CN1084082C - 压控振荡器及其调整方法 - Google Patents

压控振荡器及其调整方法 Download PDF

Info

Publication number
CN1084082C
CN1084082C CN97117200A CN97117200A CN1084082C CN 1084082 C CN1084082 C CN 1084082C CN 97117200 A CN97117200 A CN 97117200A CN 97117200 A CN97117200 A CN 97117200A CN 1084082 C CN1084082 C CN 1084082C
Authority
CN
China
Prior art keywords
frequency
voltage
oscillation
conductor
controlled oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97117200A
Other languages
English (en)
Other versions
CN1179646A (zh
Inventor
中井信也
胜俣正史
服部泰幸
永井健太
福光由章
石塚武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN1179646A publication Critical patent/CN1179646A/zh
Application granted granted Critical
Publication of CN1084082C publication Critical patent/CN1084082C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B1/00Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • H03B5/1847Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1256Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a variable inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1293Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having means for achieving a desired tuning characteristic, e.g. linearising the frequency characteristic across the tuning voltage range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/0014Structural aspects of oscillators
    • H03B2200/0024Structural aspects of oscillators including parallel striplines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/004Circuit elements of oscillators including a variable capacitance, e.g. a varicap, a varactor or a variable capacitance of a diode or transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/01Varying the frequency of the oscillations by manual means
    • H03B2201/011Varying the frequency of the oscillations by manual means the means being an element with a variable capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/01Varying the frequency of the oscillations by manual means
    • H03B2201/012Varying the frequency of the oscillations by manual means the means being an element with a variable inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/02Varying the frequency of the oscillations by electronic means
    • H03B2201/0208Varying the frequency of the oscillations by electronic means the means being an element with a variable capacitance, e.g. capacitance diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2201/00Aspects of oscillators relating to varying the frequency of the oscillations
    • H03B2201/03Varying beside the frequency also another parameter of the oscillator in dependence on the frequency

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

一种压控振荡器包括产生其频率随着控制电压而变化的振荡信号用的谐振器、放大振荡信号用的晶体管、调整振荡信号的频率用的振荡频率调整元件、以及调整振荡信号的压控灵敏度用的压控灵敏度调整元件。

