CN108321255B - 应用于多晶黑硅太阳能电池的低压扩散工艺 - Google Patents

应用于多晶黑硅太阳能电池的低压扩散工艺 Download PDF

Info

Publication number
CN108321255B
CN108321255B CN201810166588.6A CN201810166588A CN108321255B CN 108321255 B CN108321255 B CN 108321255B CN 201810166588 A CN201810166588 A CN 201810166588A CN 108321255 B CN108321255 B CN 108321255B
Authority
CN
China
Prior art keywords
temperature
pressure
silicon wafer
low
3000sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810166588.6A
Other languages
English (en)
Other versions
CN108321255A (zh
Inventor
陈丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Suntech Power Co Ltd
Original Assignee
Wuxi Suntech Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Suntech Power Co Ltd filed Critical Wuxi Suntech Power Co Ltd
Priority to CN201810166588.6A priority Critical patent/CN108321255B/zh
Publication of CN108321255A publication Critical patent/CN108321255A/zh
Application granted granted Critical
Publication of CN108321255B publication Critical patent/CN108321255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种应用于多晶黑硅太阳能电池的低压扩散工艺,其特征是,包括以下步骤:(1)硅片进管;(2)恒温;(3)低温氧化,在硅片表面生成一层薄的氧化层,使后续磷源沉积更均匀;(4)低温淀积,在硅片表面均匀沉积磷源;(5)高温推进,使磷源向硅片体内扩散;所述高温推进的温度为820‑850℃,氮气流量为1000‑3000sccm,干氧气为0‑1000sccm,炉内压强50‑150mbar,时间10‑20分钟;(6)二次扩散,二次扩散的温度为800‑850℃,氮气流量为1000‑3000sccm,携源氮气为0‑400sccm,干氧气为0‑1000sccm,炉内压强50‑150mbar,时间2‑10分钟;(7)降温;(8)充氮,使管内压力达到大气压,以便炉门开启;(9)出管。本发明改善了多晶黑硅扩散后方块电阻的均匀性。

Description

应用于多晶黑硅太阳能电池的低压扩散工艺
技术领域
本发明涉及一种应用于多晶黑硅太阳能电池的低压扩散工艺,属于光电技术领域。
背景技术
降低成本、提高太阳电池转换效率是光伏行业可以逐渐取代传统能源的关键。目前市场上光伏发电产品仍以多晶太阳电池组件为主,降低多晶太阳电池成本、提高多晶太阳电池转换效率是降本关键。多晶硅片分为砂浆切割硅片、金刚线切割硅片。其中,多晶金刚线切割硅片具有切割速度快、相比于砂浆切割线损更小、损伤层更薄、更环保、成本低等优势,市场份额逐年提升,逐步替代砂浆切割硅片,金刚线切割硅片降低了硅片成本,将成为行业主流,但是使用金刚线切割的多晶太阳电池表面反射率高制约了电池效率的提升,制绒后表面有色差影响了金刚线切割多晶太阳电池的良品率,而湿法黑硅技术成功解决了这些难题,既能提高金刚线切割多晶太阳电池的转换效率、良品率,又能降低电池成本。如图1所示,为常规砂浆硅片绒面结构SEM照片(放大5000倍)。如图2所示,为金刚线多晶黑硅绒面结构SEM照片(放大5000倍)。如图3所示,为黑硅电池与常规电池反射率对比。
湿法黑硅中的金属催化化学腐蚀法采用银、铜等电负性高于硅的金属颗粒在化学腐蚀液的作用下在硅片表面形成多孔结构,从而降低硅片表面反射率,工艺简单,成本低,更适用于工业生产,黑硅纳米绒面可使多晶效率提升0.2-0.3%(绝对值)。
传统的太阳能电池扩散采用常压扩散工艺,扩散过程中,在扩散炉内压力保持常压或微正压。随着高效晶硅太阳电池的发展,扩散结深的不断变浅,常压扩散已难以满足晶体硅太阳能电池高效、低成本发展的技术要求。常压扩散条件下,由于扩散源分布不均匀,导致局部扩散源存在较大的浓度差,扩散后硅片不同区域的方块电阻差异大,方块电阻均匀性差。黑硅绒面为纳米孔结构,常规多晶绒面为微米级蠕虫结构,因此黑硅比表面积大于常规多晶,由于黑硅绒面结构特殊性,在前表面磷扩散制备PN结时表面杂质浓度高,俄歇复合严重,更容易形成扩散“死层”。由于黑硅纳米绒面微结构的存在,使得扩散后方块电阻的均匀性变得更差。因此,扩散制备PN结的质量对于具有纳米绒面的黑硅太阳电池的转换效率具有重要影响。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种应用于多晶黑硅太阳能电池的低压扩散工艺,改善了多晶黑硅扩散后方块电阻的均匀性。
按照本发明提供的技术方案,所述应用于多晶黑硅太阳能电池的低压扩散工艺,其特征是,包括以下步骤:
(1)硅片进管:管内温度700-750℃,氮气流量1000-3000sccm;
(2)恒温:温度780-800℃,氮气流量1000-3000sccm,炉内压强50-150mbar,时间10-20分钟;
(3)低温氧化,在硅片表面生成一层薄的氧化层,使后续磷源沉积更均匀;所述低温氧化温度为780-800℃,氮气流量1000-3000sccm,炉内压强50-150mbar,干氧气为0-1000sccm,时间2-5分钟;
(4)低温淀积,在硅片表面均匀沉积磷源;所述低温淀积的温度为780-800℃,氮气流量1000-3000sccm,携源氮气为0-400sccm,干氧气为0-1000sccm,炉内压强50-150mbar,时间5-20分钟;
(5)高温推进,使磷源向硅片体内扩散;所述高温推进的温度为820-850℃,氮气流量为1000-3000sccm,干氧气为0-1000sccm,炉内压强50-150mbar,时间10-20分钟;
(6)二次扩散,增加硅片表面掺杂浓度,降低浆料与硅片的欧姆接触电阻;所述二次扩散的温度为800-850℃,氮气流量为1000-3000sccm,携源氮气为0-400sccm,干氧气为0-1000sccm,炉内压强50-150mbar,时间2-10分钟;
(7)降温:温度600-750℃,氮气流量为1000-3000sccm,干氧气为0-1000sccm,炉内压强50-150mbar,时间10-30分钟;
(8)充氮,使管内压力达到大气压,以便炉门开启;所述充氮步骤的温度为600-750℃,氮气流量为1000-3000sccm,压强为常压;
(9)出管:管内温度700-750℃,氮气流量为1000-3000sccm,压强为常压。
进一步地,在所述步骤(5)高温推进和步骤(6)二次扩散之间还包括降温步骤以降低二次扩散磷源沉积量:温度800-820℃,大氮流量1000-3000sccm,炉内压强50-150mbar,时间5-10分钟。
进一步地,在所述步骤(6)二次扩散和步骤(7)降温步骤之间还包括恒温推进步骤:温度800-850℃,大氮流量1000-3000sccm,干氧0-1000sccm,炉内压强50-150mbar,时间2-10分钟。
进一步地,所述硅片为多晶金刚线切割湿法黑硅,具有纳米绒面,硅片电阻率1-3Ω·cm,硅片厚度180-220μm。
本发明具有以下优点:
(1)本发明采用低压两步扩散法,促使磷源在整个纳米结构内具有相同的浓度分布,改善了多晶黑硅扩散后方块电阻的均匀性;
(2)本发明采用低压两步扩散法,在第一步扩散基础上增加二次扩散,增加了表面掺杂浓度,降低了电极与硅的欧姆接触电阻,有效提升了黑硅太阳电池的填充因子。
附图说明
图1为常规砂浆硅片绒面结构SEM照片(放大5000倍)。
图2为金刚线多晶黑硅绒面结构SEM照片(放大5000倍)。
图3为黑硅电池与常规电池反射率对比。
图4为低压扩散和常压扩散的多晶黑硅电池效率对比图。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
本发明实施例中所述的小氮为携源氮气,大氮为氮气,干氧为干氧气。
实施例1:
选择156.75mm*156.75mm的P型金刚线切割多晶硅片为基体材料,电阻率3Ω·cm,经过碱抛、酸洗、沉银、挖孔、脱银、扩孔、碱洗、酸洗、水洗、烘干制备得到绒面,制绒减薄量0.38g,纳米绒面孔径500nm,制绒后硅片表面反射率19.5%。将制绒后的黑硅片上料至扩散石英舟内准备扩散。
扩散工艺如表1:
表1
Figure BDA0001584621710000031
根据实施例1的工艺参数扩散后的方块电阻值。在炉口、炉中、炉尾分别抽取2片,每片上测试9点的方块电阻值,计算方块电阻均值和方阻不均匀性。
不均匀性计算公式:方阻不均匀性=(最大值-最小值)/(最大值+最小值),结构如表2所示。
表2
Figure BDA0001584621710000032
Figure BDA0001584621710000041
实施例1采用的低压扩散工艺的硅片与现有技术中正常扩散工艺的硅片,电性能参数对比如表3所示。
表3
Figure BDA0001584621710000042
将低压扩散和常压扩散的多晶黑硅电池效率进行比较,其结果如图4所示,采用低压扩散能够对多晶黑硅电池效率得到有效地提升。
实施例2:
选择156.75mm*156.75mm的P型金刚线切割多晶硅片为基体材料,电阻率2Ω·cm,经过碱抛、酸洗、沉银、挖孔、脱银、扩孔、碱洗、酸洗、水洗、烘干制备得到绒面,制绒减薄量0.45g,纳米绒面孔径700nm,制绒后硅片表面反射率21.0%。制绒后的黑硅片上料至扩散石英舟内准备扩散。
扩散工艺如表4所示。
表4
Figure BDA0001584621710000043
Figure BDA0001584621710000051
根据实施例2的工艺参数扩散后的方块电阻值。在炉口、炉中、炉尾分别抽取2片,每片上测试9点的方块电阻值,计算方块电阻均值和方阻不均匀性。
不均匀性计算公式:方阻不均匀性=(最大值-最小值)/(最大值+最小值),结果如表5所示。
表5
Figure BDA0001584621710000052

Claims (1)

1.一种应用于多晶黑硅太阳能电池的低压扩散工艺,其特征是,包括以下步骤:
(1)硅片进管:管内温度700-750℃,氮气流量1000-3000sccm;
(2)恒温:温度780-800℃,氮气流量1000-3000sccm,炉内压强50-150mbar,时间10-20分钟;
(3)低温氧化,在硅片表面生成一层薄的氧化层,使后续磷源沉积更均匀;所述低温氧化温度为780-800℃,氮气流量1000-3000sccm,炉内压强50-150mbar,干氧气为200-1000sccm,时间2-5分钟;
(4)低温淀积,在硅片表面均匀沉积磷源;所述低温淀积的温度为780-800℃,氮气流量1000-3000sccm,携源氮气为200-400sccm,干氧气为200-1000sccm,炉内压强50-150mbar,时间5-20分钟;
(5)高温推进,使磷源向硅片体内扩散;所述高温推进的温度为820-850℃,氮气流量为1000-3000sccm,干氧气为0-1000sccm,炉内压强50-150mbar,时间10-20分钟;
(6)二次扩散,增加硅片表面掺杂浓度,降低浆料与硅片的欧姆接触电阻;所述二次扩散的温度为800-850℃,氮气流量为1000-3000sccm,携源氮气为200-400sccm,干氧气为200-1000sccm,炉内压强50-150mbar,时间2-10分钟;
(7)降温:温度600-750℃,氮气流量为1000-3000sccm,干氧气为0-1000sccm,炉内压强50-150mbar,时间10-30分钟;
(8)充氮,使管内压力达到大气压,以便炉门开启;所述充氮步骤的温度为600-750℃,氮气流量为1000-3000sccm,压强为常压;
(9)出管:管内温度700-750℃,氮气流量为1000-3000sccm,压强为常压;
在所述步骤(5)高温推进和步骤(6)二次扩散之间还包括降温步骤以降低二次扩散磷源沉积量:温度800-820℃,大氮流量1000-3000sccm,炉内压强50-150mbar,时间5-10分钟;
在所述步骤(6)二次扩散和步骤(7)降温步骤之间还包括恒温推进步骤:温度800-850℃,大氮流量1000-3000sccm,干氧0-1000sccm,炉内压强50-150mbar,时间2-10分钟;
所述硅片为多晶金刚线切割湿法黑硅,具有纳米绒面,硅片电阻率1-3Ω•cm,硅片厚度180-220μm。
CN201810166588.6A 2018-02-28 2018-02-28 应用于多晶黑硅太阳能电池的低压扩散工艺 Active CN108321255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810166588.6A CN108321255B (zh) 2018-02-28 2018-02-28 应用于多晶黑硅太阳能电池的低压扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810166588.6A CN108321255B (zh) 2018-02-28 2018-02-28 应用于多晶黑硅太阳能电池的低压扩散工艺

Publications (2)

Publication Number Publication Date
CN108321255A CN108321255A (zh) 2018-07-24
CN108321255B true CN108321255B (zh) 2020-04-24

Family

ID=62899935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810166588.6A Active CN108321255B (zh) 2018-02-28 2018-02-28 应用于多晶黑硅太阳能电池的低压扩散工艺

Country Status (1)

Country Link
CN (1) CN108321255B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148648B (zh) * 2018-09-30 2021-01-08 浙江晶科能源有限公司 一种黑硅太阳能电池的制备方法及黑硅太阳能电池
CN110010723A (zh) * 2019-03-29 2019-07-12 山西潞安太阳能科技有限责任公司 一种选择性发射极实现方法
CN110323304A (zh) * 2019-04-12 2019-10-11 江苏润阳悦达光伏科技有限公司 低压扩散低温氧化吸杂工艺
CN110137307B (zh) * 2019-05-13 2021-10-22 浙江贝盛光伏股份有限公司 一种低压环境下的高均匀性浅结扩散工艺
CN110205680A (zh) * 2019-07-08 2019-09-06 通威太阳能(合肥)有限公司 一种提高低压扩散产能的增加氮气回充流量装置
CN111312864A (zh) * 2020-04-09 2020-06-19 江苏润阳悦达光伏科技有限公司 一种变温浅结高方阻低压扩散工艺
CN111628043B (zh) * 2020-04-14 2022-03-25 横店集团东磁股份有限公司 一种适用于perc电池叠加se的扩散工艺
CN112652678B (zh) * 2020-12-09 2022-10-14 晋能清洁能源科技股份公司 一种多晶变温沉积扩散的方法及其应用
CN113206008B (zh) * 2021-05-21 2022-11-01 天津爱旭太阳能科技有限公司 太阳能电池的扩散方法和太阳能电池
CN115172518B (zh) * 2022-07-08 2024-07-30 酒泉正泰新能源科技有限公司 一种太阳能电池的多次氧化扩散方法、制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195706A (zh) * 2017-06-23 2017-09-22 浙江光隆能源科技股份有限公司 一种金刚线太阳能电池片的制绒工艺及扩散工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484177B2 (ja) * 2002-04-26 2004-01-06 沖電気工業株式会社 半導体装置とその製造方法
KR20120009562A (ko) * 2010-07-19 2012-02-02 삼성전자주식회사 태양 전지 및 이의 제조 방법
CN104716232B (zh) * 2015-03-13 2016-10-05 中节能太阳能科技(镇江)有限公司 一种太阳能电池发射极掺杂分布方法
CN105261670B (zh) * 2015-08-31 2017-06-16 湖南红太阳光电科技有限公司 晶体硅电池的低压扩散工艺
CN107093551B (zh) * 2017-04-28 2020-02-14 苏州阿特斯阳光电力科技有限公司 一种太阳能电池片的扩散方法及得到的太阳能电池片

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195706A (zh) * 2017-06-23 2017-09-22 浙江光隆能源科技股份有限公司 一种金刚线太阳能电池片的制绒工艺及扩散工艺

Also Published As

Publication number Publication date
CN108321255A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
CN108321255B (zh) 应用于多晶黑硅太阳能电池的低压扩散工艺
CN101777606B (zh) 一种晶体硅太阳电池选择性扩散工艺
CN112349802B (zh) 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN113809205B (zh) 太阳能电池的制备方法
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
CN108365022A (zh) 选择性发射极黑硅多晶perc电池结构的制备方法
CN110212057B (zh) 一种p型钝化接触晶体硅太阳能电池的制备方法
CN110571304A (zh) 一种钝化接触双面太阳电池的制作方法
CN102931290A (zh) 一种不损伤绒面的多晶硅太阳能电池返工方法
CN106601835A (zh) 一种单晶硅异质结太阳能电池片绒面尺寸的控制方法
CN111987191A (zh) 一种修复perc电池激光开膜损伤的方法
CN112289932A (zh) 钙钛矿薄膜及其制备方法和应用
CN116741871A (zh) 一种扩硼SE结构的N型TOPCon电池制作方法
CN115036396B (zh) 一种硼掺杂发射极的制备方法
CN115084314A (zh) 一种TOPCon钝化接触结构的IBC太阳能电池制备方法
CN112382678A (zh) 一种铸造单晶硅异质结太阳电池的制备方法
CN102330156A (zh) 太阳能电池中多晶硅腐蚀液及多晶硅腐蚀工艺
CN110518075B (zh) 一种黑硅钝化膜、其制备方法及应用
CN111128697A (zh) 一种TopCon太阳能电池非原位磷掺杂的方法
CN102244137A (zh) 太阳能电池及其制造方法
CN114023636A (zh) 一种硼扩SE结构的高效N型TOPCon电池制作方法
CN113594299A (zh) 一种n型硅片p++结构的制作工艺
CN103531657A (zh) 一种多晶/类单晶硅太阳能电池选择性发射极结构的制备方法
CN110739366B (zh) 一种修复perc太阳能电池背膜激光开槽损伤的方法
CN114388639A (zh) 一种铸锭晶硅异质结太阳能电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant