环境研究中心 一种去除水中硝酸盐的双金属负载型催化剂的制备和使用方法
KR101771368B1 (ko) * 2016-09-08 2017-09-05 포항공과대학교 산학협력단 전기화학적 이산화탄소 환원을 위한 조촉매가 코팅된 3차원 금속 촉매 전극의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
叶舒帆等: "非贵金属催化电解无害化去除硝酸盐氮的反应机制", 《环境化学》 *
李丹: "电催化反硝化去除水中硝酸盐实验研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2713374A1 (es) * 2018-12-21 2019-05-21 Univ Alicante PROCEDIMIENTO PARA LA REDUCCION ELECTROQUIMICA DE NITRATOS EN AGUA MEDIANTE COMBINACIONES DE Bi Y Sn
WO2020128121A1 (es) * 2018-12-21 2020-06-25 Universidad De Alicante Procedimiento para la reducción electroquimica de nitratos en agua mediante combinaciones de bi y sn
CN109761314A (zh) * 2019-02-14 2019-05-17 四川大学 反应性多孔锡铋电极的制备方法和多孔锡铋电极及其应用
CN109761314B (zh) * 2019-02-14 2020-11-10 四川大学 反应性多孔锡铋电极的制备方法和多孔锡铋电极及其应用
CN110436583A (zh) * 2019-08-27 2019-11-12 辽宁拓启环保科技有限公司 一种深度去除水中硝酸盐的电化学装置及其使用方法

Similar Documents

Publication Publication Date Title
CN107081163B (zh) 一种三维结构的NiWP电催化剂材料制备及应用
CN111285446B (zh) 一种Pd/NiCo2O4/Ni foam复合电极及其制备方法和应用
CN108467091A (zh) 高催化活性Cu-Sn-Bi电极及其制备方法和用途
CN101717951B (zh) 煤炭电解加氢液化工艺中阴极催化电极的制备方法
CN111115761B (zh) 一种用于同步去除电镀废水中总氮的电化学反应装置及方法
CN102849878B (zh) 拟除虫菊酯生产废水的预处理方法
CN105621541A (zh) 一种用于废水处理的过渡金属掺杂二氧化铅电极及其制备方法和应用
CN102127776A (zh) 一种高析氢催化活性非晶镀层及其制备方法
CN103700813B (zh) 一种Ti基β-PbO2形稳阳极的制备方法
CN111041521A (zh) 用于还原水中硝态氮的负载铜镍的TiO2纳米管阵列电极
CN104591342A (zh) 用于污水深度处理的Ti/Ebonex/PbO2电极的制备方法
CN110284166A (zh) 一种制备泡沫镍钼合金的电沉积方法
CN108017120A (zh) 一种采用新型阳极电催化氧化处理苯酚有机废水的方法
CN108070886B (zh) 一种双金属Cu-Bi电催化反硝化电极的制备方法及用途
CN101942678A (zh) 一种高纯活性锌粉的制备方法
KR100917146B1 (ko) 하수 및 폐수 중에 질소와 인을 동시에 처리하는 전기분해장치 및 이를 이용한 하수 및 폐수처리방법
CN108328703A (zh) 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用
CN101717950B (zh) 电解煤浆的阳极催化电极的制备方法
CN111250102A (zh) 一种TiO2纳米管阵列支撑的NiMo合金催化剂的制备方法
CN109234757B (zh) 一种均匀稳定的钌铱双金属掺杂钛电极的制备方法
CN107902731B (zh) 一种镍-硼-氟共掺杂二氧化铅阳极及其制备方法与应用
KR20020074262A (ko) 차아염소산 나트륨 발생 전해장치
CN102899684B (zh) 煤炭电解加氢液化阴极多孔负载型催化电极的制备方法
CN106591926A (zh) 在钢铁表面制备CNTs‑多孔镍/氧化镍析氢反应催化剂的方法
CN106702419B (zh) 一种Ni-S-W-C析氢电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180831

RJ01 Rejection of invention patent application after publication