Description

压控振荡器及其调整方法
本发明涉及其中谐振器由分层结构形成而电子元件安装在组成层压体的衬底上的高频用压控振荡器。本发明还涉及压控振荡器的调整方法。更具体地说,本发明涉及用于诸如移动电话等无线电通讯领域的压控振荡器及其调整方法。
正如图10A线路图所举例示出的,传统的压控振荡器包括:用来对高频成分进行扼流的电感L1、用来截断高频成分的电容C1、用来截断直流成分的电容C2、变容二极管D、谐振器L2、用来调整频率的可变电容C3、藕合用的藕合电容C4、放大用的晶体管T、构成晶体管T外围电路的反馈用电容C5,以及电阻R1和R2。
在这种压控振荡器中,变容二极管D的电容量Cv随着加在输入端1上的电压而变化。该压控振荡器的振荡频率f(VT)用下列方程式(1)到(3)表达,式中谐振器L2的电感用L2表示,电容C2的电容量用C2表示,电容C3的电容量用C3表示。f(VT)=1/[2π{1/(1/C2+1/CV)+C3)}L2]1/2  …(1)CV=C0+a VT…(2)(a<0)df/dVT=df(VT,C2,C3,C0,a)/dVT=1[1/{32π4f(VT)3}]·{a L2/(1+CV/C2)2}…(3)
在传统上,安排在输入端1和晶体管T之间的电容C2是由安装在层压体的衬底上的芯片组成的,或者作为另一方案,电容C2嵌入层压体的衬底内。正如未经审理的日本专利公告4-329705所描述的,当对在装入了谐振器L2的层压体表面上形成的导体进行微调,以调整电容C3的电容量时,在调整图10B中所示的中心频率f(VM),亦即由输入端给定中心电压VM的情况下,振荡频率亦被调整。
但是,在压控振荡器中,不仅振荡频率f(VT),而且压控灵敏度df/d VT(VT)都有上、下限要控制。就是说,如图10B举例示出的,需要实现下列方程式(4)至(6)。fL2<f(VL)<fL1    …(4)fH1<f(VH)<fH2    …(5)(fH1-fL1)/(VH-VL)<df/d VT(VT)<(fH2-fL2)/(VH-VL)…(6)式中VM是中心电压,VH是加在输入端1的上限电压,VL是下限电压,f(VL)是下限电压VL下的振荡频率,f(VH)是上限电压VH下的振荡频率,fL1是下限电压VL下的上限振荡频率,fL2是下限电压VL下的下限振荡频率,fH1是上限电压VH下的上限振荡频率,fH2是上限电压VH下的下限振荡频率。
按照传统方法只在中心频率f(VM)上进行微调时,如图10B举例示出的,压控灵敏度df/d VT从作为基准线的斜线S1偏离至线S2和S3。因此,压控灵敏度df/d VT偏离方程式(6)表达的上、下限。压控灵敏度df/d VT之所以偏离上、下限的首要原因如下。正如可以从上列方程式(1)至(3)看到的,振荡频率f(VT)取决于变容二极管D的电压可变电容CV,而这个电压可变电容CV波动很大,就是说,方程式(2)中的数值C0和”a”波动很大。由于上述原因,制造过程中的成品率低下。
鉴于上述问题,本发明的目标是提供一种压控灵敏度可控的压控振荡器。提供其调整方法也是本发明的目标。由于上述原因,制造过程中的成品率可以显著提高。
为了达到上述目标,本发明提供一种压控振荡器,它包括:电容C2,用来调整压控灵敏度,安排在加有控制电压的输入端1和放大晶体管T之间的线上,还安排在变容二极管D的热端和形成谐振器的主电感L2之间;以及电容C3,用来调整振荡频率,安排与形成谐振器的主电感L2并联。
另外,本发明还提供一种压控振荡器,它包括:电感L3,用来调整振荡频率,安排在将加有控制电压的输入端1连接到放大用晶体管T的线2与形成谐振器的主电感L2之间;以及电感L4,用来调整压控灵敏度,安排在变容二极管D的热端和调整振荡频率用的电感L3的热端之间的线2上。
另外,本发明还提供一种压控振荡器,它包括:电感L3,用来调整振荡频率,安排在将加有控制电压的输入端1连接到放大用晶体管T的线2与形成谐振器的主电感L2之间;以及电容C2,用来调整压控灵敏度,安排在变容二极管D的热端和调整振荡频率用的电感L3热端之间的线2上。
另外,本发明还提供一种压控振荡器,它包括:电容C3,用来调整振荡频率,安排与形成谐振器的主电感L2并联;以及电感L4,用来调整压控灵敏度,安排在将加有控制电压的输入端1连接到放大用晶体管T的线2上,还安排在变容二极管D的热端与形成谐振器的主电感L2之间。
另外,本发明还提供一种压控振荡器,其中用来构成调整振荡频率用的电容C3和/或电感L3的导体,在压控振荡器的衬底的表面上形成,而用来构成调整压控灵敏度用的电容C2和/或电感L4的导体,在压控振荡器的衬底的表面上形成。
另外,本发明还提供一种压控振荡器的调整方法,它包括下列步骤:通过对构成调整振荡频率用的电容C3和/或电感L3的导体进行功能微调,对振荡频率进行粗调;通过对用来构成调整压控灵敏度用的电容C2和/或电感L4的导体进行功能微调,将压控灵敏度调整到预定值上;再次通过对构成调整振荡频率用的电容C3和/或电感L3的导体进行功能微调,将振荡频率调整到预定值上。在这种情况下,功能微调定义为在测量压控振荡器特性的同时进行的微调。
按照本发明,当对与谐振器串联的电感,或与谐振器并联的电容进行功能微调时,振荡频率被调整。另外,按照本发明,当对安排在该线上的调整压控灵敏度用的电容或电感进行功能微调时,它被进行功能调整。由于上述原因,压控灵敏度被调整。因此,按照本发明,不仅可以调整振荡频率,而且可以调整压控灵敏度。
图1A是一个电路图,表示本发明压控振荡器的一个示例;
图1B是一个表示调整过程的频率-电压特性图;
图2是零件分解透视图,表示图1所举示例的层状结构;
图3A至3E是图1示例的叠层过程图;
图4A是沿着图3E的E-E线的剖面图;
图4B是沿着图7E的F-F线的剖面图;
图5A是一个电路图,表示本发明压控振荡器的另一个示例;
图5B是一个表示调整过程的频率-电压特性图;
图6是零件分解透视图,表示图5所举示例的层状结构;
图7A至7E是图5示例的叠层过程图;
图8A是一个电路图,表示本发明压控振荡器的另一个示例;
图8B是一个表示调整过程的频率-电压特性图;
图9A是一个电路图,表示本发明压控振荡器的另一个示例;
图9B是一个表示调整过程的频率-电压特性图;
图10A是一个电路图,表示一种传统的压控振荡器;以及
图10B是一个频率-电压特性图,说明传统压控振荡器的问题;
第一实施例
下面将参照图1至4解释本发明压控振荡器的第一实施例。图1A是压控振荡器电路的一个示例。在图1A中,电容C3称为第一可变电容器,电容C2称为第二可变电容器。这个电路与图10A所示传统电路的差异如下。截断直流用的安排在线2上,在变容二极管D热端与谐振器L2的热端之间的电容C2,既用来截止直流,又用来调整压控灵敏度。
图2是一个透视图,表示压控振荡器每一层的结构。图3是表示每一层上导体图案位置关系,还表示制造过程的视图。图4A是剖面图,表示本示例的调整部分。在图2和3中,参照号3a至3e是由氧化铝等制成的电绝缘层,参照号4a和4b是在电绝缘层3a,3c上形成的接地导体,L2是主电感,与这些接地导体4a,4b构成带状线谐振器。
L1是在上述电绝缘层3d上形成的导体,使得它构成用来扼流高频电流的电感L1。参照号5a和5b是构成电容C2的导体。参照号6是与接地导体4b相对的导体,使得导体6与接地导体4b构成调整振荡频率用的电容C3。上述导体4a,4b,5a,5b和6都是用银或银合金等制成的。
在最上层绝缘层3e上设有图1A所示的晶体管T、电容C1和C4以及变容二极管D等。
这种压控振荡器的制法如下。正如图3A至3E所示,导体在用绝缘片制成的绝缘层3a至3e上形成;制备绝缘片,在其上形成图1A举例示出的导体图案;将这些绝缘片叠在一起,热压粘合;按照每个压控振荡器的尺寸切割这样的层压体;烧该层压体;用印刷或电镀的方法形成侧端子电极;用焊接法将电容C1和C4、电阻R1和R2、变容二极管D、晶体管T和其他图中未示出的电子元件装在层压体的上表面上。
按照诸如图2,3和4A举例示出的上述方法制造压控振荡器时,构成该振荡器的主电感L2通过通孔7连接至上、下接地导体4a和4b,主电感L2的另一个导体通过通孔8连接到装在第五绝缘层5e上的电容用的导体5b。
图1B是一个表示电压VT与振荡频率f之间关系的曲线图,用来解释该示例压控振荡器的调整方法。图1B所示的直线(a1)至(a4)代表(f-V)特性,就是说,图1B所示的直线(a1)至(a4)代表各个调整阶段上的频率和电压的特性。如直线(a1)所示,在压控振荡器调整之前的阶段,将中心电压VM下的频率f(VM)设置得使频率f(VM)可以低于目标频率f0,并将(f-V)特性曲线的斜率设置得使它可以大于目标(f-V)特性曲线的斜率。首先,如图3E举例示出的,通过调整振荡频率用的电容C3的导体6的微调10,使中心电压VM下的频率f(VM)调整得使频率f(VM)可以低于图1B直线(a2)举例示出的目标频率f0
接着,如图3E举例示出的,通过调整压控灵敏度用的电容C2的微调11,如图1B中的直线(a3)所示,将压控灵敏度df/dVT调整到目标灵敏度。
接着,如图3E举例示出的,通过再次对调整振荡频率用的电容C3的微调12,如图1B中的直线(a4)所示,将中心频率f(VM)设置到目标频率f0
如上所述,当调整压控灵敏度以及振荡频率时,可以防止压控灵敏度恶化,并大大地提高制造过程中的成品率。当微调分三步进行时,就有可能完成高度准确的调整。
第二实施例
