CN108368573B - 疲劳特性优异的高强度不锈钢板及其制造方法 - Google Patents

疲劳特性优异的高强度不锈钢板及其制造方法 Download PDF

Info

Publication number
CN108368573B
CN108368573B CN201680056835.6A CN201680056835A CN108368573B CN 108368573 B CN108368573 B CN 108368573B CN 201680056835 A CN201680056835 A CN 201680056835A CN 108368573 B CN108368573 B CN 108368573B
Authority
CN
China
Prior art keywords
less
content
steel sheet
inclusions
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680056835.6A
Other languages
English (en)
Other versions
CN108368573A (zh
Inventor
江原靖弘
斋藤俊
松林弘泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Publication of CN108368573A publication Critical patent/CN108368573A/zh
Application granted granted Critical
Publication of CN108368573B publication Critical patent/CN108368573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

实现在Si含量高的加工诱导马氏体生成型的不锈钢中具有对耐疲劳特性的改善有效的非金属夹杂物的分布形态的薄板材。薄钢板,以质量%计,由C:0.010~0.200%、Si:超过2.00%且4.00%以下、Mn:0.01~3.00%、Ni:3.00%以上且不到10.00%、Cr:11.00~20.00%、N:0.010~0.200%、Mo:0~3.00%、Cu:0~1.00%、Ti:0~0.008%、Al:0~0.008%、剩余部分Fe和不可避免的杂质构成,以轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下排列的非金属夹杂物中轧制方向长度为40μm以上的非金属夹杂物的个数密度在L截面内为3.0个/mm2以下。

Description

疲劳特性优异的高强度不锈钢板及其制造方法
技术领域
本发明涉及在能够利用加工诱导马氏体相的生成、含有高Si产生的固溶强化和时效硬化而获得非常高的强度的不锈钢种中显著地抑制了粗大的硬质非金属夹杂物的生成的钢板。另外,涉及其制造方法。
背景技术
作为高强度不锈钢,广泛地使用了以SUS301为代表的准稳定奥氏体系不锈钢。不过,在SUS301中为了获得高强度,必须提高冷轧率,相应地伴有韧性的降低。作为避免该问题、以高水平兼具高强度和高韧性的技术,已知利用加工诱导马氏体相的生成、含有高Si产生的固溶强化和时效硬化来实现高强度化的方法,已在ID锯条基板等用途中使用(专利文献1)。
专利文献1中所公开的类型的不锈钢通过冷轧得到加工诱导马氏体和奥氏体的双相组织,具有高强度、高韧性,作为ID锯条等板厚0.1mm以上的旋转构件,耐疲劳特性也良好。但是,例如加工成板厚不到0.1mm、特别是20~70μm这样的薄板材,并且在受到反复的弹性变形的弹簧材料用途中应用的情况下,希望耐疲劳特性的进一步提高。作为使钢材的耐疲劳特性降低的主要原因,可列举出非金属夹杂物的存在。即使是相同尺寸的夹杂物,板厚越变薄,在板厚中所占的夹杂物的板厚方向长度的比例越增大,应力在这些夹杂物粒子的周围集中,变得容易作为裂纹的起点、传播路径发挥功能。越是薄板材,越难以改善起因于非金属夹杂物的疲劳特性降低。
作为减少钢材的非金属夹杂物的量(即提高清净度)的方法,对各种使精炼时的熔渣组成合理化的方法进行了研究。不过,从防止加工裂纹、疲劳破坏的观点出发,只是单纯地提高清净度未必充分,认为控制非金属夹杂物的组成是有效的。例如专利文献2中公开了如下方法:在SUS304等通用奥氏体系钢种的熔炼中通过使用具有白云石系耐火物的内衬的精炼炉,将熔渣碱度调整到1.4~2.4,从而控制非金属夹杂物的组成,得到无加工裂纹的奥氏体系不锈钢。但是,根据发明人的调查获知,在Si含量高的钢种的情况下,即使尝试专利文献2中公开的方法,显著地改善薄板材中的疲劳特性也困难。
另一方面,专利文献3中公开了如下技术:在高Si奥氏体系不锈钢中通过减少以氧化铝为主体的熔点高的B1系夹杂物的合计量,从而改善高温高浓度硝酸中的耐蚀性。记载了为了抑制B1系夹杂物的生成,不进行采用Al的Cr的还原回收,并且添加Al含量低达0.1%左右的Fe-Si合金(段落0052、0053)。不过,在专利文献3中作为对象的钢为Ni含量是10%以上的奥氏体单相钢(段落0033),并不是意在加工诱导马氏体相生成导致的高强度化的钢种。该文献中没有教导改善薄板材的弹簧用途中的耐疲劳特性的方法。如后述那样,为了改善本发明中作为对象的钢种的耐疲劳特性,抑制TiN系夹杂物的生成是重要的,但对于该文献中公开的熔炼方法而言,不能稳定地减少TiN系夹杂物。
现有技术文献
专利文献
专利文献1:日本专利第3219117号公报
专利文献2:日本专利第3865853号公报
专利文献3:日本专利第5212581号公报
发明内容
发明要解决的课题
在钢中所含的非金属夹杂物中熔点高、硬质的种类的夹杂物在热轧后也作为粒状物残存,在冷轧后以某种程度上破碎的硬质粒子在轧制方向上排列的形态残存。因此,认为只要能够显著地抑制这种硬质的非金属夹杂物的生成,就能够提高薄板材的耐疲劳特性。但是,在加工诱导马氏体生成型的钢种中为了获得非常高的强度水平,必须含有超过2质量%的大量的Si。如果这样提高钢中的Si含量,则硬质的非金属夹杂物的生成抑制变得非常困难。即使如专利文献3中公开那样采用了不进行Al添加并且添加Al含量低的Fe-Si合金的方法,如果只是这样,也达不到稳定地改善薄板材中的耐疲劳特性。
本发明要在大量生产现场实现在Si含量高的加工诱导马氏体生成型的不锈钢中具有对耐疲劳特性的改善有效的非金属夹杂物的分布形态的板厚20~500μm的薄板材。
用于解决课题的手段
发明人详细的研究的结果,发现了在加工诱导马氏体生成型的含有高Si的不锈钢种中为了改善作为薄板弹簧材料使用时的耐疲劳特性,使热轧钢板中存在的圆当量直径为6.0μm以上的TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物的量减少是极其有效的。另外,获知这样的粗大的夹杂物的减少化可通过严格地管理来自钢水收容容器的附着物、副原料、造渣剂的Ti、Al的混入以及将Si添加后所形成的最终的熔渣的碱度控制在比通常稍低的窄范围,从而在大量生产操作中实现。而且,在冷轧工序中将该热轧钢板制成薄板时,薄板内部的夹杂物呈现对耐疲劳特性的改善极其有利的存在形态。本发明基于这样的见识。
即,为了实现上述目的,本发明中提供板厚20~500μm的不锈钢板,具有以质量%计由C:0.010~0.200%、Si:超过2.00%且4.00%以下、Mn:0.01~3.00%、Ni:3.00%以上且不到10.00%、Cr:11.00~20.00%、N:0.010~0.200%、Mo:0~3.00%、Cu:0~1.00%、Ti:0~0.008%、Al:0~0.008%、剩余部分Fe和不可避的杂质构成的化学组成,在与轧制方向和板厚方向平行的截面(L截面)中,将以轧制方向的粒子间距离20μm以下(即0~20μm)且板厚方向的粒子间距离10μm以下(即0~10μm)排列的(連なっている)一群非金属夹杂物粒子视为是1个非金属夹杂物时,轧制方向长度为40μm以上的非金属夹杂物的个数密度在L截面内为3.0个/mm2以下。
其中,在L截面内出现的、对于某2个粒子的轧制方向的粒子间距离(μm)在各个粒子存在的轧制方向范围中无重复的情况下,规定为两者的轧制方向范围之间的轧制方向间隔(μm),在有重复的情况下规定为0μm。同样地,在L截面内出现的、对于某2个粒子的板厚方向的粒子间距离(μm)在各个粒子存在的板厚方向范围中无重复的情况下,规定为两者的板厚方向范围之间的板厚方向间隔(μm),在有重复的情况下规定为0μm。轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下的2个粒子属于相同的“一群”。
作为在上述的轧制方向长度为40μm以上的非金属夹杂物中对耐疲劳特性的影响力特别大的非金属夹杂物,能够列举出包含(i)TiN系夹杂物粒子、(ii)含有Al、Mg的1种以上的尖晶石系夹杂物粒子中上述(i)、(ii)的1种或2种的非金属夹杂物。
上述的Ti含量为含有作为夹杂物存在的Ti的钢中的总Ti含量。同样地,上述的Al含量为含有作为夹杂物存在的Al的钢中的总Al含量。
夹杂物的个数密度能够通过采用SEM(扫描型电子显微镜)观察对L截面进行了镜面研磨的观察面而测定。夹杂物的种类是否为TiN系夹杂物或含有Al、Mg的1种以上的尖晶石系夹杂物的判别例如能够通过采用附属于SEM的EDX(能量分散型荧光X射线分析装置)的元素分析进行。
图1中例示在现有的板厚120μm的冷轧钢板(后述的现有例No.1)的L截面中看到的夹杂物的SEM照片。图的横向与轧制方向一致,纵向与板厚方向一致。大致沿着轧制方向排列的非金属夹杂物粒子的群在(A)(B)2个部位看到。将(A)群和(B)群的最接近粒子之间的板厚方向的粒子间距离在图1中用记号S表示。由于板厚方向的粒子间距离S超过了10μm,因此在将(A)群和(B)群的全部粒子作为对象的情况下,这些粒子不相当于“以轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下排列的一群非金属夹杂物粒子”。如果只将(A)群的粒子作为对象,这些构成粒子在与其他的至少1个构成粒子的位置关系中均是轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下,因此构成(A)群的各粒子相当于“以轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下排列的一群非金属夹杂物粒子”。因此,构成(A)群的各粒子被视为是1个非金属夹杂物。同样地,构成(B)群的各粒子也被视为是1个非金属夹杂物。图1中存在2个非金属夹杂物,将各自的轧制方向长度在图1中表示为LA、LB。其中LA为40μm以上,因此在这2个非金属夹杂物中,轧制方向长度为LA的非金属夹杂物相当于“轧制方向长度为40μm以上的非金属夹杂物”。
EDX分析的结果:这些非金属夹杂物均为TiN系夹杂物。
在图2中例示按照本发明的板厚120μm的冷轧钢板(后述的本发明例No.5)的L截面中的与图1不同的视野中所看到的夹杂物的SEM照片。图的横向与轧制方向一致,纵向与板厚方向一致。图2中排列地存在的各非金属夹杂物粒子相当于“以轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下排列的一群非金属夹杂物粒子”,因此这些被视为是1个非金属夹杂物。该非金属夹杂物的轧制方向长度略微超过了40μm,因此相当于“轧制方向长度为40μm以上的非金属夹杂物”。
EDX分析的结果:该非金属夹杂物为TiN系夹杂物。
钢板L截面中的轧制方向长度为40μm以上的非金属夹杂物的个数密度能够如下所述求出。
[轧制方向长度为40μm以上的非金属夹杂物的个数密度的测定方法]
对于将与钢板的轧制方向和板厚方向平行的截面(L截面)进行了镜面研磨的观察面进行SEM观察,随机地确定轧制方向长度为100μm以上、板厚方向长度为板厚全长的测定区域,计数全体或一部分存在于该测定区域内的全部的“轧制方向长度为40μm以上的非金属夹杂物”中该夹杂物的全体存在于上述测定区域内的夹杂物和该夹杂物的一部分伸出至上述测定区域外但轧制方向长度的1/2以上的部分存在于测定区域内的夹杂物的数。对于1个或不重复的2个以上的测定区域进行该操作直至测定区域的总面积成为10mm2以上,将各测定区域中的计数的总和除以测定区域的总面积所得的值规定为“轧制方向长度为40μm以上的非金属夹杂物的个数密度(个/mm2)”。
再有,在热轧钢板的阶段中,优选在L截面中圆当量直径为6.0μm以上的TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物的总个数密度为0.05个/mm2以下。
圆当量直径是换算为具有与观察面中出现的夹杂物粒子的投影面积相等的面积的圆的直径的粒径。各个夹杂物粒子的圆当量直径能够通过例如用计算机对夹杂物拍摄的SEM图像进行图像处理而算出。热轧钢板中的上述夹杂物的个数密度能够如下所述求出。
[热轧钢板中的夹杂物的个数密度的测定方法]
对于将与钢板的轧制方向和板厚方向平行的截面(L截面)进行了镜面研磨的观察面进行SEM观察,在随机地选择的视野内确定矩形的测定区域,计数在视野内观察的、为TiN系夹杂物或含有Al、Mg的1种以上的尖晶石系夹杂物并且在圆当量直径为6.0μm以上的全部的夹杂物粒子中该粒子的全体存在于上述测定区域内的粒子和该粒子的一部分伸出至上述测定区域外但粒子面积的1/2以上的部分存在于测定区域内的粒子的数。对于不重复的多个视野进行该操作直至测定区域的总面积成为200mm2以上,将各视野中的计数的总和除以测定区域的总面积所得的值规定为“圆当量直径为6.0μm以上的TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物的总个数密度(个/mm2)”。
如果在热轧钢板中呈现上述的夹杂物分布,则其后经过冷轧制成了薄板材时,获得上述规定的夹杂物分布,获得耐疲劳特性的显著的改善效果。作为这样的薄板材,可列举出轧制方向的拉伸强度为2000N/mm2以上的薄板材作为特别优选的对象。将具有上述的组成的热轧钢板冷轧而得到的钢板的基体(金属基底)为加工诱导马氏体相与奥氏体相的混合组织。
作为上述的钢板的制造方法,提供不锈钢板的制造方法,其具有:
在完成了向含Cr铁水中吹入氧的脱碳过程的、在熔液面上具有含有Cr氧化物的熔渣的C含量0.20%以下的钢水中投入副原料和造渣剂进行成分调整时,选定使用的钢水收容容器、副原料和造渣剂,以使钢水中的Ti含量成为0.008质量%以下、Al含量成为0.008质量%以下,作为副原料至少使Fe-Si合金在钢水中溶解,进行脱氧、熔渣中Cr的在钢水中的还原回收和钢中Si含量的调整,并且投入含有Ca的造渣剂来将熔渣碱度(CaO/SiO2质量比)调整至1.3~1.5,得到上述的化学组成的钢水的工序;
对上述的工序中得到的钢水进行铸造而得到铸片的工序;
对上述铸片实施至少包含热轧的热加工而得到热轧钢板的工序;和
对上述热轧钢板进行1次以上的退火和冷轧而制成板厚20~500μm的冷轧钢板的工序。
其中,“选定使用的钢水收容容器、副原料和造渣剂以使钢水中的Ti含量成为0.008质量%以下、Al含量成为0.008质量%以下”意味着使用附着物少或者没有附着物的钢水收容容器,并且使用将杂质含量管理得低的副原料、造渣剂,以致通过Ti、Al从钢水收容容器的附着物、副原料和造渣剂中混入钢水中,不会使钢水中的Ti含量超过0.008质量%或者Al含量超过0.008质量%。完成了向含Cr铁水吹入氧的脱碳过程的阶段的钢水可视为Ti、Al的含量大致为零。因此,通过防止或尽可能减少从外部的混入,从而能够得到Ti含量0~0.008%、Al含量0~0.008%的钢。
更优选选定使用的钢水收容容器、副原料和造渣剂,以使钢水中的Ti含量成为0.006质量%以下,Al含量成为0.006质量%以下。
就钢水收容容器而言,具体地可列举出用耐火物作衬里的精炼容器、浇包。也能将浇包直接作为精炼容器使用。作为钢水收容容器,优选使用构成容器的内面的耐火物尚未在钢水的收容中使用的容器(新锅)。
作为上述Fe-Si合金,优选使用Al含量为0.05质量%以下、Ti含量为0.05质量%以下的Fe-Si合金。
再有,对于作为尖晶石系夹杂物形成元素的Mg,对钢中的含量并无特别规定,为了如上述那样减少Ti、Al的含量,确认了通过有效的钢水收容容器、副原料和造渣剂的选定,能够减小到无问题的水平。这种情况下,钢中的总Mg含量成为0.002质量%以下。
通过对上述冷轧钢板实施时效处理,从而能够得到基体(金属基底)为加工诱导马氏体相与奥氏体相的混合组织、轧制方向的拉伸强度例如为2000N/mm2以上的钢板。
发明的效果
根据本发明,可以在大量生产操作中实现在加工诱导马氏体生成型的含有高Si的不锈钢种中使轧制方向长度长的硬质的非金属夹杂物的数显著减少的薄板。这种高Si钢种在不锈钢中可显现出最高水平的强度,目前为止主要在ID锯条等用途中使用。通过按照本发明的夹杂物控制,从而改善薄板材中的耐疲劳特性,因此在薄板弹簧材料的用途中的应用成为可能。因此,本发明利用该钢种特有的高强度特性,可有助于电子设备等中所使用的薄板弹簧部件的进一步的小型化。
附图说明
图1为现有例No.1的冷轧钢板的L截面中所看到的非金属夹杂物的SEM照片。
图2为本发明例No.5的冷轧钢板的L截面中所看到的非金属夹杂物的SEM照片。
图3为现有例No.4的热轧钢板L截面中所观察的典型的TiN系夹杂物的SEM照片。
图4为本发明例No.5的热轧钢板L截面中所观察的典型的TiN系夹杂物的SEM照片。
具体实施方式
[化学组成]
以下关于化学组成的“%”只要无特别说明,意指“质量%”。
本发明中,将下述(A)中所示的化学组成的钢作为对象。
(A)以质量%计,C:0.010~0.200%、Si:超过2.00%且4.00%以下、Mn:0.01~3.00%、Ni:3.00%以上且不到10.00%、Cr:11.00~20.00%、N:0.010~0.200%、Mo:0~3.00%、Cu:0~1.00%、Ti:0~0.008%、Al:0~0.008%、剩余部分Fe和不可避免的杂质。
具有该组成的钢种在冷轧时生成加工诱导马氏体,强度上升。并且,通过其后的时效处理,C、N等溶质原子主要在马氏体相中形成科特雷耳(コットレル)气氛而将位错固定,产生提高强度的作用(形变时效)。进而,钢中大量存在的Si带来马氏体相、残留奥氏体相的固溶强化,有助于强度提高。
本发明中,特别是为了充分地享受上述的Si产生的强度提高作用,以Si含量超过2.00%的钢作为对象。不过,如果Si含量过度增多,则变得容易发生热加工开裂等的弊病明显化。在此,将Si含量限定于4.00%以下。
C为奥氏体相形成元素,并且是为了使钢强化所必需的元素。不过,含有过剩的C招致耐蚀性、韧性的降低。本发明中,以C含量0.010~0.200%的钢作为对象,特别是以高强度为目标的情况下,使C含量成为0.050~0.100的范围变得有利。
N为奥氏体相形成元素,并且是为了使钢强化所必需的元素。不过,过剩的含有成为助长TiN系夹杂物的形成的主要因素。本发明中,将N含量0.010~0.200%的钢作为对象。如果为该范围,采用如后述那样抑制Ti的混入的制造方法,可将TiN系夹杂物的粒径分布合理化至本发明规定范围。N含量的更优选的范围为0.050~0.085%。
Mn是通过调整其含量而容易控制奥氏体稳定度的元素,在0.01~3.00%的范围内调整含量。如果含有大量的Mn,则变得难以诱发加工诱导马氏体相。Mn含量更优选在1.00%以下的范围内调整,可管理到0.50%以下的范围。
Ni为奥氏体相形成元素,为了在常温下形成准稳定奥氏体相,确保3.00%以上的含量。如果Ni含量过度增多,则变得难以诱发加工诱导马氏体相,因此Ni含量规定为不到10.00%。更优选规定为7.00~9.50%。
Cr是为了确保耐蚀性所必需的元素。本发明中以Cr含量11.00~20.00%的钢作为对象。Cr为铁素体相形成元素,如果超过上述而大量地含有,则有时在高温下不再获得奥氏体单相组织。Cr含量的更优选的范围为12.00~15.00%。
Mo除了具有提高耐蚀性的作用以外还具有如下作用:通过时效处理形成Mo系析出物而有助于强化,同时通过冷轧而加工硬化的组织难以通过时效处理使其软化,因此能够根据需要含有。为了充分地享受这些作用,优选确保1.0%以上的Mo含量。另外,在意在实现轧制方向的拉伸强度为2000N/mm2以上这样的强度水平的情况下,含有2.00%以上的Mo是极其有效的。不过,含有大量的Mo招致高温下的δ铁素体相的生成,因此含有Mo的情况下,规定为3.00%以下的含量范围。可管理到2.50%以下的范围。
Cu具有在时效处理时利用与Si的相互作用而使强度上升的作用,因此能够根据需要含有。这种情况下,更优选规定为0.01%以上的Cu含量。含有大量的Cu成为使热加工性降低的主要因素。在含有Cu的情况下,规定为1.00%以下的含量范围。
Ti为形成TiN系夹杂物的元素,特别是在含有高Si的钢中TiN容易生成,因此必须将Ti含量控制得低。各种研究的结果,Ti含量必须规定为0.008%以下,更优选规定为0.006质量%以下。Ti含量越低越优选,但在大量生产操作中鉴于成本,将Ti含量规定为0.001%以上的范围是合理的。
Al形成Al2O3,成为尖晶石系夹杂物的产生主要原因,特别是在含有高Si的钢中在钢水中Al2O3容易生成,因此必须将Al含量控制得低。本发明中Al含量越低越优选。各种研究的结果,Al含量必须规定为0.008%以下,更优选规定为0.006质量%以下。Al含量越低越优选,在大量生产操作中考虑成本,Al含量规定为0.001%以上的范围是合理的。不过,即使Al含量为上述的范围,如果没有如后述那样使Si添加后的熔渣碱度合理化,也难以稳定地使尖晶石系夹杂物的粒径分布落入本发明规定范围内。
作为不可避免的杂质,P含量优选规定为0.040%以下,S含量优选规定为0.002%以下,Mg含量优选规定为0~0.002%。
为了调整冷轧中的加工诱导马氏体相的生成容易性,优选由下述(1)式定义的Md30值在-50~0的范围。
Md30=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.5Mo…(1)
其中,将用质量%表示的该元素的含量的值代入(1)式的元素符号的部位。
[非金属夹杂物]
钢中存在的非金属夹杂物大致分类为熔点低且软质的类型和熔点高且硬质的类型。在本发明对象钢的情况下,前者的软质的类型主要为CaO-SiO2系的非金属夹杂物。该软质类型的夹杂物在热轧温度下为液体,因此在热轧时在轧制方向上被拉伸,在其后的冷轧中使其垮塌,更为细小地分散。这种的软质夹杂物对薄板材料的耐疲劳特性几乎不产生不良影响。
成为问题的非金属夹杂物是后者的硬质型的夹杂物。这种夹杂物在热轧后也作为粒状物残存,在冷轧后在某种程度上被破碎的硬质粒子在轧制方向上排列的形态下残存。板厚越变薄,则板厚中所占的夹杂物的板厚方向长度的比例越增加,在这些夹杂物粒子的周围应力集中,变得容易作为裂纹的起点、传播路径发挥功能。可知本发明对象钢中成为问题的硬质型的夹杂物为TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物。特别地TiN系夹杂物具有在铸造时钢水温度降低的过程中随着Ti的溶解度减小而生长的倾向,容易成为问题。
根据发明人的研究,在热轧钢板的阶段,如果减少上述的TiN系夹杂物和尖晶石系夹杂物中圆当量直径为6.0μm以上的夹杂物的个数比例,制成例如板厚20~500μm这样的薄板材料时,获得为了改善受到了反复的弹性变形时的耐疲劳特性有利的夹杂物分布形态。具体地,在热轧钢板的阶段中,形成在与轧制方向和板厚方向平行的截面(L截面)中圆当量直径为6.0μm以上的TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物的总个数密度为0.05个/mm2以下的组织状态是极其有效的。
作为更优选的热轧钢板的组织状态,除了上述的个数密度的规定以外,进而能够列举出上述L截面中TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物的基于圆当量直径的最大粒径为10.0μm以下的金属组织。这种情况下,用于确定最大粒径的L截面测定面积可规定为200mm2以上。
可知为了改善受到了反复的弹性变形时的耐疲劳特性,在板厚20~500μm的薄板中轧制方向长度为40μm以上的非金属夹杂物的个数密度在L截面内为3.0个/mm2以下是极其有效的。在此,如上所述,将以轧制方向的粒子间距离20μm以下并且板厚方向的粒子间距离10μm以下排列的一群非金属夹杂物粒子视为是1个非金属夹杂物。
关于耐疲劳特性,某种程度上接近地排列的邻接夹杂物粒子与作为连续的1个粒子存在的情形同样地作为裂纹产生的起点发挥功能。各种研究的结果,作为由维持轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下而排列的多个非金属夹杂物粒子组成的粒子群(视为1个非金属夹杂物)、特别是轧制方向长度为40μm以上的非金属夹杂物在本发明中作为对象的高强度钢中容易成为赋予了反复的弹性变形时的裂纹产生起点。但是,即使是这样的非金属夹杂物,如果将L截面中的个数密度减少到3.0个/mm2以下,则使耐疲劳特性改善。作为其原因,推测在使轧制方向长度40μm以上的非金属夹杂物的存在密度充分地减小的情况下这些非金属夹杂物可能变得难以发挥作为裂纹传播路径的功能。
轧制方向长度40μm以上的非金属夹杂物的L截面中的个数密度越低,对薄板的耐疲劳特性提高变得越有利。认为如果不使用废料而只使用纯度高的原料,例如用实验用的熔解炉等对钢进行熔炼,则可制作非金属夹杂物极少的薄板材。但是,在大量生产现场制造厚20~500μm的钢板的情况下,完全地防止轧制方向长度40μm以上的非金属夹杂物的生成使对炼钢工序的负荷增大,导致成本增加。因此,在板厚20~500μm的薄板中轧制方向长度为40μm以上的非金属夹杂物的L截面内的个数密度规定为0.1~3.0个/mm2的范围是合理的。
[制造方法]
上述的硬质非金属夹杂物的粒度分布合理化的不锈钢板能够利用一般的不锈钢的熔炼设备制造。代表性地,可列举出VOD法和AOD法。都是首先制造完成了向含Cr铁水中吹入氧的脱碳过程的、在熔液面上具有含有Cr氧化物的熔渣的C含量0.20%以下的钢水。作为使用的钢水收容容器,选定直至该阶段几乎或完全没有从附着物等混入Ti、Al的容器,除此之外,能够按照常规方法进行炼钢过程。
该阶段的钢水由于是结束了吹入氧的脱碳的钢水,因此已将易氧化性元素Ti、Al、Mg、Si的几乎全部量都从钢水中氧化除去。即,在钢水中几乎不存在Ti、Al、Mg、Si。另外,在钢水中大量地含有的Cr的一部分也被氧化,作为Cr氧化物在钢水的熔液面上形成了熔渣。在该Cr氧化物主体的熔渣中,从钢水中除去了的上述Ti、Al、Mg、Si也作为氧化物存在。另一方面,在钢水中为了脱碳而吹入了的氧大量地溶存。因此,在铸造前必须进行脱氧。另外,在本发明中为了制造Si含量超过2.00%的高Si钢,必须使钢中含有Si。优选进一步进行使脱碳时从钢水中脱出的Cr从熔渣中返回到钢中的处理(Cr还原回收)。因此,本发明中,通过将Fe-Si合金投入钢水中,一气地进行上述的“脱氧”、“Si含量调整”、“Cr还原回收”。另外,根据需要投入其他的副原料,进行成分调整。
如果在钢水中投入Fe-Si合金,进行调整以使Si含量超过2.00%,则利用大量地添加的Si源进行钢中的脱氧。该脱氧产生的钢中的氧浓度由下述(2)式的化学反应中的化学平衡决定。
Si(金属中)+2O(金属中)=SiO2(熔渣中)…(2)
其平衡常数K如下述(3)式那样表示。
K=A(SiO2)/A(Si)/A(O)2…(3)
其中,A(X)为成分X的活度。由(3)式可知那样,钢水中的Si活度(即,Si浓度)越高,则钢水中的氧活度(即,氧浓度)在越低的状态下平衡。因此,对于添加了大量的Si源的本发明对象的钢水而言,与含有低Si的钢(例如SUS304等一般的钢)的情形相比钢水中的氧浓度变低。
另一方面,在熔渣中的Al氧化物与钢水中的氧之间基于下述(4)式的化学平衡也成立。
2Al(金属中)+3O(金属中)=Al2O3(熔渣中)…(4)
利用该化学平衡,在钢水中的氧浓度低的情况下通过钢水中的Al浓度升高而保持平衡。该关系对于Ti、Mg也同样适用。即,如果钢水中的氧浓度低,则钢水中的Al浓度、Ti浓度和Mg浓度升高。
钢水中的Al浓度、Mg浓度越高,尖晶石系的夹杂物越容易生成并生长。钢水中的Ti浓度越高,TiN系夹杂物越容易生成并生长。因此,为了抑制这些夹杂物的生成-生长,必须尽可能地抑制与提高钢水中的Si浓度相伴的钢水中氧浓度的降低。为了抑制钢水中的氧浓度的降低,熔渣中的SiO2浓度越高,越变得有利。因此,本发明中采用将熔渣碱度(CaO/SiO2质量比)控制得稍低的方法。具体地,调整作为造渣剂添加的含Ca物质的投入量。作为造渣剂,可使用生石灰CaO。另外,从根据需要作为助熔剂成分添加的CaF2也将Ca供给到熔渣中。从CaF2供给的Ca也换算为CaO量加入计算碱度时的CaO值。各种研究的结果,可知投入Fe-Si合金完成后在熔液面存在的熔渣中,使得其熔渣碱度成为1.3以上且1.5以下的范围是有效的。更优选规定为1.3以上且1.45以下,进一步优选规定为1.3以上且1.4以下。熔渣碱度越低,越抑制钢水中的氧浓度的降低,Ti、Al、Mg变得越难以从熔渣进入钢水中。不过,如果熔渣碱度过度变低,则Cr2O3等其他种类的夹杂物大量地生成。另外,脱硫能力也降低。因此,将最终的熔渣碱度控制在没有成为比1.3低的窄的范围是极其有效的。
如上述那样,在完成了吹入氧的脱碳的钢水中几乎不含Ti、Al、Mg,这些元素在以Cr氧化物作为主体的熔渣中作为氧化物存在。该熔渣中的Ti、Al、Mg是由原料、耐火物混入的以及从附着于电炉、转炉等设备的前炉料的熔渣、金属等混入的。为了通过上述的熔渣碱度的控制,如上所述使钢板中的硬质夹杂物的粒径分布合理化,在完成了吹入氧的脱碳的时刻以后即投入Fe-Si合金的时刻以后,必须尽可能防止Ti、Al、Mg的重新混入。特别地,如果在钢水收容容器中前炉料中附着的熔渣等残存,则由于从其附着物混入的少量的Ti、Al,确认粗大的硬质夹杂物容易生成。为了防止从钢水收容容器的混入,最优选使用构成容器的内面的耐火物尚未在钢水的收容中使用的钢水收容容器(新锅)。另外,一般地,在不锈钢的制造现场已使用的Fe-Si合金中含有Al、Ti等杂质,确认了由其混入的Al、Ti也成为粗大的硬质夹杂物的生成主要原因。因此,本发明中必须应用纯度高的Fe-Si合金。具体地,优选使用Al含量为0.05质量%以下、Ti含量为0.05质量%以下的Fe-Si合金。希望留意以致Ti、Al尽可能不从其他副原料、造渣剂中混入。
选定使用的钢水收容容器、副原料和造渣剂以致最终地钢水中的Ti含量成为0.008质量%以下、Al含量成为0.008质量%以下是重要的。在最终的钢中的Ti含量、Al含量超过上述的情况下,即使进行了上述的熔渣碱度的控制,也难以稳定地实现上述所希望的硬质夹杂物粒径分布。再有,对于Mg,优选进行控制以使最终地钢水中的含量成为0.002质量%以下,确认了如果选定使用的钢水收容容器、副原料和造渣剂以致Ti和Al落入上述的含量,即使没有特别地规定Mg的钢中含量,尖晶石系夹杂物的粒径分布也成为上述所希望的状态,没有产生问题。
更优选使得钢水中的Ti含量成为0.006质量%以下,Al含量成为0.006质量%以下。
铸造可按照常规方法进行。通常采用连续铸造法得到铸片。本说明书中,将采用铸造得到的钢材(具有凝固组织的钢材)称为铸片。因此,方便起见,采用造块法得到的钢块(铸锭)也包含于这里所说的铸片。
对于得到的铸片实施至少包含热轧的热加工,得到热轧钢板。在造块法的情况下,经过分块轧制、热锻造后实施热轧。热轧的加热温度可规定为1100~1250℃,热轧钢板的板厚例如可规定为2.5~6.0mm。这样得到在与轧制方向和板厚方向平行的截面(L截面)中圆当量直径为6.0μm以上的TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物的总个数密度为0.05个/mm2以下的不锈钢热轧钢板。
接下来,通过对该热轧钢板实施退火、冷轧、时效处理,从而能够得到高强度不锈钢的薄板材。冷轧的工序可包含中间退火工序在内进行多次。在各热处理的工序后根据需要实施酸洗。对热轧钢板实施的退火(热轧板退火)的条件例如能够规定为1000~1100℃×40~120秒,最终的冷轧率(实施中间退火的情况下最终的中间退火后的冷轧率)例如能够规定为40~70%,时效处理条件例如能够规定为400~600℃×10~60分钟。在薄板弹簧材料的用途中,优选例如使最终板厚成为150μm以下,更优选使其成为不到100μm。也能够制成例如厚20~70μm的薄板材。这样能够得到基体(金属基底)为加工诱导马氏体相与奥氏体相的混合组织的高强度不锈钢的薄板材。就加工诱导马氏体相的面积率M与奥氏体相的面积率A的比率而言,通常M:A成为30:70~50:50的范围。如果含有例如2.00%以上的Mo,则能够获得轧制方向的拉伸强度为2000N/mm2以上的高强度。在薄板材中,将以轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下排列的一群的非金属夹杂物粒子视为是1个非金属夹杂物时,得到轧制方向长度为40μm以上的非金属夹杂物的个数密度在L截面内为3.0个/mm2以下的组织状态,该薄钢板在赋予反复的弹性应力的弹簧材料用途中显示良好的耐疲劳特性。
实施例
采用VOD法对表1中所示的钢进行了熔炼。均采用VOD设备完成向含Cr铁水中吹入氧的最终的脱碳过程,得到了在熔液面上具有含有Cr氧化物的熔渣的C含量0.10%以下的钢水。该阶段中的C含量与表1中所示的最终的C含量大致相等。
[表1]
表1
Figure BDA0001612172180000161
采用VOD设备的最终的脱碳中使用浇包(取鍋)作为钢水收容容器,然后,用相同的浇包进行了直至铸造前的工序。就该浇包而言,在No.1、2的现有例中,作为前炉料,使用含Ti不锈钢的熔炼中使用的前炉料,在No.3、4的现有例中,作为前炉料,使用了未添加Ti的不锈钢的熔炼中使用的前炉料,在No.5的本发明例中,使用了构成浇包的内面的耐火物尚未在钢水的收容中使用的浇包(新锅)。
在上述的结束了最终脱碳的钢水中投入Fe-Si合金,将钢水中的Si含量调整到目标值,而且进行了脱氧和熔渣中Cr的还原回收。该阶段中的钢水中Si含量与表1中所示的最终的Si含量大致相等。作为Fe-Si合金,在No.1~4的现有例中使用了与JIS G2302:1998中所规定的硅铁2号相当的Fe-Si合金。分析的结果:该硅铁2号品因制品批次而有少许的变动,但含有Al:1.0质量%左右、Mg:0.07质量%左右、Ti:0.08质量%左右。另一方面,在No.5的本发明例中使用了使Al含量显著地降低的高品位Fe-Si合金。分析的结果:该高品位Fe-Si合金的Al、Mg、Ti含量为Al:0.009质量%、Mg:不到0.001质量%、Ti:0.012质量%。
接着Fe-Si合金的投入,将作为造渣剂的工业用生石灰(CaO)投入熔渣中。然后,采取熔渣进行了成分分析。其结果:熔渣碱度在No.1~4的现有例中为1.60~1.65,在No.5的本发明例中为1.33。
各例都是将如上述那样得到的钢水连续铸造,经过热轧而得到了板厚3.8mm的热轧钢板。热轧中的加热温度规定为1230℃。对于得到的热轧钢板,采用SEM观察L截面,按照前面所述的“热轧钢板中的夹杂物的个数密度的测定方法”,测定了圆当量直径为6.0μm以上的TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物的总个数密度。其结果:上述总个数密度在No.1~4的现有例中为0.20~0.45个/mm2,在No.5的本发明例中为0.02个/mm2。可知采用按照本发明的熔炼方法,能够显著地抑制粗大的硬质夹杂物的生成。
在图3中示出现有例No.4的热轧钢板L截面中所观察的典型的TiN系夹杂物的SEM照片,另外在图4中示出本发明例No.5的热轧钢板L截面中所观察的典型的TiN系夹杂物的SEM照片。均是照片的横向为轧制方向。再有,照片中看到的十字指针表示EDX分析的射束照射位置。
接下来,使用从热轧钢板采取的样品,实施1050℃×60秒的热轧板退火、冷轧、1050℃×60秒的中间退火、冷轧、500℃×30分钟的时效处理,制作了基体(金属基底)为加工诱导马氏体相与奥氏体相的混合组织的板厚120μm的薄板材。得到的薄板材的轧制方向的拉伸强度都超过了2000N/mm2
对于这些薄板材的L截面,按照前面所述的“轧制方向长度为40μm以上的非金属夹杂物的个数密度的测定方法”测定了轧制方向长度为40μm以上的非金属夹杂物的个数密度。不过,如上所述,将以轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下排列的一群非金属夹杂物粒子视为是1个非金属夹杂物。测定的结果:上述轧制方向长度为40μm以上的非金属夹杂物的L截面内的个数密度在No.1~4的现有例中为8.2~33.2个/mm2,在No.5的本发明例中为2.4个/mm2。EDX分析的结果:成为了计数对象的非金属夹杂物由TiN系夹杂物粒子或者含有Al、Mg的1种以上的尖晶石系夹杂物粒子构成。
本发明例中,成为耐疲劳特性的降低主要原因的轧制方向长度40μm以上的硬质非金属夹杂物的数与现有例相比大幅地减少。
为了参考,示出对于SUS304(Si含量0.55%)进行了采用Fe-Si合金的脱氧时的制造例。在前炉料中用于含有Ti的不锈钢的熔炼的浇包作为钢水收容容器使用,采用VOD设备完成将氧吹入含Cr铁水中的脱碳过程,得到了在熔液面上具有含有Cr氧化物的熔渣的C含量约0.05%的钢水。在该钢水中添加与上述硅铁2号相当的Fe-Si合金,调整Si含量。另外,将作为造渣剂的工业用生石灰(CaO)投入。然后,投入氮化铬完成了成分调整。采取最终的熔渣进行了分析,结果熔渣碱度为1.65。对该钢水进行连续铸造,采用常规方法进行热轧,得到了板厚3.5mm的热轧钢板。对于该热轧钢板,与上述No.1~5的情形同样地考察了非金属夹杂物的存在状况。其结果没有发现圆当量直径为6.0μm以上的TiN系夹杂物和含有Al、Mg的1种以上的尖晶石系夹杂物。如果将该SUS304的例子与上述No.1~4的现有例对比,可知对于Si含量高的不锈钢种而言,抑制硬质夹杂物的生成非常难。

Claims (8)

1.板厚20~500μm的不锈钢板,具有以质量%计由C:0.010~0.200%、Si:超过2.00%且4.00%以下、Mn:0.01~3.00%、Ni:3.00%以上且不到10.00%、Cr:11.00~20.00%、N:0.010~0.200%、Mo:0~3.00%、Cu:0~1.00%、Ti:0~0.008%、Al:0~0.008%、剩余部分Fe和不可避的杂质构成的化学组成,在与轧制方向和板厚方向平行的截面、即L截面中,将以轧制方向的粒子间距离20μm以下且板厚方向的粒子间距离10μm以下排列的一群非金属夹杂物粒子视为是1个非金属夹杂物时,轧制方向长度为40μm以上且包含TiN系夹杂物粒子和含有Al、Mg的1种以上的尖晶石系夹杂物粒子非金属夹杂物的1种或2种的非金属夹杂物的个数密度在L截面内为3.0个/mm2以下。
2.根据权利要求1所述的不锈钢板,其中,轧制方向的拉伸强度为2000N/mm2以上。
3.根据权利要求1所述的不锈钢板,其中,基体、即金属基底为加工诱导马氏体相和奥氏体相的混合组织。
4.不锈钢板的制造方法,其具有:
在完成了向含Cr铁水中吹入氧的脱碳过程的、在熔液面上具有含有Cr氧化物的熔渣的C含量0.20%以下的钢水中投入副原料和造渣剂进行成分调整时,选定使用的钢水收容容器、副原料和造渣剂,以使钢水中的Ti含量成为0.008质量%以下、Al含量成为0.008质量%以下,作为副原料至少使Fe-Si合金在钢水中溶解,进行脱氧、熔渣中Cr的在钢水中的还原回收和钢中Si含量的调整,而且投入含有Ca的造渣剂而将熔渣碱度、即CaO/SiO2质量比调整至1.3~1.5,得到下述(A)中所示的化学组成的钢水的工序;
对上述的工序中得到的钢水进行铸造而得到铸片的工序;
对上述铸片实施至少包含热轧的热加工而得到热轧钢板的工序;和
对上述热轧钢板进行1次以上的退火和冷轧而制成板厚20~500μm的冷轧钢板的工序,
(A)以质量%计,C:0.010~0.200%、Si:超过2.00%且4.00%以下、Mn:0.01~3.00%、Ni:3.00%以上且不到10.00%、Cr:11.00~20.00%、N:0.010~0.200%、Mo:0~3.00%、Cu:0~1.00%、Ti:0~0.008%、Al:0~0.008%、剩余部分Fe和不可避免的杂质。
5.根据权利要求4所述的不锈钢板的制造方法,其中,作为钢水收容容器,使用构成容器的内面的耐火物尚未在钢水的收容中使用的新锅。
6.根据权利要求4所述的不锈钢板的制造方法,其中,作为上述Fe-Si合金,使用Al含量为0.05质量%以下、Ti含量为0.05质量%以下的Fe-Si合金。
7.根据权利要求4所述的不锈钢板的制造方法,其中,还具有对上述冷轧钢板实施时效处理的工序。
8.根据权利要求7所述的不锈钢板的制造方法,其中,得到基体、即金属基底为加工诱导马氏体相和奥氏体相的混合组织、轧制方向的拉伸强度为2000N/mm2以上的钢板。
CN201680056835.6A 2015-09-29 2016-07-05 疲劳特性优异的高强度不锈钢板及其制造方法 Active CN108368573B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-191221 2015-09-29
JP2015191221A JP6005234B1 (ja) 2015-09-29 2015-09-29 疲労特性に優れた高強度ステンレス鋼板およびその製造方法
PCT/JP2016/069952 WO2017056618A1 (ja) 2015-09-29 2016-07-05 疲労特性に優れた高強度ステンレス鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
CN108368573A CN108368573A (zh) 2018-08-03
CN108368573B true CN108368573B (zh) 2020-12-29

Family

ID=57123196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680056835.6A Active CN108368573B (zh) 2015-09-29 2016-07-05 疲劳特性优异的高强度不锈钢板及其制造方法

Country Status (13)

Country Link
US (1) US20180272397A1 (zh)
EP (1) EP3358029B1 (zh)
JP (1) JP6005234B1 (zh)
KR (1) KR102531813B1 (zh)
CN (1) CN108368573B (zh)
ES (1) ES2805651T3 (zh)
HK (1) HK1254792A1 (zh)
MY (1) MY185129A (zh)
PH (1) PH12018500583A1 (zh)
RU (1) RU2723307C1 (zh)
SG (1) SG11201802250SA (zh)
TW (1) TWI705144B (zh)
WO (1) WO2017056618A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042057B2 (ja) * 2017-10-25 2022-03-25 日鉄ステンレス株式会社 スラグスポット発生抑止能に優れるステンレス鋼材並びに溶接構造部材およびその製造法
KR102169457B1 (ko) * 2018-12-18 2020-10-23 주식회사 포스코 고강도 스테인리스강
MX2021007325A (es) * 2018-12-21 2021-07-07 Jfe Steel Corp Chapa de acero, miembro y metodos para producirlos.
EP4112753A1 (en) * 2020-02-27 2023-01-04 Nippon Steel Stainless Steel Corporation Stainless steel, stainless steel material, and stainless steel production method
WO2021172381A1 (ja) * 2020-02-27 2021-09-02 日鉄ステンレス株式会社 金属箔用ステンレス鋼、ステンレス鋼箔、およびそれらの製造方法
US20230115048A1 (en) * 2020-02-27 2023-04-13 Nippon Steel Stainless Steel Corporation Stainless steel with good mirror polishability and method for producing same
KR20230010244A (ko) * 2020-06-15 2023-01-18 닛테츠 스테인레스 가부시키가이샤 내피로 특성이 뛰어난 석출 경화형 마르텐사이트계 스테인리스 강판
EP4269627A1 (en) * 2020-12-24 2023-11-01 NIPPON STEEL Stainless Steel Corporation Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
KR20230172549A (ko) * 2021-05-17 2023-12-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 평탄화막 구비 스테인리스 강박
JPWO2022244701A1 (zh) * 2021-05-17 2022-11-24
CN114622124A (zh) * 2022-01-29 2022-06-14 安阳钢铁股份有限公司 一种冷轧基料的生产工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210234A (ja) * 1987-02-27 1988-08-31 Nisshin Steel Co Ltd 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法
JPS63213619A (ja) * 1987-02-27 1988-09-06 Nisshin Steel Co Ltd 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法
JPH0647694B2 (ja) * 1985-08-27 1994-06-22 日新製鋼株式会社 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法
CN1572895A (zh) * 2003-06-04 2005-02-02 日新制钢株式会社 具有优良成形性的铁素体不锈钢板及其生产方法
CN1771345A (zh) * 2003-02-07 2006-05-10 先进钢铁技术有限责任公司 细晶粒马氏体不锈钢及其生产方法
CN101994066A (zh) * 2009-08-27 2011-03-30 中国科学院金属研究所 一种形变诱发马氏体时效不锈钢及其加工工艺
CN102016082A (zh) * 2008-02-29 2011-04-13 Crs控股公司 高强度、高韧性、抗疲劳、可沉淀硬化不锈钢的制备方法
CN102277538A (zh) * 2011-07-27 2011-12-14 山西太钢不锈钢股份有限公司 一种含锡铁素体不锈钢板及其制造方法
CN102725432A (zh) * 2010-01-28 2012-10-10 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢热轧钢板
CN102822373A (zh) * 2010-03-29 2012-12-12 新日铁住金不锈钢株式会社 表面光泽和耐锈性优异的铁素体系不锈钢板及其制造方法
CN102986066A (zh) * 2010-07-09 2013-03-20 日新制钢株式会社 铜被覆钢箔、负极集电体及其制作方法以及电池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212581B1 (zh) 1971-04-06 1977-04-08
JPH04202643A (ja) * 1990-11-30 1992-07-23 Nkk Corp 高強度、高靭性ステンレス鋼およびその製造方法
JPH0641686A (ja) * 1992-03-13 1994-02-15 Nkk Corp Idブレード用ステンレス鋼薄板およびその製造方法
US5314549A (en) * 1993-03-08 1994-05-24 Nkk Corporation High strength and high toughness stainless steel sheet and method for producing thereof
JP3219117B2 (ja) 1994-02-21 2001-10-15 日新製鋼株式会社 Idソーブレード板用ステンレス鋼帯及びその製造方法
JPH08176641A (ja) * 1994-12-26 1996-07-09 Nippon Steel Corp 高清浄ステンレス鋼の製造方法
WO1997003215A1 (en) * 1995-07-11 1997-01-30 Kari Martti Ullakko Iron-based shape memory and vibration damping alloys containing nitrogen
JP3865853B2 (ja) 1997-02-24 2007-01-10 日新製鋼株式会社 加工割れ感受性の低いオーステナイト系ステンレス鋼及びその製造方法
JP3719131B2 (ja) * 2000-11-27 2005-11-24 住友金属工業株式会社 疲労強度に優れたSi脱酸鋼およびその製造方法
JP2002275591A (ja) * 2001-03-14 2002-09-25 Nisshin Steel Co Ltd 高強度で疲労特性に優れた電子部品押えバネ用ステンレス鋼
US6890393B2 (en) * 2003-02-07 2005-05-10 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof
JP4285303B2 (ja) * 2004-03-31 2009-06-24 住友金属工業株式会社 無段変速機ベルトとそのためのステンレス冷延鋼板
JP4285302B2 (ja) * 2004-03-31 2009-06-24 住友金属工業株式会社 微細介在物含有ステンレス鋼とその製造方法
JP2005264335A (ja) 2005-04-28 2005-09-29 Sumitomo Metal Ind Ltd 疲労強度に優れたSi脱酸鋼およびその製造方法
KR100729123B1 (ko) * 2005-12-01 2007-06-14 주식회사 포스코 저탄소 오스테나이트계 스테인레스강의 제조방법
CN101675177A (zh) * 2007-03-05 2010-03-17 住友金属工业株式会社 冷轧钢板和合金化熔融镀锌钢板以及它们的制造方法
JP6146908B2 (ja) * 2013-10-09 2017-06-14 日本冶金工業株式会社 表面性状に優れたステンレス鋼とその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647694B2 (ja) * 1985-08-27 1994-06-22 日新製鋼株式会社 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法
JPS63210234A (ja) * 1987-02-27 1988-08-31 Nisshin Steel Co Ltd 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法
JPS63213619A (ja) * 1987-02-27 1988-09-06 Nisshin Steel Co Ltd 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法
CN1771345A (zh) * 2003-02-07 2006-05-10 先进钢铁技术有限责任公司 细晶粒马氏体不锈钢及其生产方法
CN1572895A (zh) * 2003-06-04 2005-02-02 日新制钢株式会社 具有优良成形性的铁素体不锈钢板及其生产方法
CN102016082A (zh) * 2008-02-29 2011-04-13 Crs控股公司 高强度、高韧性、抗疲劳、可沉淀硬化不锈钢的制备方法
CN101994066A (zh) * 2009-08-27 2011-03-30 中国科学院金属研究所 一种形变诱发马氏体时效不锈钢及其加工工艺
CN102725432A (zh) * 2010-01-28 2012-10-10 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢热轧钢板
CN102822373A (zh) * 2010-03-29 2012-12-12 新日铁住金不锈钢株式会社 表面光泽和耐锈性优异的铁素体系不锈钢板及其制造方法
CN102986066A (zh) * 2010-07-09 2013-03-20 日新制钢株式会社 铜被覆钢箔、负极集电体及其制作方法以及电池
CN102277538A (zh) * 2011-07-27 2011-12-14 山西太钢不锈钢股份有限公司 一种含锡铁素体不锈钢板及其制造方法

Also Published As

Publication number Publication date
MY185129A (en) 2021-04-30
RU2723307C1 (ru) 2020-06-09
KR102531813B1 (ko) 2023-05-16
ES2805651T3 (es) 2021-02-15
US20180272397A1 (en) 2018-09-27
TWI705144B (zh) 2020-09-21
TW201730355A (zh) 2017-09-01
KR20180075528A (ko) 2018-07-04
EP3358029A1 (en) 2018-08-08
JP2017066449A (ja) 2017-04-06
JP6005234B1 (ja) 2016-10-12
WO2017056618A1 (ja) 2017-04-06
HK1254792A1 (zh) 2019-07-26
EP3358029B1 (en) 2020-06-24
PH12018500583A1 (en) 2018-10-15
SG11201802250SA (en) 2018-04-27
EP3358029A4 (en) 2019-05-22
CN108368573A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
CN108368573B (zh) 疲劳特性优异的高强度不锈钢板及其制造方法
JP4824640B2 (ja) 二相ステンレス鋼およびその製造方法
JP6115691B1 (ja) 鋼板およびほうろう製品
JP6146908B2 (ja) 表面性状に優れたステンレス鋼とその製造方法
JP2009138255A (ja) 大入熱溶接時の熱影響部の靭性に優れた溶接用高張力厚鋼板
JP6842257B2 (ja) Fe−Ni−Cr−Mo合金とその製造方法
KR20220125344A (ko) 금속 박용 스테인레스강, 스테인레스강 박 및 그것들의 제조 방법
JPWO2019082324A1 (ja) 低温用ニッケル含有鋼
JP6852806B2 (ja) 低温用ニッケル含有鋼
TW202138587A (zh) 不鏽鋼、不鏽鋼材及不鏽鋼的製造方法
JP6620662B2 (ja) 液体水素用Ni鋼
JP7223210B2 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
JP2017197791A (ja) 液体水素用Ni鋼
US10822679B2 (en) Stainless steel product
WO2022138194A1 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼
WO2022025078A1 (ja) 高耐食オーステナイト系ステンレス鋼とその製造方法
CN115210387B (zh) 镜面研磨性优异的不锈钢及其制造方法
JP2020033584A (ja) 鋼板

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1254792

Country of ref document: HK

CB02 Change of applicant information
CB02 Change of applicant information

Address after: Tokyo, Japan

Applicant after: NISSHIN STEEL Co.,Ltd.

Address before: Tokyo, Japan

Applicant before: NISSHIN STEEL Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200318

Address after: Tokyo, Japan

Applicant after: NIPPON STEEL & SUMIKIN STAINLESS STEEL Corp.

Address before: Tokyo, Japan

Applicant before: NISSHIN STEEL Co.,Ltd.

GR01 Patent grant
GR01 Patent grant