CN108330371A - 一种纳米相分离烧结制备钨材料的方法 - Google Patents

一种纳米相分离烧结制备钨材料的方法 Download PDF

Info

Publication number
CN108330371A
CN108330371A CN201810175686.6A CN201810175686A CN108330371A CN 108330371 A CN108330371 A CN 108330371A CN 201810175686 A CN201810175686 A CN 201810175686A CN 108330371 A CN108330371 A CN 108330371A
Authority
CN
China
Prior art keywords
tungsten
sintering
phase
nanometer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810175686.6A
Other languages
English (en)
Inventor
章林
曲选辉
路新
龙莹
李星宇
王光华
张鹏
王道宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201810175686.6A priority Critical patent/CN108330371A/zh
Publication of CN108330371A publication Critical patent/CN108330371A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种纳米相分离烧结制备钨材料的方法,通过高能球磨制备出具有纳米晶晶粒结构和过饱和固溶体特征的机械合金化粉末,然后采用无压烧结和无包套热等静压工艺致密化,得到钨基复合材料。在烧结过程中纳米晶粒过饱和固溶体粉末发生相分离,纳米析出相优先在纳米晶颈部和粉末颗粒表面析出,形成快速迁移通道,促进烧结致密化,降低烧结温度。随着烧结温度的升高,纳米析出相向钨基体中扩散,留下晶界元素富集区。综合利用晶界元素偏聚区和二次相能够更有效的抑制晶粒长大。本发明烧结过程为固相烧结,烧结温度低,避免第二相在高温烧结过程中明显长大,适合制备大尺寸细晶钨基材料,制备出的钨基材料接近全致密、组织结构均匀、综合力学性能优异。

Description

一种纳米相分离烧结制备钨材料的方法
技术领域
本发明属于难熔金属烧结致密化技术领域,特别提供了一种纳米相分离烧结制备钨材料的方法。
背景技术
钨具有高熔点、高热导率、低蒸气压、低溅射产额、低氚滞留等优异性能,但是存在韧脆转变温度较高、再结晶温度较低和辐照脆化等问题。利用晶粒细化、第二相粒子(碳化物、氧化物)掺杂等方法,使钨材料的晶粒细化和纳米化,是最具前景的提高钨材料塑韧性和抗辐照性能的方法。纳米晶钨材料中纳米晶粒、大量的大角度晶界、以及纳米第二相不仅能够强烈阻碍位错运动,显著提高材料的强度和韧性,降低韧脆性转变温度,促进局部绝热剪切带的形成,而且能够捕获辐照产生的缺陷,提高抗热流/粒子流辐照性能。纳米晶钨材料作为一种重要的高温结构材料,在核聚变实验装置中的面向等离子体材料、国防工业及航空航天等领域都有很重要应用前景。
粉末冶金工艺是制备超细/纳米晶钨材料的主要方法之一。由于钨的熔点高,自扩散系数低,烧结极其困难,通常需要采用高温高压烧结或其它外场(等离子体等)的辅助来进行致密化,限制了样品尺寸,并且高的烧结温度会导致晶粒长大。钨材料的强化烧结一直是钨材料的重要研究方向。传统强化烧结方法主要有固相活化烧结和液相烧结两种。固相活化烧结时添加少量Ni、Fe、Pd等过渡元素,这些元素在钨颗粒表面偏析并形成几纳米厚的无序晶间薄膜,烧结过程中晶界预熔并形成钨原子快速扩散层,但是晶间薄膜和较大的晶粒尺寸(3-50μm)会严重降低高温力学性能。液相烧结时钨颗粒的溶解-析出会导致晶粒快速粗化(<100μm)。可见,上述强化烧结工艺都不适合制备超细/纳米晶钨合金。Chookajorn等人提出纳米相分离烧结机制,它是利用具有纳米晶粒结构和过饱和固溶体特征的互不溶系钨合金的相分离行为来促进烧结的一种方法,相分离形成的纳米相优先在纳米晶粒颈部及粉末颗粒表面析出,在烧结过程中形成烧结颈,充当钨原子长程迁移的快速扩散通道,并形成晶界元素富集区阻碍晶粒长大,达到加速烧结、降低烧结温度和稳定纳米晶结构的目的。但是,该方法抑制晶粒长大主要依靠晶界合金元素富集区,它在高温使用的过程中存在稳定性较低,随着合金元素的扩散,晶界富集区对晶界迁移和位错运动的钉扎作用减弱,会导致晶粒的长大和高温力学性能下降。本发明在上述研究的基础上,在互不溶系钨基合金中添加纳米第二相粒子,利用纳米第二相更有效的抑制晶粒长大和高温下钉扎位错运动,从而提高钨合金的强韧性和高温力学性能。
发明内容
本发明的目的在于提供一种纳米相分离烧结制备钨材料的方法。以互不溶系钨基合金作为基础成分,并添加0维或1维氧化物或碳化物第二相(TiC、Y2O3颗粒或纳米线)。互不溶系钨基合金是指钨与合金元素掺混时,系统的混合自由能大于0的合金体系,系统内各组元是以相分离的状态存在,具有不均一的形态和性质。通过高能球磨制备出具有纳米晶晶粒结构和过饱和固溶体特征的机械合金化粉末。然后采用无压烧结工艺致密化,得到钨材料。在烧结过程中纳米晶粒过饱和固溶体粉末发生相分离,纳米析出相优先在纳米晶颈部和粉末颗粒表面析出,形成快速迁移通道,促进烧结致密化,降低烧结温度。随着烧结温度的升高,纳米析出相向钨基体中扩散,留下晶界元素富集区。综合利用晶界元素偏聚区和二次相能够更有效的抑制晶粒长大。最后,对烧结态钨材料进行无包套热等静压,消除残留的少量孔隙,最终得到高致密度的超细、纳米晶钨材料。制备工艺如图1所示。
一种纳米相分离烧结制备钨材料的方法,其特征在于具体步骤为:
步骤一、以互不溶系钨基合金作为基础成分,并且另外添加0.4-1.5wt.%的0维或1维第二相;以钨基合金粉末和第二相粉体作为原料,按照钨材料的成分进行配比,各组元预混合均匀得到预混合粉末;预混合粉末在行星式高能球磨机上进行机械合金化,球磨罐采用钨球磨罐,研磨介质为碳化物球,球料比为(15-20):1,行星球磨机的自转转速为500-700转/分;经过40-60h球磨后得到机械合金化粉末。
步骤二、机械合金化粉末经过压制成形或冷等静压成形后在真空气氛中进行烧结,真空度为1×10-4Pa,烧结温度为1200-1600℃,保温时间为30-90min,得到烧结坯。
步骤三、烧结坯在1200-1400℃的温度范围内进行无包套热等静压,压力为150-200MPa,保温时间为60-120min,得到高致密度细晶钨材料。
进一步地,所述的互不溶系钨合金具有正混合热,在烧结温度下仍处于混溶间隙区,包括W-Cr、W-Ru或W-Cr-Ti二元或多元合金。
进一步地,所述的0维第二相为TiC、TaC、ZrC、Y2O3或La2O3纳米颗粒。
进一步地,所述的1维第二相为Y2O3纳米线或氮化硼纳米管(BNNT)。
进一步地,所述的机械合金化粉末具有纳米晶结构和过饱和固溶体两个特征。
进一步地所述高致密度细晶钨材料的致密度大于98%,平均晶粒尺寸为0.1-1μm。
本发明基于互不溶系钨基合金的相分离,首先采用高能球磨制备出机械合金化粉末,使合金元素固溶到钨基体中形成过饱和固溶体,并形成纳米晶结构。然后进行无压烧结得到致密度大于96%的烧结坯体,最后进行冷等静压消除烧结坯中的残留孔隙。该工艺的优点是烧结过程为固相烧结,且烧结温度比传统烧结工艺明显降低,避免第二相在高温烧结过程中明显长大,有助于解决产品烧结变形和提高样品的尺寸精度。综合利用晶界元素富集区和第二相能够更有效的抑制晶粒长大,所得有助于保持纳米晶结构,钨材料的晶粒更细小。由于烧结过程无需施加压力和其它外场辅助,该方法适合制备大尺寸的钨材料。此外,还能显著降低工艺能耗。制备出的钨基合金接近全致密、组织结构均匀、综合力学性能优异。
附图说明
图1为本发明的工艺流程图
具体实施方式
实施例1:Y2O3强化钨材料的制备
以金属元素粉末和粒径为20-30nm的Y2O3颗粒作为原料,按照钨基材料的成分W-5wt.%Cr-0.5wt.%Y2O3进行配比,各组元预混合均匀得到预混合粉末。预混合粉末在行星式高能球磨机上进行机械合金化。球磨罐采用钨球磨罐,研磨介质为碳化物球,球料比为15:1,行星球磨机的自转转速为500转/分。经过48h球磨后得到具有纳米晶过饱和固溶体特征的机械合金化粉末。机械合金化粉末经过压制成形或冷等静压成形后在真空气氛中进行烧结,真空度为1×10-4Pa,烧结温度为1500℃,保温时间为40min,得到烧结坯。烧结坯在1200℃的温度范围内进行无包套热等静压,压力为200MPa,保温时间为120min,得到细晶钨基材料,平均晶粒尺寸为0.1μm。
实施例2:TiC强化钨材料的制备
以金属元素粉末和粒径为20-30nm的TiC颗粒作为原料,按照钨基材料的成分W-4wt.%Cr-0.5wt.%TiC进行配比,各组元预混合均匀得到预混合粉末。预混合粉末在行星式高能球磨机上进行机械合金化。球磨罐采用钨球磨罐,研磨介质为碳化物球,球料比为20:1,行星球磨机的自转转速为700转/分。经过40-60h球磨后得到具有纳米晶过饱和固溶体特征的机械合金化粉末。机械合金化粉末经过压制成形或冷等静压成形后在真空气氛中进行烧结,真空度为1×10-4Pa,烧结温度为1600℃,保温时间为90min,得到烧结坯。烧结坯在1200℃的温度范围内进行无包套热等静压,压力为200MPa,保温时间为90min,得到高致密度细晶钨基材料,致密度大于98.1%,平均晶粒尺寸为0.2μm。
实施例3:BNNT强化钨材料的制备
以金属元素粉末和粒径为氮化硼纳米管(BNNT)作为原料,按照钨基材料的成分W-5wt.%Cr-1wt.%Ti-0.5wt.%BNNT进行配比,各组元预混合均匀得到预混合粉末。预混合粉末在行星式高能球磨机上进行机械合金化。球磨罐采用钨球磨罐,研磨介质为碳化物球,球料比为18:1,行星球磨机的自转转速为600转/分。经过60h球磨后得到具有纳米晶过饱和固溶体特征的机械合金化粉末。机械合金化粉末经过压制成形或冷等静压成形后在真空气氛中进行烧结,真空度为1×10-4Pa,烧结温度为1500℃,保温时间为60min,得到烧结坯。烧结坯在1400℃的温度范围内进行无包套热等静压,压力为200MPa,保温时间为120min,得到高致密度细晶钨基材料,致密度大于98%,晶粒尺寸为0.15μm。
实施例4:Y2O3纳米线强化钨材料的制备
以金属元素粉末和Y2O3纳米线作为原料,按照钨基材料的成分W-4wt.%Ru-0.5wt.%Y2O3纳米线进行配比,各组元预混合均匀得到预混合粉末。预混合粉末在行星式高能球磨机上进行机械合金化。球磨罐采用钨球磨罐,研磨介质为碳化物球,球料比为15:1,行星球磨机的自转转速为580转/分。经过50h球磨后得到具有纳米晶过饱和固溶体特征的机械合金化粉末。机械合金化粉末经过压制成形或冷等静压成形后在真空气氛中进行烧结,真空度为1×10-4Pa,烧结温度为1450℃,保温时间为90min,得到烧结坯。烧结坯在1300℃的温度范围内进行无包套热等静压,压力为150MPa,保温时间为120min,得到高致密度细晶钨基材料,致密度大于97.8%,晶粒尺寸为0.2μm。

Claims (6)

1.一种纳米相分离烧结制备钨材料的方法,其特征在于具体步骤为:
步骤一、以互不溶系钨基合金作为基础成分,并且另外添加0.4-1.5wt.%的0维或1维第二相;以钨基合金粉末和第二相粉体作为原料,按照钨材料的成分进行配比,各组元预混合均匀得到预混合粉末;预混合粉末在行星式高能球磨机上进行机械合金化,球磨罐采用钨球磨罐,研磨介质为碳化物球,球料比为(15-20):1,行星球磨机的自转转速为500-700转/分;经过40-60h球磨后得到机械合金化粉末;
步骤二、机械合金化粉末经过压制成形或冷等静压成形后在真空气氛中进行烧结,真空度为1×10-4Pa,烧结温度为1200-1600℃,保温时间为30-90min,得到烧结坯;
步骤三、烧结坯在1200-1400℃的温度范围内进行无包套热等静压,压力为150-200MPa,保温时间为60-120min,得到高致密度细晶钨材料。
2.如权利要求1所述一种纳米相分离烧结制备钨材料的方法,其特征在于所述的互不溶系钨基合金具有正混合热,在烧结温度下仍处于混溶间隙区,包括W-Cr、W-Ru或W-Cr-Ti二元或多元合金。
3.如权利要求1所述一种纳米相分离烧结制备钨材料的方法,其特征在于所述的0维第二相为TiC、TaC、ZrC、Y2O3或La2O3纳米颗粒。
4.如权利要求1所述一种纳米相分离烧结制备钨材料的方法,其特征在于所述的1维第二相为Y2O3纳米线或氮化硼纳米管。
5.如权利要求1所述一种纳米相分离烧结制备钨材料的方法,其特征在于所述的机械合金化粉末具有纳米晶结构和过饱和固溶体两个特征。
6.如权利要求1所述一种纳米相分离烧结制备钨材料的方法,其特征在于所述高致密度细晶钨材料的致密度大于98%,平均晶粒尺寸为0.1-1μm。
CN201810175686.6A 2018-03-02 2018-03-02 一种纳米相分离烧结制备钨材料的方法 Pending CN108330371A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810175686.6A CN108330371A (zh) 2018-03-02 2018-03-02 一种纳米相分离烧结制备钨材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810175686.6A CN108330371A (zh) 2018-03-02 2018-03-02 一种纳米相分离烧结制备钨材料的方法

Publications (1)

Publication Number Publication Date
CN108330371A true CN108330371A (zh) 2018-07-27

Family

ID=62930593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810175686.6A Pending CN108330371A (zh) 2018-03-02 2018-03-02 一种纳米相分离烧结制备钨材料的方法

Country Status (1)

Country Link
CN (1) CN108330371A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109676124A (zh) * 2018-12-24 2019-04-26 北京科技大学 一种金属材料的烧结致密化及晶粒尺寸控制方法
CN112226662A (zh) * 2020-10-21 2021-01-15 广州大学 一种高温稳定性好的双纳米结构钨合金及其制备方法与应用
CN112410634A (zh) * 2020-11-25 2021-02-26 广东省科学院中乌焊接研究所 合金化粉末、钨基合金及其制备方法和搅拌工具
CN112958770A (zh) * 2021-02-02 2021-06-15 合肥工业大学 一种WRe/TZM复合材料的制备方法
CN113136516A (zh) * 2021-04-15 2021-07-20 大连理工大学 一种兼具固溶和弥散强化的钨基材料及其制备方法
CN113444949A (zh) * 2021-06-28 2021-09-28 北京理工大学 一种高密度W-Ta-Nb系难熔固溶体合金及其制备方法
CN114934222A (zh) * 2022-05-16 2022-08-23 北京科技大学 一种具有超大应变硬化能力的高强度高塑性钨合金
CN114959341A (zh) * 2022-05-20 2022-08-30 北京科技大学 一种制备高强高塑难熔合金的方法
US11673196B2 (en) 2018-12-24 2023-06-13 University Of Science And Technology Beijing Metal material sintering densification and grain size control method
WO2023183681A3 (en) * 2022-02-15 2024-02-22 Massachusetts Institute Of Technology Nano-phase separating ni powder and the methodology to identify them
CN114959341B (zh) * 2022-05-20 2024-06-04 北京科技大学 一种制备高强高塑难熔合金的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880808A (zh) * 2010-08-11 2010-11-10 北京科技大学 一种纳米氧化物弥散增强超细晶钨基复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880808A (zh) * 2010-08-11 2010-11-10 北京科技大学 一种纳米氧化物弥散增强超细晶钨基复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
许士跃等: "《机械合金化纳米晶Fe-C过饱和固溶体系的结构和磁性能的研究》", 31 December 2009, 上海大学出版社 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109676124A (zh) * 2018-12-24 2019-04-26 北京科技大学 一种金属材料的烧结致密化及晶粒尺寸控制方法
WO2020132881A1 (zh) * 2018-12-24 2020-07-02 北京科技大学 一种金属材料的烧结致密化及晶粒尺寸控制方法
US11673196B2 (en) 2018-12-24 2023-06-13 University Of Science And Technology Beijing Metal material sintering densification and grain size control method
CN112226662A (zh) * 2020-10-21 2021-01-15 广州大学 一种高温稳定性好的双纳米结构钨合金及其制备方法与应用
CN112226662B (zh) * 2020-10-21 2021-11-02 广州大学 一种高温稳定性好的双纳米结构钨合金及其制备方法与应用
CN112410634B (zh) * 2020-11-25 2021-09-07 广东省科学院中乌焊接研究所 合金化粉末、钨基合金及其制备方法和搅拌工具
CN112410634A (zh) * 2020-11-25 2021-02-26 广东省科学院中乌焊接研究所 合金化粉末、钨基合金及其制备方法和搅拌工具
CN112958770A (zh) * 2021-02-02 2021-06-15 合肥工业大学 一种WRe/TZM复合材料的制备方法
CN113136516A (zh) * 2021-04-15 2021-07-20 大连理工大学 一种兼具固溶和弥散强化的钨基材料及其制备方法
CN113444949A (zh) * 2021-06-28 2021-09-28 北京理工大学 一种高密度W-Ta-Nb系难熔固溶体合金及其制备方法
WO2023183681A3 (en) * 2022-02-15 2024-02-22 Massachusetts Institute Of Technology Nano-phase separating ni powder and the methodology to identify them
CN114934222A (zh) * 2022-05-16 2022-08-23 北京科技大学 一种具有超大应变硬化能力的高强度高塑性钨合金
CN114959341A (zh) * 2022-05-20 2022-08-30 北京科技大学 一种制备高强高塑难熔合金的方法
CN114959341B (zh) * 2022-05-20 2024-06-04 北京科技大学 一种制备高强高塑难熔合金的方法

Similar Documents

Publication Publication Date Title
CN108330371A (zh) 一种纳米相分离烧结制备钨材料的方法
CN108060322B (zh) 硬质高熵合金复合材料的制备方法
Liu et al. Nanostructured yttria dispersion-strengthened tungsten synthesized by sol–gel method
CN109338172A (zh) 一种高熵合金增强的2024铝基复合材料及其制备方法
CN109097657B (zh) 一种Mo纳米颗粒增强CoCrNi中熵合金复合材料及其制备方法
Hu et al. Microstructure refinement and mechanical properties improvement in the W-Y2O3 alloys via optimized freeze-drying
CN104372230A (zh) 一种高强韧超细晶高熵合金及其制备方法
CN103331449B (zh) 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法
Han et al. The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder
CN102071346A (zh) 致密、小晶粒尺寸纳米晶WC-Co硬质合金块体材料的制备方法
CN110396632A (zh) 一种具有均质环芯结构的Ti(C,N)基金属陶瓷及其制备方法
Wang et al. Microstructure and properties of WC-12Co cemented carbide fabricated via selective electron beam melting
He et al. Effects of ultrafine WC on the densification behavior and microstructural evolution of coarse-grained WC-5Co cemented carbides
CN112226662B (zh) 一种高温稳定性好的双纳米结构钨合金及其制备方法与应用
Hu et al. Mechanical properties and microstructure of Ti (C, N) based cermet cutting tool materials fabricated by microwave sintering
Byun et al. Microstructure control of Mo–Si–B alloy for formation of continuous α-Mo phase
CN109897991A (zh) 一种高熵晶界修饰的纳米晶合金粉末及其制备方法
Zhang et al. Discontinuous core-shell structured Ti-25Nb-3Mo-3Zr-2Sn alloy with high strength and good plasticity
CN114293087B (zh) 一种具有微米/纳米晶粒复合结构的单相高熵合金
CN107190165A (zh) 一种制备高强度WC‑Ni硬质合金的方法
Han et al. Fabrication and properties of TiC-based cermet with intra/intergranular microstructure
CN105803283A (zh) 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法
Cao et al. In situ synthesis of TiB/Ti6Al4V composites reinforced with nano TiB through SPS
CN113106279A (zh) 一种多元掺杂氧化物弥散强化钨基合金及其制备方法与应用
Lu et al. Preparation and mechanical properties of SiCw-reinforced WC-10Ni3Al cemented carbide by microwave sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180727