图4B和图5至7是表示第二实施例的视图。在图5A中,电感L3称为第一可变电感器,电感L4称为第二可变电感器。如图5A所示,调整振荡频率用的电感L3插在形成谐振器用的主电感L2与安排在加有控制电压的输入端1与放大晶体管T之间的线2之间。在上述线上,调整压控灵敏度用的电感L4插在变容二极管D的热端与调整振荡频率用的电感L3的热端之间。
图6是一个表示构成该示例的每一层的安排的透视图。图7是表示在制造过程中每一层上的导体图案位置相对关系的视图。图4B是表示该示例调整部分的剖面图。类似的参照字符用来标示图2,3,6和7中类似的元件。图7A至7E表示叠层过程的顺序。在图6和7中,符号L3是构成用来调整振荡频率的电感L3的导体。当正如参照号13至15举例示出的进行微调时,电流流过的通路的长度伸长。由于上述原因,电感增大,故振荡频率降低。
在图6和7中,L4是构成调整压控灵敏度用的电感L4导体。当正如参照号16所举例示出的进行微调时,压控灵敏度增大。
如图5B中直线(b1)所示,进行调整之前,本示例的压控振荡器设置如下。中心电压下的频率f(VM)设置得高于目标频率f0,而压控灵敏度的(f-V)特性曲线的斜率设置得小于目标(f-V)特性曲线的斜率。首先,微调与构成谐振器的电感L2串联的电感L3,就是说,正如图7(E)中的参照号13至15所示地进行微调,使电流流过的通路长度增大,使得电感能够增大。由于上述原因,如图5(B)中直线(b2)所示,使中心振荡频率接近目标频率f0
接着,通过微调电感L4,亦即通过微调图7E中的16,使电感增大。由于上述原因,正如图5B中直线(b3)举例示出的,压控灵敏度得到调整(增大)。这时,振荡频率同时降低。
接着,当进一步对与谐振器用的主电感L2串联的电感L3进行微调时,如图5B中直线(b4)所示,中心频率f(VM)被调整到目标频率f0
当如上所述分三步进行微调时,可以提供与上述第一实施例相同的效果。
第三实施例
图8A是一个表示本发明第三实施例的视图。这个实施例的构成如下。不用图4B至7所示的第二实施例中调整压控灵敏度的电感L4,而如图1至4A所示,提供了调整压控灵敏度用的电容C2。
在图8A所示的实施例中,设置方法如下。在调整之前的状态中,如图8B中直线(1)所示,中心电压下的频率f(VM)高于目标频率f0,而压控灵敏度的(f-V)特性曲线的斜率则大于目标压控灵敏度的(f-V)特性曲线的斜率。首先,通过微调与构成谐振器的电感L2串联的电感L3,就是说,如图7(E)中的参照号13至15所示,通过微调使电流流过的通路长度增大,使得电感增大。由于上述原因,如图8B中的直线(c2)所示,使中心振荡频率f(VM)接近目标频率f0
接着,对调整压控灵敏度用的电容C2进行微调,使得电容量减小。由于上述原因,如图8B中的直线(c3)所示,使压控灵敏度得到调整(降低)。这时,振荡频率同时增大。
接着,当进一步对安排与谐振器L2串联的电感L3进行微调时,如图8B中的直线(c4)所示,将中心振荡频率f(VM)调整到目标频率f0。通过这个示例,可以提供与上述相同的效果。
第四实施例
图9A是一个表示本发明第四实施例的视图。这个实施例组成如下。不用图1至4A所示的示例中调整压控灵敏度用的电感C2,而如图4B至7所示,安排了调整压控灵敏度用的电感L4。
在图9A所示的示例中,设置方法如下。在调整之前的状态下,如图9B中直线(d1)所示,中心电压下的频率f(VM)低于目标频率f0,而压控灵敏度的(f-V)特性曲线的斜率则小于目标压控灵敏度的(f-V)特性曲线的斜率。首先,通过微调与构成谐振器的电感L2并联的调整振荡频率用的电容C3,如图9B中直线(d2)所示,使中心振荡频率f(VM)略高于目标频率f0
接着,对调整压控灵敏度用的电感L4进行微调,使电感量增大。由于上述原因,如图9B中的直线(d3)所示,使压控灵敏度调整(提高)到目标灵敏度。这时,振荡频率同时降低。
接着,当进一步对安排与谐振器L2并联的电容C3进行微调时,如图9B中的直线(d4)所示,将中心频率f(VM)调整到目标振荡频率f0。通过这个示例,可以提供与上述相同的效果。
上面参照这些示例已经对本发明进行了解释。当然,当实施本发明时,本领域的一般技术人员会作出改变,例如,可以改变元件的材料,可以改变要安装的电子元件的布置,还可以不用电子元件,而采用叠层的安排。至于调整振荡频率用的电容和电感,以及至于调整压控灵敏度用的电容和电感,本发明都不作限定,只设置它们之中一种,或者两者都用。
按照本发明,不仅设置调整振荡频率用的电容和电感,还设置调整压控灵敏度用的电容或电感。故可调整压控灵敏度,并可提高制造过程的成品率。
按照本发明,调整用的电容和/或电感设置在衬底的表面上。所以微调可以容易地进行。
按照本发明,调整分三步进行。所以,可以进行高度准确的调整。

Claims (15)

1.一种压控振荡器,其特征在于,它包括:
谐振器,用来产生其频率随着控制电压而变化的振荡信号;
放大装置,用来放大振荡信号;
振荡频率调整装置,用来调整振荡信号的频率;以及
压控灵敏度调整装置,用来调整振荡信号的压控灵敏度。
2.权利要求1所要求的压控振荡器,其特征在于,其中所述谐振器包括加有控制信号的输入端、变容二极管和主电感;
所述振荡频率调整装置包括第一可变电容器,后者安排在与所述谐振器的主电感并联的位置;以及
所述压控灵敏度调整装置包括第二可变电容器,后者安排在该输入端和所述放大装置之间,还安排在所述变容二极管的热端和所述谐振器的所述主电感的热端之间。
3.权利要求1所要求的压控振荡器,其特征在于,其中所述谐振器包括加有控制信号的输入端、变容二极管和主电感;以及
所述振荡频率调整装置包括第一可变电感器,后者安排在该输入端和所述放大装置之间,并与该谐振器的所述主电感串联;以及
所述压控灵敏度调整装置包括第二可变电感器,后者安排在所述变容二极管的热端与第一可变电感的热端之间。
4.权利要求1所要求的压控振荡器,其特征在于,其中所述谐振器包括加有控制信号的输入端、变容二极管和主电感;以及
所述振荡频率调整装置包括一个可变电感器,后者安排在所述输入端和所述放大装置之间,并与该谐振器的所述主电感串联;在所述输入端和所述放大装置之间,并与该谐振器的所述主电感串联;以及
所述压控灵敏度调整装置包括第二可变电容器,后者安排在所述变容二极管的热端与所述可变电感的热端之间。
5.权利要求1所要求的压控振荡器,其特征在于,其中所述谐振器包括加有控制信号的输入端、变容二极管和主电感;以及
所述振荡频率调整装置包括一个可变电容器,后者安排在与该谐振器的所述主电感并联的位置;以及
所述压控灵敏度调整装置包括一个可变电感器,后者安排在所述输入端和所述放大装置之间,并与该谐振器的所述主电感串联;在所述输入端和所述放大装置之间,并安排在所述变容二极管的热端与所述谐振器的主电感的热端之间。
6.权利要求1所要求的压控振荡器,其特征在于,其中所述振荡频率调整装置和所述压控灵敏度调整装置是在所述压控振荡器衬底的表面上形成的。
7.权利要求2所要求的压控振荡器,其特征在于,其中构成第一和第二可变电容器的一个导体是在该压控振荡器衬底的表面上形成的。
8.权利要求3所要求的压控振荡器,其特征在于,其中构成第一和第二可变电感器的一个导体是在该压控振荡器衬底的表面上形成的。
9.权利要求4所要求的压控振荡器,其特征在于,其中构成可变电容器和可变电感器的一个导体是在该压控振荡器衬底的表面上形成的。
10.权利要求5所要求的压控振荡器,其特征在于,其中构成可变电容器和可变电感器的一个导体是在该压控振荡器衬底的表面上形成的。
11.一种压控振荡器调整方法,其特征在于,它包括下列步骤:
通过对构成调整振荡信号频率用的振荡频率调整装置的导体进行功能微调,对振荡频率进行粗调;
通过对用来构成调整压控灵敏度用的压控灵敏度调整装置的导体进行功能微调,将压控灵敏度调整到预定值上;
再次通过对构成所述振荡频率调整装置的导体进行功能微调,将振荡频率调整到预定值上。
12.权利要求11所要求的压控振荡器的调整方法,其特征在于,它包括下列步骤:
通过对构成第一可变电容器的导体进行功能微调,对振荡频率进行粗调;
通过对用来构成第二可变电容器的导体进行功能微调,将压控灵敏度调整到预定值上;
通过再次对构成第一可变电容器的导体进行功能微调,将振荡频率调整到预定值上。
13.权利要求11所要求的压控振荡器的调整方法,其特征在于,它包括下列步骤:
通过对构成第一可变电感器的导体进行功能微调,对振荡频率进行粗调;
通过对用来构成第二可变电感器的导体进行功能微调,将压控灵敏度调整到预定值上;
通过再次对构成第一可变电感器的导体进行功能微调,将振荡频率调整到预定值上。
14.权利要求11所要求的压控振荡器的调整方法,其特征在于,它包括下列步骤:
通过对构成一个可变电感器的导体进行功能微调,对振荡频率进行粗调;
通过对用来构成一个可变电容器的导体进行功能微调,将压控灵敏度调整到预定值上;
通过再次对构成该可变电感器的导体进行功能微调,将振荡频率调整到预定值上。
15.权利要求11所要求的压控振荡器的调整方法,其特征在于,它包括下列步骤:
通过对构成一个可变电容器的导体进行功能微调,对振荡频率进行粗调;
通过对用来构成一个可变电感器的导体进行功能微调,将压控灵敏度调整到预定值上;
通过再次对构成该可变电容器的导体进行功能微调,将振荡频率调整到预定值上。
CN97117200A 1996-08-05 1997-08-05 压控振荡器及其调整方法 Expired - Fee Related CN1084082C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8223053A JPH1051234A (ja) 1996-08-05 1996-08-05 電圧制御発振器およびその調整方法
JP223053/96 1996-08-05

Publications (2)

Publication Number Publication Date
CN1179646A CN1179646A (zh) 1998-04-22
CN1084082C true CN1084082C (zh) 2002-05-01

Family

ID=16792105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97117200A Expired - Fee Related CN1084082C (zh) 1996-08-05 1997-08-05 压控振荡器及其调整方法

Country Status (7)

Country Link
US (1) US5852388A (zh)
EP (1) EP0823777B1 (zh)
JP (1) JPH1051234A (zh)
KR (1) KR100421554B1 (zh)
CN (1) CN1084082C (zh)
DE (1) DE69719636T2 (zh)
MY (1) MY112863A (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW347936U (en) * 1997-11-28 1998-12-11 Delta Electronics Inc Apparatus for oscillator
JP2999445B2 (ja) * 1998-02-18 2000-01-17 ティーディーケイ株式会社 電圧制御発振器の周波数シフト量調整方法
US6188295B1 (en) * 1999-04-13 2001-02-13 Delta Electronics, Inc. Frequency adjustments by patterning micro-strips to form serially connected capacitors or inductor-capacitor (LC) Circuit
JP3740977B2 (ja) * 1999-12-22 2006-02-01 株式会社村田製作所 電圧制御発振器、及び、これを用いた電子装置
DE10107176A1 (de) * 2001-02-15 2002-09-26 Siemens Ag Verfahren zum Aufbau einer Oszillatorvorrichtung und elektronische Oszillatorvorrichtung...
KR100401507B1 (ko) * 2001-05-10 2003-10-17 주식회사 하이닉스반도체 반도체 메모리 장치의 입력 캐패시턴스의 미세조정 회로및 그 제조방법
EP1505720B1 (en) 2003-08-06 2018-07-18 Synergy Microwave Corporation Tunable frequency, low phase noise and low thermal drift oscillator
US7292113B2 (en) 2003-09-09 2007-11-06 Synergy Microwave Corporation Multi-octave band tunable coupled-resonator oscillator
WO2005057996A2 (en) 2003-12-09 2005-06-23 Synergy Microwave Corporation User-definable thermal drift voltage control oscillator
US7262670B2 (en) 2003-12-09 2007-08-28 Synergy Microwave Corporation Low thermal drift, tunable frequency voltage controlled oscillator
CA2515982C (en) 2004-08-16 2008-07-22 Synergy Microwave Corporation Low noise, hybrid tuned wideband voltage controlled oscillator
US20060091981A1 (en) * 2004-11-04 2006-05-04 Motorola, Inc. Method and system for frequency trimming
CA2608203C (en) 2005-05-20 2012-09-18 Synergy Microwave Corporation Tunable oscillator having series and parallel tuned resonant circuits
CA2566283C (en) 2005-11-02 2011-10-18 Synergy Microwave Corporation User-definable, low cost, low phase hit and spectrally pure tunable oscillator
US7605670B2 (en) 2005-11-15 2009-10-20 Synergy Microwave Corporation User-definable low cost, low noise, and phase hit insensitive multi-octave-band tunable oscillator
KR100821126B1 (ko) 2006-07-31 2008-04-11 한국전자통신연구원 선형적인 정전용량 변화를 갖는 가변 캐패시터 회로를구비한 장치
JP5826557B2 (ja) * 2011-08-19 2015-12-02 日本電波工業株式会社 感知装置及び感知方法
US9209744B1 (en) 2013-02-13 2015-12-08 M/A-Com Technology Solutions Holdings, Inc. Laminate-based voltage-controlled oscillator
US9374037B2 (en) 2014-10-30 2016-06-21 M/A-Com Technology Solutions Holdings, Inc. Voltage-controlled oscillator with mask-selectable performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375621A (en) * 1981-03-02 1983-03-01 Ael Microtel, Ltd. Circuit for linearizing frequency modulated oscillators on microstrip
EP0387745A1 (fr) * 1989-03-15 1990-09-19 Alcatel Telspace Oscillateur hyperfréquence commande en tension
US5083098A (en) * 1990-06-25 1992-01-21 Hughes Aircraft Company Tunable VCO frequency sensitivity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450416A (en) * 1981-08-17 1984-05-22 General Electric Company Voltage controlled oscillator
JPH07254819A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 電圧制御発振器
JP3097444B2 (ja) * 1994-03-31 2000-10-10 株式会社村田製作所 電圧制御形発振器の発振周波数可変範囲調整方法
US5532651A (en) * 1995-04-06 1996-07-02 Motorola, Inc. Tunable voltage controlled oscillator having microstrip resonator with cuts for better tuning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375621A (en) * 1981-03-02 1983-03-01 Ael Microtel, Ltd. Circuit for linearizing frequency modulated oscillators on microstrip
EP0387745A1 (fr) * 1989-03-15 1990-09-19 Alcatel Telspace Oscillateur hyperfréquence commande en tension
US5083098A (en) * 1990-06-25 1992-01-21 Hughes Aircraft Company Tunable VCO frequency sensitivity

Also Published As

Publication number Publication date
KR100421554B1 (ko) 2004-05-24
MY112863A (en) 2001-09-29
CN1179646A (zh) 1998-04-22
EP0823777A1 (en) 1998-02-11
KR19980018300A (ko) 1998-06-05
DE69719636T2 (de) 2003-09-18
EP0823777B1 (en) 2003-03-12
DE69719636D1 (de) 2003-04-17
JPH1051234A (ja) 1998-02-20
US5852388A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
CN1084082C (zh) 压控振荡器及其调整方法
CN1236551C (zh) 电感电容振荡器
DE69122601T2 (de) Flip-Chip-MMIC-Resonatorschaltung mit koplanarem Induktor auf separatem Substrat
CN1221036C (zh) 多端子型mos可变电容器
EP0014002B1 (en) (1-x)BaO.xTiO2 System dielectric material for use in a microwave device
US7012483B2 (en) Tunable bridge circuit
EP0661805B1 (en) LC element, semiconductor device, and LC element manufacturing method
CN1218395C (zh) 改进的集成振荡器和调谐电路
CN1208835C (zh) 平面安装型电子电路组件
US6674632B2 (en) Mobile telephone device with passive integrated module
DE102005062932A1 (de) Chip-Träger mit reduzierter Störsignalempfindlichkeit
CN1269221C (zh) 双极型晶体管、振荡电路及电压控制型振荡器
US7471170B2 (en) Multilayer stack with compensated resonant circuit
JP3188661B2 (ja) 電圧制御発振器及びその周波数調整方法
CN100488028C (zh) 具有可微调式压控振荡器的电子装置
KR100261286B1 (ko) 단일칩 마이크로웨이브 소자용 에피택셜 기판구조
KR100537740B1 (ko) 유전체기판 적층형 전압제어발진기
CN1145257C (zh) Lc振荡器
JPS6033727A (ja) チュ−ナ装置
WO2024086220A1 (en) Metal-oxide-semiconductor capacitor
CN118378588A (zh) 硅中介层及调整方法、芯片及封装方法
CN1214409C (zh) 电感元件
CN1567711A (zh) 振荡电路及其制造方法
JP2002280831A (ja) 電圧制御発振器
JPH0878239A (ja) インダクタ基板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee