CN108449987B - 以原子分辨率解析晶体的晶体结构的系统和方法 - Google Patents

以原子分辨率解析晶体的晶体结构的系统和方法 Download PDF

Info

Publication number
CN108449987B
CN108449987B CN201680068238.5A CN201680068238A CN108449987B CN 108449987 B CN108449987 B CN 108449987B CN 201680068238 A CN201680068238 A CN 201680068238A CN 108449987 B CN108449987 B CN 108449987B
Authority
CN
China
Prior art keywords
crystal
bio
ultrasonic
droplets
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680068238.5A
Other languages
English (en)
Other versions
CN108449987A (zh
Inventor
富崎孝司
辻野壮一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scherrer Paul Institut
Original Assignee
Scherrer Paul Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scherrer Paul Institut filed Critical Scherrer Paul Institut
Publication of CN108449987A publication Critical patent/CN108449987A/zh
Application granted granted Critical
Publication of CN108449987B publication Critical patent/CN108449987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/20025Sample holders or supports therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/06Crystallising dishes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0626Fluid handling related problems using levitated droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • G01N2223/0566Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction analysing diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3306Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object rotates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种通过收集X射线衍射图像以原子分辨率来解析晶体(4)的晶体结构的方法和系统(2),包括:a)将包括单个或多个晶体(4)的流体的微滴(8)喷射到超声悬浮器(6)中;b)使包括所述晶体(4)的流体的所述微滴(8)悬浮在超声悬浮器(6)中;b)利用可视化装置监测微滴(8)的位置和旋转;c)对所述晶体(4)施加X射线(20),所述X射线(20)源自X射线源(34);以及d)由能够捕获二维衍射图案的X射线检测器(36)对来自被所述X射线源(34)辐射的所述晶体(4)的X射线衍射图像(24)进行检测。

Description

以原子分辨率解析晶体的晶体结构的系统和方法
本发明涉及通过收集X射线衍射图像以原子分辨率来解析晶体的晶体结构的系统和方法。
X射线衍射是用于对诸如生物晶状标本和合成分子的大分子进行原子分辨结构分析的公认最佳方法中的一种。通过将同步辐射光源与2维高帧速率像素检测器相结合,完整数据集的收集时间已被缩短至几分钟。现在通常在10Hz以上的获取速率使得保持在冻结温度下的蛋白质晶体能够连续旋转。对于所有主要的同步辐射射束线共同的这样的X射线衍射实验设置在过去的十年期间加速了重要蛋白质分子结构的解析。已经提出的是,100Hz至1000Hz或更高的甚至更快的数据获取速率通过超过由X射线吸收生成的自由基的扩散而引起脆性蛋白质晶体的损伤最小化,因此大幅度地提高了常温下的衍射数据集的质量。更快的数据获取速率还可以使得能够执行诸如原位结构动力学研究和时间分辨实验的一系列实验,该一系列实验仅可以在蛋白质晶体接近生理条件的常温下进行。常温实验将不仅能够快速筛选晶体,而且还有助于研究难以用冻结标本研究的生物分子的构象多样性。
当晶体位于通过声辐射压力而悬浮的微滴内部时,由声冲流产生的微滴的内部循环引起晶体的快速旋转和绕转。因此,通过将X射线束与晶体仔细对准,可以使用快速X射线检测器在短时间内获取具有各种晶体取向的数据集。
然而,在常规方法以及收集X射线衍射数据集的声悬浮方法中,单个晶体样品必须手动采集和传送。先前已经报道了样品传送的自动化方法,例如,通过晶化板的直接X射线衍射实验和固体样品保持机构上的对晶体的声喷射以及使用连续流或包括单个晶体样品的晶化液体的微滴列。然而,由于难以测量每个样品在多个晶体取向上的X射线衍射图像,所以这样的方法的样品使用效率很低。
本发明的目的在于:通过将微滴的超声悬浮与自动样品采集和传送机构结合,在不需要冻结样品并且样品使用效率很高的情况下,以100Hz至1000Hz或更高的帧速率来实现快速的X射线衍射数据集获取。
因此,本发明的目的在于,提供一种通过收集X射线衍射图像以原子分辨率来解析晶体的晶体结构的系统和方法,从而使得能够以原子分辨率来解析诸如蛋白质的脆性高分子晶体的晶体结构。
关于根据本发明的系统,该目的通过一种用于通过收集X射线衍射图像以原子分辨率解析晶体的晶体结构的系统来实现,该系统包括:
a)超声悬浮器,其使包括单个或多个旋转的晶体的至少一个流体微滴悬浮,所述超声悬浮器包括:
i)一个或多个超声换能器;
ii)一个或多个电源,其向所述超声换能器供给驱动电力;
iii)至少一个X射线窗口;
iv)超声悬浮器的机械屏蔽件,其在至少一个X射线窗口的情况下将悬浮有微滴的超声传输介质与周围的空气和空气湍流隔离开;
b)一个或多个喷射器,其将包括所述单个或多个晶体的一个或多个流体微滴喷射到所述超声悬浮器中;
c)X射线源;以及
d)X射线检测器,其检测来自被所述X射线源辐射的所述晶体的X射线衍射图像。
关于根据本发明的方法,该目的通过一种通过收集X射线衍射图像以原子分辨率解析晶体的晶体结构的方法来实现,该方法包括如下步骤:
a)将包括一个或多个晶体的流体微滴喷射到超声悬浮器中;
b)使包括所述晶体的所述微滴悬浮在所述超声悬浮器中;
c)视觉上监测所述晶体在所述悬浮微滴中的空间位置和旋转;
d)对所述悬浮微滴中的所述晶体施加X射线束,所述X射线源自X射线源;以及
e)由X射线检测器检测来自被所述X射线源辐射的所述晶体的X射线衍射图像,所述X射线检测器能够以每秒100至3000帧或更高范围内的帧速率来捕获二维衍射图案。
本发明实现了具有高数据获取速率并且高样品使用效率的全自动X射线衍射实验,从而加快了生物分子的结构分析以及基于结构的药物开发。
本发明的优选实施方式可以包括:
a)超声悬浮器,其使包括一个或多个旋转的晶体的至少一个流体微滴悬浮,所述超声悬浮器包括:
i)第一超声换能器;
ii)超声反射器;
iii)第二超声换能器,用于监测所述第一超声换能器与所述超声反射器之间的声腔中的声驻波的声压;
iv)电源,其提供用于第一超声换能器的驱动电力,以用于稳定的超声声压输出;
v)至少一个X射线窗口;
vi)超声悬浮器的机械屏蔽件,其在至少一个X射线窗口的情况下将悬浮有微滴的超声传输介质与周围的空气和空气湍流隔离开;
vii)所述第一超声换能器与所述超声反射器之间的间隙、平行度和位移的调节机构;以及
b)喷射器,其将包括所述单个或多个晶体的所述流体微滴喷射到所述超声悬浮器中;
c)用于使所述晶体在所述悬浮微滴中的位置和旋转可视化的装置;
d)X射线源;
e)X射线检测器,其检测来自被所述X射线源辐射的所述晶体的X射线衍射图像;
f)射束光阑,其使在所述晶体与所述X射线检测器之间的入射X射线束停止;以及
g)用于控制其中悬浮有所述微滴的超声传输介质的湿度和温度的装置。
附加的装置可以用于通过控制湿度而在使微滴悬浮的同时可控地蒸发流体微滴来调节晶体中的溶剂含量。
附加地或可替代地,可以通过将附加的微滴喷射到超声悬浮器中的悬浮微滴中以控制微滴的温度、溶剂的化学浓度或pH来改变晶体的分子构象。
本发明的另一优选实施方式可以提供以下步骤:通过将具有特定波长的光脉冲或激光脉冲施加到微滴来改变晶体的分子构象。
为了确定其晶体结构,在该方法和系统中使用的晶体可以从包含包括以下的非排他性组中选择:蛋白质、生物分子晶体、大分子晶体等。
下文中参照附图更详细地描述本发明的优选实施方式,在附图中:
图1示意性地示出了用于解析晶体的晶体结构的X射线衍射成像系统的图形表示;
图2示意性地示出了与图1所示的系统相比的替代系统;以及
图3示意性地示出了与图1和图2所示的系统相比的另一替代系统。
图1至图3示出了通过收集X射线衍射图像以原子分辨率来解析晶体4的晶体结构的系统2。系统2包括超声悬浮器6,该超声悬浮器6使包括一个或多个旋转的晶体4的流体的至少一个微滴8悬浮。在本发明的一个实施方式中,所述超声悬浮器6包括用于生成超声波的超声换能器10、超声反射器12以及用于监测声悬浮压力的超声换能器14。此外,超声悬浮器6包括电源16,该电源16通过使用驱动电流作为反馈信号改变驱动频率和电压输出来驱动所述超声换能器10的驱动电力,以生成稳定的恒定压力输出。此外,超声悬浮器6包括针对入射X射线束20的第一X射线窗口18以及针对衍射X射线束24的第二X射线窗口22。提供超声悬浮器6的机械屏蔽件26,以将所述超声悬浮器6中的超声传输介质和所述悬浮微滴8与周围的空气和空气湍流隔离开。此外,提供调节机构28,以调节所述超声换能器10与所述超声反射器12之间的间隙、平行度和位移。
系统2还包括喷射器30,用于将包括所述单个或多个晶体4的所述流体31的一个或多个微滴32喷射到所述超声悬浮器6中。提供用于使所述晶体4在悬浮微滴8中的位置和旋转可视化的装置以及X射线源34和检测来自被所述X射线源34辐射的所述单个晶体4的X射线衍射图像24的X射线检测器36。射束光阑(beam stop)29使所述晶体4与所述X射线检测器之间的入射X射线束20停止。
声悬浮微滴8包括要由X射线衍射分析的一个或多个蛋白质晶体4。高帧速率的二维检测器36捕获衍射X射线24。选择声悬浮器6的条件,使得通过通常将声悬浮压力设置在1kPa至3kPa的范围内经由流体微滴8的内部循环迅速地改变晶体取向。包括单个蛋白质晶体4的微滴8经由可以自动控制的微滴喷射器30被放置在悬浮器6中。
此外,附加的一个或多个微滴喷射器40将具有一定化学浓度的流体41的一个或多个微滴42喷射到超声悬浮器6中的悬浮微滴8中。
系统2的目的在于,实现在不冻结样品并且不增加最大辐射剂量的情况下以亚kHz至kHz或更高的数据获取速率从单个晶体4收集X射线衍射数据集。该系统的另一个目的在于,实现具有完全自动化的任务链的快速的X射线蛋白质结构分析,该完全自动化的任务链来自蛋白质晶体的采集、将蛋白质晶体传送到X射线束路径以及获取用于以埃分辨率解析晶体结构的X射线衍射图像的数据集。
系统2包括声悬浮器6、二维X射线检测器36、X射线源34和包括单个蛋白质晶体4的流体微滴8的喷射器30。声悬浮器6包括:超声换能器10,该超声换能器10的输出通过反馈超声镜反射器12被稳定;以及换能器14,用于监测悬浮器6的超声悬浮压力。超声镜反射器12也可以通过将所述换能器14附接至所述镜反射器12而成为悬浮器压力传感器。二维X射线检测器36能够利用帧之间的最小非活动时间以亚kHz到kHz或更高的高重复速率来捕获一系列X射线图像。
在声悬浮器6的一个实施方式中,在所述换能器10与所述反射器12之间建立驻波声压分布30。当峰值声压幅度的量足够时,流体微滴8可以悬浮在靠近在竖直和水平方向上都具有小漂移幅度的任何声压节点的位置处。特别重要的是,调节声悬浮压力以实现稳定的悬浮条件以及经由通过声冲流的悬浮微滴8的内部循环蛋白晶体4在悬浮微滴8内的快速旋转和/或绕转。这可以例如通过调节比可以使微滴8雾化的声压低的声压(但足够大于声压阈值(例如40-60%))来实现,在该声压阈值以下,在包括声反射器12的悬浮器的实施方式的情况下,通过调节所述换能器10与所述反射器12之间的间隙,由于重力而无法维持悬浮。
喷射器30可以使用到晶化盘中的一个或多个集中高频超声脉冲来利用声喷射,或者通过将脉冲声压施加到毛细管来从晶化毛细管进行声喷射。

Claims (12)

1.一种通过收集X射线衍射图像以原子分辨率来解析生物晶体大分子(4)的晶体结构的系统(2),所述系统包括:
a)超声悬浮器(6),其使包括一个或多个旋转的生物晶体大分子(4)的流体的至少一个微滴(8)悬浮,所述超声悬浮器(6)包括:
i)第一超声换能器(10),其生成超声波;
ii)超声反射器(12);
iii)第二超声换能器,用于监测所述第一超声换能器(10)与所述超声反射器(12)之间的声腔中的声驻波的声压;
iv)一个或多个电源(16),其向所述第一超声换能器(10)供给驱动电力;
v)机械屏蔽件(26),其在至少一个X射线窗口(18,22)的情况下将所述超声悬浮器(6)的超声传输介质和所述超声传输介质中的微滴(8)与周围的空气和空气湍流隔离开;
vi)所述第一超声换能器(10)与所述超声反射器(12)之间的间隙、平行度和位移的调节机构(28),
b)一个或多个微滴喷射器(30),其将包括单个或多个所述生物晶体大分子(4)的流体(31)的一个或多个微滴(8)喷射到所述超声悬浮器(6)中;
c)装置,其使所述生物晶体大分子(4)在所述微滴(8)中的位置和旋转可视化;
d)X射线源(34),用于生成X射线束(20);
e)X射线检测器(36),其对通过被所述X射线束(20)辐射的生物晶体大分子(4)由于生物晶体大分子在微滴中旋转而在不同取向上散射的X射线衍射图像(24)进行检测;
f)射束光阑(29),其使所述生物晶体大分子(4)与所述X射线检测器(36)之间入射的所述X射线束(20)停止;以及
g)装置,其使所述超声悬浮器(6)中的微滴(8)中的生物晶体大分子(4)的位置与相对于所述X射线束(20)的位置对准。
2.根据权利要求1所述的系统,其中,所述生物晶体大分子(4)是蛋白质。
3.根据前述权利要求1或2所述的系统,其中,包括用于控制所述超声悬浮器(6)中的超声传输介质的温度和湿度的装置。
4.根据前述权利要求1或2所述的系统,其中,所述电源(16)通过使用驱动电流作为反馈信号改变驱动频率和电压输出来驱动所述第一超声换能器(10),以生成稳定的超声声压输出。
5.根据前述权利要求1或2所述的系统,其中,所述微滴(8)的悬浮力由声腔中的声驻波来提供,所述声腔包括所述第一超声换能器(10)和超声反射器。
6.根据前述权利要求1或2所述的系统,其中,所述超声换能器(14)与所述超声反射器机械接触。
7.一种通过收集X射线衍射图像以原子分辨率来解析生物晶体大分子(4)的晶体结构的方法,所述方法包括以下步骤:
a)由微滴喷射器(30)将流体(31)的微滴(8)喷射到超声悬浮器(6)中,其中,所述微滴(8)包括一个或多个生物晶体大分子(4);
b)使包括所述生物晶体大分子(4)的微滴(8)悬浮在超声悬浮器(6)中;
c)视觉上监测所述生物晶体大分子(4)在所述微滴(8)中的空间位置和旋转;
d)对所述生物晶体大分子(4)施加X射线束(20),其中,所述X射线束(20)源自X射线源(34);以及
e)由X射线检测器(36)检测X射线衍射(24),其中,通过来自被所述X射线束(20)辐射的单个生物晶体大分子(4)的散射来生成所述X射线衍射(24),并且其中,由于所述生物晶体大分子(4)在微滴中旋转而在不同取向上对X射线衍射(24)进行检测。
8.根据权利要求7所述的方法,其中,所述超声悬浮器(6)内的超声声压在1kPa至4kPa的范围内。
9.根据权利要求7或8所述的方法,还包括,通过以下操作来调节所述生物晶体大分子(4)中的溶剂含量和/或所述生物晶体大分子(4)的分子构象:由一个或多个附加的微滴喷射器将适当的流体的一个或多个微滴喷射到所述超声悬浮器(6)中的微滴(8)中,以改变微滴流体的化学浓度或pH。
10.根据权利要求9所述的方法,其中,通过以下操作来调节所述生物晶体大分子(4)中的溶剂含量和/或所述生物晶体大分子(4)的分子构象:控制湿度和/或控制微滴(8)的温度,在使所述微滴(8)悬浮的同时可控地蒸发所述溶剂。
11.根据权利要求7或8所述的方法,还包括,通过以下操作来改变所述生物晶体大分子(4)的分子结构:将包括一些配体的流体的附加的一个或多个微滴喷射到所述超声悬浮器(6)中的微滴(8)中,利用所述配体修饰所述生物晶体大分子(4)。
12.根据权利要求7或8所述的方法,其中,通过向所述生物晶体大分子(4)施加宽频带波长或具有波长或磁脉冲的光辐射来改变所述生物晶体大分子(4)的分子构象。
CN201680068238.5A 2015-11-24 2016-10-28 以原子分辨率解析晶体的晶体结构的系统和方法 Active CN108449987B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15195946.7A EP3173774A1 (en) 2015-11-24 2015-11-24 A system and a method for resolving a crystal structure of a crystal at atomic resolution by collecting x-ray diffraction images
EP15195946.7 2015-11-24
PCT/EP2016/076032 WO2017089069A1 (en) 2015-11-24 2016-10-28 A system and a method for resolving a crystal structure of a crystal at atomic resolution by collecting x-ray diffraction images

Publications (2)

Publication Number Publication Date
CN108449987A CN108449987A (zh) 2018-08-24
CN108449987B true CN108449987B (zh) 2021-08-24

Family

ID=54705019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680068238.5A Active CN108449987B (zh) 2015-11-24 2016-10-28 以原子分辨率解析晶体的晶体结构的系统和方法

Country Status (6)

Country Link
US (1) US10753888B2 (zh)
EP (2) EP3173774A1 (zh)
JP (1) JP6775581B2 (zh)
CN (1) CN108449987B (zh)
CA (1) CA3005773C (zh)
WO (1) WO2017089069A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237373B2 (ja) * 2018-11-22 2023-03-13 株式会社リガク 単結晶x線構造解析装置および試料ホルダ取り付け装置
EP3885756A4 (en) * 2018-11-23 2022-10-19 Rigaku Corporation OCCLUSION DEVICE AND METHOD FOR OCCLUSION OF SINGLE-CRYSTALLINE X-RAY STRUCTURAL ANALYSIS SAMPLE
EP3828532A1 (en) * 2019-11-28 2021-06-02 Paul Scherrer Institut Device for hosting a probe solution of molecules in a plurality of independent cells
CN113588697B (zh) * 2021-08-04 2024-04-19 中国科学院上海应用物理研究所 一种用于蛋白质晶体结构解析的高粘度挤压喷射上样装置
CN114295665A (zh) * 2021-12-10 2022-04-08 西安交通大学 一种水滴结冰可视化实验装置及其应用
CN114441572A (zh) * 2021-12-30 2022-05-06 苏州青云瑞晶生物科技有限公司 连续旋转旋进电子衍射断层扫描的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201886678U (zh) * 2010-12-20 2011-06-29 昆明理工大学 一种超声悬浮演示装置
DE102012101469A1 (de) * 2012-02-23 2013-08-29 BAM Bundesanstalt für Materialforschung und -prüfung Wandfreie Klimakammer für einen akustischen Levitator
CN105939767A (zh) * 2014-01-08 2016-09-14 弗洛设计声能学公司 具有双声电泳腔的声电泳装置
CN106259268A (zh) * 2016-08-17 2017-01-04 农业部南京农业机械化研究所 一种雾滴发生装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036944A (en) * 1986-03-24 1991-08-06 Intersonics Incorporated Method and apparatus for acoustic levitation
EP1360349A1 (en) * 2001-01-19 2003-11-12 Chemical Holovoice AB System and method for screening of nucleation tendency of a molecule in a levitated droplet
US9327264B2 (en) 2011-01-31 2016-05-03 Uchicago Argonne, Llc Containerless synthesis of amorphous and nanophase organic materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201886678U (zh) * 2010-12-20 2011-06-29 昆明理工大学 一种超声悬浮演示装置
DE102012101469A1 (de) * 2012-02-23 2013-08-29 BAM Bundesanstalt für Materialforschung und -prüfung Wandfreie Klimakammer für einen akustischen Levitator
CN105939767A (zh) * 2014-01-08 2016-09-14 弗洛设计声能学公司 具有双声电泳腔的声电泳装置
CN106259268A (zh) * 2016-08-17 2017-01-04 农业部南京农业机械化研究所 一种雾滴发生装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Beamline electrostatic levitator for in situ high energy X-ray diffraction studiesof levitated solids and liquids;A. K. Gangopadhyay等;《REVIEW OF SCIENTIFIC INSTRUMENTS》;20050731;第76卷(第7期);第1-6页 *
The use of an acoustic levitator to follow crystallization in small droplets by energy-dispersive X-ray diffraction;Jork Leiterer 等;《laboratory notes》;20060628;第39卷(第6期);第771–773页 *

Also Published As

Publication number Publication date
CA3005773C (en) 2021-06-01
US10753888B2 (en) 2020-08-25
JP6775581B2 (ja) 2020-10-28
JP2019502102A (ja) 2019-01-24
EP3173774A1 (en) 2017-05-31
CN108449987A (zh) 2018-08-24
EP3380830B1 (en) 2023-06-07
WO2017089069A1 (en) 2017-06-01
EP3380830A1 (en) 2018-10-03
US20180348149A1 (en) 2018-12-06
CA3005773A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
CN108449987B (zh) 以原子分辨率解析晶体的晶体结构的系统和方法
Song et al. Multiple application X-ray imaging chamber for single-shot diffraction experiments with femtosecond X-ray laser pulses
CN107532991A (zh) 用于分选和处理分析物的方法、系统和装置
JP2019022536A (ja) 生細胞の識別および選別用システム
JP2008263990A (ja) 三次元の検体内の細胞を選択的に標的化する方法およびデバイス
US20060241395A1 (en) Device and method for locating an instrument within a body
JP6919181B2 (ja) 液滴分注装置、液滴分注方法、及び被着対象物の製造方法
JP6888289B2 (ja) 液滴形成装置、液滴形成方法、及び分注装置
Han et al. The XBI BioLab for life science experiments at the European XFEL
CN110178016B (zh) 用于测量荧光寿命的装置和方法
US8830451B1 (en) Multinode acoustic focusing for parallel flow cytometry analysis applications
US12007342B2 (en) Serial synchrotron crystallography sample holding system
AT501052B1 (de) Verfahren und einrichtung zur absorptionsspektroskopie
US20060187533A1 (en) Method and device for time-gated amplification of photons
JP5483488B2 (ja) 細胞集合装置、細胞の集合方法
US11933710B2 (en) 3D particle imaging
JPS627837B2 (zh)
EP2584347B1 (en) Facility and method for molecular structure determination
Roessler et al. MS77. P11
Malacrida et al. Elucidating Invisible Barriers and Obstacles to Molecular Diffusion in Live Cells by the Spatial Pair-Correlation Function: A Connectivity View of the Cell
Gratton et al. Spectral Resolution in Fluorescence Microscopy in Strongly Scattering Media
EP1763657A1 (de) Verfahren und einrichtung zum durchfüren von raman-spektroskopie
Luan et al. Nonlinear dynamics of single freely-floating microbubbles under prolonged insonation
超音波中の微小気泡群ダイナミクスの光散乱計測 3P5-9

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant