CN108329524A - 一种填料的改性方法及其应用 - Google Patents

一种填料的改性方法及其应用 Download PDF

Info

Publication number
CN108329524A
CN108329524A CN201810189765.2A CN201810189765A CN108329524A CN 108329524 A CN108329524 A CN 108329524A CN 201810189765 A CN201810189765 A CN 201810189765A CN 108329524 A CN108329524 A CN 108329524A
Authority
CN
China
Prior art keywords
polymer
filler
preparation
evaporation
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810189765.2A
Other languages
English (en)
Other versions
CN108329524B (zh
Inventor
孙文
刘贵昌
王立达
武婷婷
杨政清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810189765.2A priority Critical patent/CN108329524B/zh
Publication of CN108329524A publication Critical patent/CN108329524A/zh
Application granted granted Critical
Publication of CN108329524B publication Critical patent/CN108329524B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种填料的改性方法及其应用,包括以下步骤:A)将粉末填料均匀地铺展在多孔材料表面,粉末填料选自碳材料、金属材料、导电聚合物及他们的包覆材料、氮化物、氧化物、硫化物、水滑石、硅酸盐;B)将聚合物或聚合物溶液加入到蒸发容器中,聚合物选自受热可分解成自由基的聚合物、受热可蒸发或升华或可随溶剂蒸发的聚合物;C)基于化学气相沉积、真空蒸镀法或真空喷雾法,加热蒸发容器中的材料逸出成膜的分子或形成极细的汽雾,形成蒸汽入射到填料表面形成超薄的绝缘薄膜,得到改性填料。本发明方法具有灵活性高、工艺简单、成本低、改性效果均一、填料性能稳定等优点,在导热复合材料及防腐涂料领域具有广阔的应用前景。

Description

一种填料的改性方法及其应用
技术领域
本发明涉及一种填料的改性方法,属于颗粒的表面改性技术领域。
背景技术
填料的表面改性处理技术是随新型复合材料的兴起而逐渐发展起来的一个热门研究领域。虽然发展历史比较短,填料表面改性在改善填料的分散性及其与基体材料相容性方面起着重要的作用,对于功能性有机/无机复合材料、无机/无机复合材料和涂料的制备和应用具有重要的意义。因此,通过控制或改变填料表面的性质,对复合材料的制备和应用具有重要的影响作用。
填料的表面改性处理工艺有许多在,主要包括液相法处理、干法改性处理、气相法处理、机械力化学处理、高能辐射处理等。其中,液相法改性处理工艺改性工艺流程复杂,成本较高;干法改性处理工艺虽然干法改性具有灵活,工艺简单,成本低等优点,但在改性过程中难以对填料做到均匀处理;气相法改性处理工艺特点是分散在气相中的改性剂能够均匀地吸附在填料表面,填料改性效果稳定,与液相处理设备相比,改性后的粉体无需进行干燥处理,但传统的气相处理设备很难对亚微米或纳米级的填料进行表面改性处理;对于机械力化学处理工艺,由于改性过程中填料不断被粉碎,产生新的表面,填料表面难以完全吸附改性剂;高能辐射改性工艺制备改性填料质量不稳定,生产效率低,而且成本高。
发明内容
本发明提供了一种填料的改性方法及其应用,本发明提供的制备方法属于气相法表面改性处理技术,具有灵活性高、工艺简单、成本低、改性效果均一、填料性能稳定等优点;聚合物受热可分解成高活性自由基或真空环境中成膜聚合物分子与填料的有效碰撞增加,可以实现亚微米或纳米级填料的均一改性;而且通过合理的回收利用有机溶剂、吸收热解废气,生成过程可实现环境“零污染”。
本发明提供了一种填料的改性方法,包括以下步骤:
A)将粉末填料均匀地铺展在多孔材料表面,所述填料为导热填料和防腐填料,选自碳材料及其包覆材料、金属材料及其包覆材料、导电聚合物及其包覆材料、氮化物、氧化物、硫化物、水滑石、硅酸盐中的一种或几种;
B)将聚合物或聚合物溶液加入到蒸发容器中,所述聚合物选自受热可分解成自由基的聚合物、受热可蒸发或升华或可随溶剂蒸发的聚合物中的一种或几种;
C)基于化学气相沉积、真空蒸镀法或真空喷雾法,加热蒸发容器中的材料逸出成膜的分子或形成极细的汽雾,形成蒸汽入射到填料表面形成超薄的绝缘薄膜,得到改性填料。
所述碳材料包括石墨粉、石墨烯及其衍生材料、石墨纳米片、膨化石墨、炭黑、活性炭、碳纳米管、碳纤维、碳化硅、碳化钛中的一种或几种。
所述导电聚合物包括聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯和聚双炔中的一种或几种。
所述氮化物包括氮化铝、氮化硼、氮化硅中的一种或几种。
所述氧化物包括氧化铝、氧化镁、氧化硅、氧化锌、氧化铁、氧化镍中的一种或几种。
所述硫化物包括硫化钼、硫化钨、硫化铁中的一种或几种。
所述硅酸盐包括云母、白土、膨润土、滑石、高岭土、蛇纹石、叶腊石等中的一种或几种。
优选的,所述步骤A)中多孔材料为金属网、多孔陶瓷、多孔氧化铝等等。
优选的,所述步骤C)中化学气相沉积法适用于受热可分解成自由基的聚合物材料,既可以采用常压操作,也可以采用真空操作提高填料改性质量。
优选的,所述步骤C)中填料表面形成的超薄绝缘固态薄膜其厚度不超过20nm。
所述受热可分解成自由基的聚合物主要包括有机硅树脂、氟树脂、聚氯乙烯、聚偏二氯乙烯、聚甲醛、聚甲基丙烯酸甲酯、聚对二甲苯等等。
优选的,所述步骤C)中真空蒸镀法或真空喷雾法适用于受热可蒸发或升华或可随溶剂蒸发的聚合物材料,采用真空操作保证填料改性质量,压力小于102Pa。
本发明提供的制备方法没有采用硅烷偶联剂这类常用的表面改性材料对填料进行改性,而是受热可分解成自由基的聚合物材料或受热可蒸发或表观升华或随溶剂蒸发的聚合物材料对填料进行表面改性,且采用灵活性高、成本低、工艺简单的气相法,对环境基本无污染。本发明提供的制备方法只在填料的表面形成十几纳米甚至几纳米厚的聚合物薄膜,不仅可以保证填料的结构和导热性能不被破坏,而且可以防止填料被环境腐蚀、氧化或水解等。由本发明提供的制备方法制备的改性填料,由于其表面覆盖了一层聚合物薄膜,其在有机溶剂中的分散性得到了显著的改善,且在制备复合材料时,它与聚合基材表现出较好相容性。
本发明提供一种改性填料,按照上述技术方案所述的制备方法制备得到。一方面,由于填料表面形成了极薄的绝缘薄膜,填料的电导性能显著下降,但填料的导热性能影响极小,因此由本发明提供方法制备的改性填料在导热复合材料、尤其是绝缘导热复合材料领域有广阔的应用前景;另一方面,极薄的绝缘薄膜不仅不会改变填料的形貌、结构,而且会改善填料与涂层基体的相容性、增加填料耐水耐离子渗透性能、抑制某些导电填料给防腐蚀带来负面效果,在防腐涂料领域也可以获得良好的应用。
具体实施方式
为了进一步说明本发明,以下结合实施例对本发明提供的一种填料的改性方法及其应用进行详细描述,但不能将其理解为对本发明保护范围的限定。
实施例1
将5.0g聚二甲基硅氧烷加入到25mL坩埚中;再将上述坩埚放置在直径为4cm、高8cm的不锈钢反应釜中;随后,在坩埚上放置一个面积为3×3cm2、目数为1000的不锈钢网,在不锈钢网上均匀平铺1g石墨烯;盖上不锈钢反应釜的釜盖后将反应釜放入300℃的马弗炉内反应5h,待反应体系冷却至室温后即可得到有机硅改性的石墨烯粉末。
实验进一步表明:由此方法制备的有机硅改性石墨烯与未改性的石墨烯外观形貌基本一致,且具有良好的疏水性,与单纯的石墨烯相比,改性石墨烯可以更加稳定地分散在乙醇、异丙醇、丙酮、1,2-二氯甲苯、N-甲基吡咯烷酮、二甲基亚砜、N,N-二甲基甲酰胺等有机溶剂中,而且导电率小于10-3S/m;在环氧树脂中混入5wt.%改性石墨烯制备得到的复合材料其导热系数高达0.41W/(m·K),略小于同等条件制备的石墨烯/环氧树脂复合材料(0.44W/(m·K));在防腐涂层中混入0.1wt.%的改性石墨烯,可使其阻抗提升1个数量级、寿命延长3倍,防腐性能显著增强。
实施例2
将在真空蒸镀设备中,将100g聚对苯撑亚胺酯加热至370℃升华、形成对羟基异氰酸酯气体,该气体流经温度小于40℃、且均匀担载有5g氮化铝粉末的多孔陶瓷,反应12h,反应体系冷却至室温的过程中,部分对羟基异氰酸酯吸附在氮化铝表面从新发生聚合反应、形成聚对苯撑亚胺酯,由此即可得到聚对苯撑亚胺酯改性的氮化铝粉末。
实验进一步表明:由此方法制备的聚对苯撑亚胺酯改性的氮化铝具有良好的抗水解性能;在环氧树脂中混入50vol.%改性氮化铝制备得到的复合材料其导热系数高达2.03W/(m·K),略小于同等条件制备的氮化铝/环氧树脂复合材料(2.26W/(m·K)),可见通过上述方法改性氮化硼对其导热性能产生太大的不良影响。
实施例3
将10wt.%聚甲醛溶于150℃的二甲基亚砜,在真空喷雾设备中,将该聚甲醛溶液均匀喷洒在担载了1g蒙脱土的多孔氧化铝上,待二甲基亚砜蒸发完全后加热,聚甲醛加热至280℃解聚、形成高浓度甲醛气体,反应30min,待反应体系冷却至室温的过程中,部分甲醛气体吸附到蒙脱土粉末表面并聚合生成聚甲醛,即可得到聚甲醛改性的蒙脱土粉末。
实验进一步表明:在环氧树脂中混入1wt.%改性蒙脱土制备得到的复合材料其透水率为1.72g m-2day-1,防水性能优于同等条件制备的蒙脱土/环氧树脂复合材料(2.91g m-2day-1);混入1wt.%改性蒙脱土的环氧涂层防腐蚀寿命比混入1wt.%未改性蒙脱土的环氧涂层提升了1倍。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种填料的改性方法,包括以下步骤:
A)将粉末填料均匀地铺展在多孔材料表面,所述粉末填料为导热填料或防腐填料,选自碳材料及其包覆材料、金属材料及其包覆材料、导电聚合物及其包覆材料、氮化物、氧化物、硫化物、水滑石、硅酸盐中的一种或几种;
B)将聚合物或聚合物溶液加入到蒸发容器中,所述聚合物选自受热可分解成自由基的聚合物、受热可蒸发或升华或可随溶剂蒸发的聚合物中的一种或几种;
C)基于化学气相沉积、真空蒸镀法或真空喷雾法,加热蒸发容器中聚合物的材料逸出成膜的分子或形成极细的汽雾,形成蒸汽入射到A)中填料表面形成超薄的绝缘薄膜,得到改性填料。
2.根据权利要求1所述的制备方法,其特征在于,所述碳材料包括石墨粉、石墨烯及其衍生材料、石墨纳米片、膨化石墨、炭黑、活性炭、碳纳米管、碳纤维、碳化硅、碳化钛中的一种或几种。
3.根据权利要求1所述的制备方法,其特征在于,A)中所述导电聚合物包括聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙烯和聚双炔中的一种或几种。
4.根据权利要求1所述的制备方法,其特征在于,所述氮化物包括氮化铝、氮化硼、氮化硅中的一种或几种。
5.根据权利要求1所述的制备方法,其特征在于,所述氧化物包括氧化铝、氧化镁、氧化硅、氧化锌、氧化铁、氧化镍中的一种或几种。
6.根据权利要求1所述的制备方法,其特征在于,所述硫化物包括硫化钼、硫化钨、硫化铁中的一种或几种。
7.根据权利要求1所述的制备方法,其特征在于,所述硅酸盐包括云母、白土、膨润土、滑石、高岭土、蛇纹石、叶腊石中的一种或几种。
8.根据权利要求1所述的制备方法,其特征在于,所述颗粒表面形成的绝缘固态薄膜厚度小于20nm。
9.根据权利要求1所述的制备方法,其特征在于,B)中所述聚合物选自有机硅树脂、氟树脂、聚氯乙烯、聚偏二氯乙烯、聚甲醛、聚甲基丙烯酸甲酯、聚对二甲苯。
10.如权利要求1~9任意一项所述的制备方法得到的改性填料在导热复合材料、防腐涂料中的应用。
CN201810189765.2A 2018-03-08 2018-03-08 一种填料的改性方法及其应用 Active CN108329524B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810189765.2A CN108329524B (zh) 2018-03-08 2018-03-08 一种填料的改性方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810189765.2A CN108329524B (zh) 2018-03-08 2018-03-08 一种填料的改性方法及其应用

Publications (2)

Publication Number Publication Date
CN108329524A true CN108329524A (zh) 2018-07-27
CN108329524B CN108329524B (zh) 2019-05-21

Family

ID=62928962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810189765.2A Active CN108329524B (zh) 2018-03-08 2018-03-08 一种填料的改性方法及其应用

Country Status (1)

Country Link
CN (1) CN108329524B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845765A (zh) * 2019-12-06 2020-02-28 扬州海吉科技有限公司 一种疏水功能包覆的颗粒材料及其制备方法
CN111205731A (zh) * 2020-02-14 2020-05-29 广东涂亿科技有限公司 一种高韧性延迟折弯的粉末涂料及其制备方法
CN112480798A (zh) * 2020-12-19 2021-03-12 四川锦盛瑞科技发展有限公司 一种聚脲防水工程涂料及制备方法、使用方法
CN115703682A (zh) * 2021-08-12 2023-02-17 湖南碳导新材料科技有限公司 一种在碳材料粉体表面包覆电绝缘涂层的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675880A (zh) * 2012-05-10 2012-09-19 东南大学 多功能石墨烯和聚二甲基硅氧烷复合材料的制备方法
CN102701188A (zh) * 2012-05-07 2012-10-03 华中科技大学 一种溶液制备石墨烯三维多孔材料的方法
CN105153707A (zh) * 2015-10-16 2015-12-16 天津工业大学 一种提升三维石墨烯结构体/树脂复合材料力学性能的方法
CN105769121A (zh) * 2016-02-18 2016-07-20 南京清辉新能源有限公司 一种三维碳基压力传感器制备方法
CN106513066A (zh) * 2016-10-13 2017-03-22 东南大学 一种三维多孔石墨烯微流控芯片及其石墨烯附着方法
CN107619617A (zh) * 2017-10-27 2018-01-23 成都新柯力化工科技有限公司 一种高分散、高耐腐的石墨烯涂料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701188A (zh) * 2012-05-07 2012-10-03 华中科技大学 一种溶液制备石墨烯三维多孔材料的方法
CN102675880A (zh) * 2012-05-10 2012-09-19 东南大学 多功能石墨烯和聚二甲基硅氧烷复合材料的制备方法
CN105153707A (zh) * 2015-10-16 2015-12-16 天津工业大学 一种提升三维石墨烯结构体/树脂复合材料力学性能的方法
CN105769121A (zh) * 2016-02-18 2016-07-20 南京清辉新能源有限公司 一种三维碳基压力传感器制备方法
CN106513066A (zh) * 2016-10-13 2017-03-22 东南大学 一种三维多孔石墨烯微流控芯片及其石墨烯附着方法
CN107619617A (zh) * 2017-10-27 2018-01-23 成都新柯力化工科技有限公司 一种高分散、高耐腐的石墨烯涂料及制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845765A (zh) * 2019-12-06 2020-02-28 扬州海吉科技有限公司 一种疏水功能包覆的颗粒材料及其制备方法
CN111205731A (zh) * 2020-02-14 2020-05-29 广东涂亿科技有限公司 一种高韧性延迟折弯的粉末涂料及其制备方法
CN112480798A (zh) * 2020-12-19 2021-03-12 四川锦盛瑞科技发展有限公司 一种聚脲防水工程涂料及制备方法、使用方法
CN112480798B (zh) * 2020-12-19 2024-04-09 天成防水材料股份有限公司 一种聚脲防水工程涂料及制备方法、使用方法
CN115703682A (zh) * 2021-08-12 2023-02-17 湖南碳导新材料科技有限公司 一种在碳材料粉体表面包覆电绝缘涂层的制备方法和应用
CN115703682B (zh) * 2021-08-12 2023-08-22 湖南碳导新材料科技有限公司 一种在碳材料粉体表面包覆电绝缘涂层的制备方法和应用

Also Published As

Publication number Publication date
CN108329524B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN108329524B (zh) 一种填料的改性方法及其应用
Zhou et al. The preparation, and applications of gC 3 N 4/TiO 2 heterojunction catalysts—a review
Chen et al. Recent advances in Two-dimensional Ti3C2Tx MXene for flame retardant polymer materials
Qiu et al. Self-assembled supermolecular aggregate supported on boron nitride nanoplatelets for flame retardant and friction application
Wang et al. Manganese phytate dotted polyaniline shell enwrapped carbon nanotube: Towards the reinforcements in fire safety and mechanical property of polymer
Pan et al. Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets
Chen et al. Corrosion protection of carbon steels by electrochemically synthesized V-TiO2/polypyrrole composite coatings in 0.1 M HCl solution
Qiu et al. Layer-by-layer-assembled flame-retardant coatings from polydopamine-induced in situ functionalized and reduced graphene oxide
US3380856A (en) Method of making fuel cell electrodes comprised of borides, carbides, nitrides and/or silicides of one or more transition metals
CN108504096B (zh) 一种碳纳米管/聚合物复合材料的制备方法
JP2012511224A5 (zh)
US3027278A (en) Carbon coating
TWI745158B (zh) 含矽氧化物被覆氮化鋁粒子的製造方法及放熱性樹脂組成物的製造方法
CN102730671A (zh) 一种铜—石墨烯复合材料及在铜基金属表面制备石墨烯薄膜的方法
Li et al. Modification of graphene and graphene oxide and their applications in anticorrosive coatings
CN113493619A (zh) 一种石墨烯表面包覆二氧化硅复合材料及其制备方法和应用
Yang et al. Enhancing through-plane thermal conductivity of epoxy-based composites via surface treatment of boron nitride cured with a flame retardant phosphazene-based curing agent
Chen et al. Improved thermal stability of phenolic resin by graphene-encapsulated nano-SiO 2 hybrids
Jayan et al. Synthesis of self‐assembled and porous nano titania‐graphene oxide hybrids for toughening the epoxy
Liu et al. Improvement of platinum nanoparticles-immobilized α-zirconium phosphate sheets on tracking and erosion resistance of silicone rubber
KR101735140B1 (ko) 규소 층의 제조 방법
CN105111434B (zh) 一种苯胺共聚物与石墨烯的复合材料、制备方法及其应用
CN112609465B (zh) 一种光热转换高导热的浸润性材料及其制备方法
Guo et al. Curing behaviour of epoxy resin/graphite composites containing ionic liquid
CN110980701A (zh) 一种石墨烯的制备方法、石墨烯及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant