CN111312864A - 一种变温浅结高方阻低压扩散工艺 - Google Patents

一种变温浅结高方阻低压扩散工艺 Download PDF

Info

Publication number
CN111312864A
CN111312864A CN202010273254.6A CN202010273254A CN111312864A CN 111312864 A CN111312864 A CN 111312864A CN 202010273254 A CN202010273254 A CN 202010273254A CN 111312864 A CN111312864 A CN 111312864A
Authority
CN
China
Prior art keywords
temperature
pressure
furnace
diffusion process
sheet resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010273254.6A
Other languages
English (en)
Inventor
陆祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Runyang Yueda Photovoltaic Technology Co Ltd
Original Assignee
Jiangsu Runyang Yueda Photovoltaic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Runyang Yueda Photovoltaic Technology Co Ltd filed Critical Jiangsu Runyang Yueda Photovoltaic Technology Co Ltd
Priority to CN202010273254.6A priority Critical patent/CN111312864A/zh
Publication of CN111312864A publication Critical patent/CN111312864A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种变温浅结高方阻低压扩散工艺,包括以下步骤:步骤S1、进舟;步骤S2、检漏;步骤S3、前氧;步骤S4、沉积一;步骤S5、推进一;步骤S6、沉积二;步骤S7、推进二;步骤S8、沉积三;步骤S9、推进三;步骤S10、沉积四;步骤S11、推进四;步骤S12、吸杂;步骤S13、回压和出舟。相较于现有技术,本发明的变温浅结高方阻低压扩散工艺,采用变温升温工艺,加大沉积步与推进步的温度梯度,可以降低表面浓度,在变温的同时,四步沉积推进,使磷源再分布提高活性磷源的浓度,提高PN结的质量,达到提高片内的均匀性提高效率的目的,而且本过程采用有氧推进工艺,加大了氧化层的厚度,进而降级结深提高效率。

Description

一种变温浅结高方阻低压扩散工艺
技术领域
本发明涉及一种太阳电池制作领域,具体涉及一种变温浅结高方阻低压扩散工艺。
背景技术
化石能源消费的增多导致大气污染物排放逐年增加,因此太阳能作为一种绿色可再生能源,越来越受到人们的推崇,尤其像当前这样的雾霾天气污染的生活环境,提升了人们对太阳能光伏发电应用的迫切性。然而如何做出具有更高转换效率并且更低成本的太阳电池是光伏应用市场能够快速推广的一个关键问题。
目前P型单晶PERC技术已经成为市场上的主流,PERC电池主要采用低压扩散工艺,表面浓度和结深是扩散工艺的主要表现形式,扩散方阻和片内极差是扩散工序的监控手段。PERC电池的提效主要匹配SE工艺,由于SE工艺需要丝网印刷对准和碱抛抛后重掺区氧化层不能保护PN结,所以PERC电池会匹配酸抛和常规430网版。同时由于碱抛是PERC电池常用工序,无网结可以提高栅线的塑形和改善印刷性。常规低压扩散工艺,采用的是低温且恒温沉积,升温高温推进,这种工艺的结深深,表面浓度低,电性能表现为开压低,电流高,这样极大制约了电池整体效率的提升。
发明内容
有鉴于此,本发明的目的是解决上述现有技术的不足,提供一种变温浅结高方阻低压扩散工艺,提高PERC电池的效率。具体方案如下:
一种变温浅结高方阻低压扩散工艺,其特征在于,包括以下步骤:
步骤S1、进舟:将制绒后的硅片装入扩散炉中;
步骤S2、检漏:将扩散炉内抽真空,检测炉内是否漏气;
步骤S3、前氧:降低压力,在硅片表面形成一层氧化层SiO2;
步骤S4、沉积一:低压下温度与步骤S3不变,预沉积第一层磷层;
步骤S5、推进一:低压下温度在步骤S4基础上上升,通入氧气,形成一次推进层;
步骤S6、沉积二:低压下温度与步骤S5不变,沉积第二层磷层;
步骤S7、推进二:低压下温度在步骤S6基础上上升,通入氧气,形成二次推进层;
步骤S8、沉积三:低压下温度与步骤S7不变,沉积第三层磷层;
步骤S9、推进三:低压下温度在步骤S8基础上上升,通入氧气,形成三次推进层;
步骤S10、沉积四:低压下温度与步骤S9不变,沉积第四层磷层;
步骤S11、推进四:低压下温度在步骤S10基础上上升,通入氧气,形成四次推进层;
步骤S12、吸杂:降低温度退火,同时在硅片表面形成一层吸杂层;
步骤S13、回压和出舟。
进一步,所述步骤S1中设置炉管温度为780-800℃,常压状态下,通入大氮流量100-8800sccm,时间为100-800sec。
进一步,所述步骤S2中,抽真空过程设置炉内压强为150-250mbar,温度为770-800℃,时间为100-800sec。
进一步,所述步骤S3中设置炉内压强为60-150mbar,温度为770-800℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm。
进一步,所述步骤S4中设置炉内压强为60-150mbar,温度为770-800℃,时间为100-800sec ,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S5中设置炉内压强为60-150mbar,温度为790-820℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm。
进一步,所述步骤S6中设置炉内压强为60-150mbar,温度为790-820℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S7中设置炉内压强为60-150mbar,温度为810-840℃,时间为100-800sec,通入大氮流量为200-8800sccm,小氧流量为200-8800sccm。
进一步,所述步骤S8中设置炉内压强为60-150mbar,温度为810-840℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S9中设置炉内压强为60-150mbar,温度为830-860℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为100-8800sccm。
进一步,所述步骤S10中设置炉内压强为60-150mbar,温度为830-860℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S11中设置炉内压强为60-150mbar,温度为850-880℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为100-8800sccm。
进一步,所述步骤S12中设置炉内压强为100-700mbar,温度为810 - 840℃,时间为100 - 2000sec,通入小氧流量为200-8800sccm。
进一步,所述步骤S13中设置炉内压强为1060mbar,温度为650 - 750℃,时间为100-800sec,通入大氮流量为10000sccm。
相较于现有技术,本发明的变温浅结高方阻低压扩散工艺,采用变温升温工艺,加大沉积步与推进步的温度梯度,可以降低表面浓度,在变温的同时,四步沉积推进,使磷源再分布提高活性磷源的浓度,提高PN结的质量,达到提高片内的均匀性提高效率的目的,而且本过程采用有氧推进工艺,加大了氧化层的厚度,进而降级结深提高效率。
附图说明
图1为本发明变温浅结高方阻低压扩散工艺流程图;
图2为本发明工艺与现有的常规低压扩散工艺的ECV对比图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
实施例1:一种变温浅结高方阻低压扩散工艺,包括以下步骤:
步骤S1、进舟:将制绒后的硅片装入扩散炉中,设置炉管温度为780-800℃,常压状态下,通入大氮流量100-8800sccm,时间为100-800sec。
步骤S2、检漏:将扩散炉内抽真空,炉内压强为150-250mbar,温度为770-800℃,时间为100-800sec,检测炉内是否漏气,不漏气进行下一步。
步骤S3、降低压力,在硅片表面形成一层氧化层SiO2,时间400s,温度767-774℃,通大氮500sccm,压力80mbar。
步骤S4、低压下温度与步骤S3不变,预沉积第一层磷层,时间350s,温度767-774℃,通大氮500sccm,通小氮500sccm,通小氧500sccm,压力100mbar。
步骤S5、低压下温度在步骤S4基础上上升,通入氧气,形成一次推进层,时间350,温度787-794℃,通大氮500sccm,通小氧500sccm,压力100mbar。
步骤S6、低压下温度与步骤S5不变,沉积第二层磷层,时间350s,温度787-794℃,通大氮500sccm,通小氮500sccm,通小氧500sccm,压力100mbar。
步骤S7、低压下温度在步骤S6基础上上升,通入氧气,形成二次推进层,时间350,温度807-814℃,通大氮500sccm,通小氧500sccm,压力100mbar。
步骤S8、低压下温度与步骤S7不变,沉积第三层磷层,时间350s,温度807-814℃,通大氮500sccm,通小氮500sccm,通小氧500sccm,压力100mbar。
步骤S9、低压下温度在步骤S8基础上上升,通入氧气,形成三次推进层,时间350,温度827-834℃,通大氮500sccm,通小氧500sccm,压力100mbar。
步骤S10、低压下温度与步骤S9不变,沉积第四层磷层,时间350s,温度827-834℃,通大氮500sccm,通小氮500sccm,通小氧500sccm,压力100mbar。
步骤S11、低压下温度在步骤S10基础上上升,通入氧气,形成四次推进层,时间350,温度847-854℃,通大氮500sccm,压力100mbar。
步骤S12、降低温度退火,同时在硅片表面形成一层吸杂层,时间350,温度降至815℃,通小氧500sccm,压力100mbar。
步骤S13、回压、出舟。
其中,本实施例中小氮即为携磷源氮气,大氮即为氮气,小氧即为干燥的氧气。
在本实施例中,由于磷在氧化硅中的扩散速度小于磷在硅片的扩散速度,因此扩散前在炉内通入氧气,于硅片上面形成一层氧化硅,可以改善硅片内的方阻极差。同时本实施例采用变温升温工艺,加大沉积步与推进步的温度梯度,可以降低表面浓度,在变温的同时,多步沉积推进,使磷源再分布提高活性磷源的浓度,提高PN结的质量,达到提高片内的均匀性提高效率的目的。而且采用有氧推进工艺,加大氧化层的厚度,降级结深提高效率。
对比现有低压扩散和本发明低压扩散工艺的效率和电性能差异如下表:
Figure DEST_PATH_IMAGE002
说明:从表中数据可得,本发明的扩散工艺对比现有低压扩散工艺有0.068%的效率提升,主要表现在开压提升1.7mv,电流提升3ma,填充提升0.02%,反应的电池品质的提升。
另外图2为现有低压扩散工艺和本发明新扩散工艺ECV对比图,由图可以看出本实施例中的低压扩散方式具有更浅的结深,表现为N++层深度较少且浓度较低,这样表现为死层少,光生载流子的复合少,本发明的低压扩散工艺在短波段具有更好的响应。
综上,本发明基于低压扩散,采用浅结高方阻的技术路线运用在PERC电池制作上,整个工艺过程中氧化层厚度的加大,降低了PN结的结深,提高了扩散长度,而且氧化层的存在,可以避免做高方阻极差过大的情况存在,符合未来随着正银浆料玻璃粉的进步,烧结能力的提高扩散端要求更高的方阻,更低的表面浓度的技术路线。同时因发射极表面浓度的降低,结更浅可以达到提高开路电压和短路电流的目的。另外该工艺无需增加设备,极具有广泛推广的潜力。
本领域的技术人员应理解,上述描述的本发明的实施例以及附图只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (10)

1.一种变温浅结高方阻低压扩散工艺,其特征在于,包括以下步骤:
步骤S1、进舟:将制绒后的硅片装入扩散炉中;
步骤S2、检漏:将扩散炉内抽真空,检测炉内是否漏气;
步骤S3、前氧:降低压力,在硅片表面形成一层氧化层SiO2;
步骤S4、沉积一:低压下温度与步骤S3不变,预沉积第一层磷层;
步骤S5、推进一:低压下温度在步骤S4基础上上升,通入氧气,形成一次推进层;
步骤S6、沉积二:低压下温度与步骤S5不变,沉积第二层磷层;
步骤S7、推进二:低压下温度在步骤S6基础上上升,通入氧气,形成二次推进层;
步骤S8、沉积三:低压下温度与步骤S7不变,沉积第三层磷层;
步骤S9、推进三:低压下温度在步骤S8基础上上升,通入氧气,形成三次推进层;
步骤S10、沉积四:低压下温度与步骤S9不变,沉积第四层磷层;
步骤S11、推进四:低压下温度在步骤S10基础上上升,通入氧气,形成四次推进层;
步骤S12、吸杂:降低温度退火,同时在硅片表面形成一层吸杂层;
步骤S13、回压和出舟。
2.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S1中设置炉管温度为780-800℃,常压状态下,通入大氮流量100-8800sccm,时间为100-800sec。
3.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S2中,抽真空过程设置炉内压强为150-250mbar,温度为770-800℃,时间为100-800sec。
4.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S3中设置炉内压强为60-150mbar,温度为770-800℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm。
5.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S4中设置炉内压强为60-150mbar,温度为770-800℃,时间为100-800sec ,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S5中设置炉内压强为60-150mbar,温度为790-820℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm。
6.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S6中设置炉内压强为60-150mbar,温度为790-820℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S7中设置炉内压强为60-150mbar,温度为810-840℃,时间为100-800sec,通入大氮流量为200-8800sccm,小氧流量为200-8800sccm。
7.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S8中设置炉内压强为60-150mbar,温度为810-840℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S9中设置炉内压强为60-150mbar,温度为830-860℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为100-8800sccm。
8.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S10中设置炉内压强为60-150mbar,温度为830-860℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为200-8800sccm,小氮流量为200-8800sccm;所述步骤S11中设置炉内压强为60-150mbar,温度为850-880℃,时间为100-800sec,通入大氮流量为100-8800sccm,小氧流量为100-8800sccm。
9.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S12中设置炉内压强为100-700mbar,温度为810 - 840℃,时间为100 - 2000sec,通入小氧流量为200-8800sccm。
10.根据权利要求1所述的变温浅结高方阻低压扩散工艺,其特征在于,所述步骤S13中设置炉内压强为1060mbar,温度为650 - 750℃,时间为100-800sec,通入大氮流量为10000sccm。
CN202010273254.6A 2020-04-09 2020-04-09 一种变温浅结高方阻低压扩散工艺 Pending CN111312864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010273254.6A CN111312864A (zh) 2020-04-09 2020-04-09 一种变温浅结高方阻低压扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010273254.6A CN111312864A (zh) 2020-04-09 2020-04-09 一种变温浅结高方阻低压扩散工艺

Publications (1)

Publication Number Publication Date
CN111312864A true CN111312864A (zh) 2020-06-19

Family

ID=71147580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010273254.6A Pending CN111312864A (zh) 2020-04-09 2020-04-09 一种变温浅结高方阻低压扩散工艺

Country Status (1)

Country Link
CN (1) CN111312864A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284794A (zh) * 2021-02-25 2021-08-20 宁夏隆基乐叶科技有限公司 一种硅基底的掺杂方法、太阳能电池及其制作方法
CN113555468A (zh) * 2021-06-18 2021-10-26 普乐新能源科技(徐州)有限公司 一种提升n型硅片硼扩散方阻均匀性的工艺
CN113964239A (zh) * 2021-10-18 2022-01-21 横店集团东磁股份有限公司 一种太阳能单晶perc的低压扩散工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130144A (en) * 1997-01-02 2000-10-10 Texas Instruments Incorporated Method for making very shallow junctions in silicon devices
CN107293617A (zh) * 2017-07-04 2017-10-24 常州天合光能有限公司 一种高效低成本太阳能电池扩散工艺
CN108321255A (zh) * 2018-02-28 2018-07-24 无锡尚德太阳能电力有限公司 应用于多晶黑硅太阳能电池的低压扩散工艺
CN108470798A (zh) * 2018-05-04 2018-08-31 润峰电力有限公司 一种用于晶硅电池片的含氧扩散方法
CN110323304A (zh) * 2019-04-12 2019-10-11 江苏润阳悦达光伏科技有限公司 低压扩散低温氧化吸杂工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130144A (en) * 1997-01-02 2000-10-10 Texas Instruments Incorporated Method for making very shallow junctions in silicon devices
CN107293617A (zh) * 2017-07-04 2017-10-24 常州天合光能有限公司 一种高效低成本太阳能电池扩散工艺
CN108321255A (zh) * 2018-02-28 2018-07-24 无锡尚德太阳能电力有限公司 应用于多晶黑硅太阳能电池的低压扩散工艺
CN108470798A (zh) * 2018-05-04 2018-08-31 润峰电力有限公司 一种用于晶硅电池片的含氧扩散方法
CN110323304A (zh) * 2019-04-12 2019-10-11 江苏润阳悦达光伏科技有限公司 低压扩散低温氧化吸杂工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284794A (zh) * 2021-02-25 2021-08-20 宁夏隆基乐叶科技有限公司 一种硅基底的掺杂方法、太阳能电池及其制作方法
CN113555468A (zh) * 2021-06-18 2021-10-26 普乐新能源科技(徐州)有限公司 一种提升n型硅片硼扩散方阻均匀性的工艺
CN113555468B (zh) * 2021-06-18 2024-01-23 普乐新能源科技(泰兴)有限公司 一种提升n型硅片硼扩散方阻均匀性的工艺
CN113964239A (zh) * 2021-10-18 2022-01-21 横店集团东磁股份有限公司 一种太阳能单晶perc的低压扩散工艺
CN113964239B (zh) * 2021-10-18 2023-07-21 横店集团东磁股份有限公司 一种太阳能单晶perc的低压扩散工艺

Similar Documents

Publication Publication Date Title
US12034094B2 (en) Double-sided tunneling silicon-oxide passivated back-contact solar cell and preparation method thereof
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
CN113224202B (zh) 一种polo-ibc太阳能电池及其制备方法
CN111312864A (zh) 一种变温浅结高方阻低压扩散工艺
CN109065639A (zh) N型晶体硅太阳能电池及制备方法、光伏组件
CN210926046U (zh) 太阳能电池
EP2290704A1 (en) Passivation layer for wafer based solar cells and method of manufacturing thereof
US8283559B2 (en) Silicon-based dielectric stack passivation of Si-epitaxial thin-film solar cells
CN112820793A (zh) 太阳能电池及其制备方法
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
CN112951927A (zh) 太阳能电池的制备方法
CN110660883A (zh) 一种太阳能电池的制备方法及太阳能电池
CN114975643A (zh) N-TOPCon光伏太阳能电池制备方法及太阳能电池
CN116666493A (zh) 太阳能电池片的制作方法及太阳能电池片
CN114883421A (zh) 一种双面钝化接触太阳能电池及其制作方法
CN118398678A (zh) 一种基于PVD的TOPCon太阳能电池及其制备方法
CN115101604A (zh) TOPCon太阳能电池片及其制备方法、电池组件和光伏系统
CN113488547B (zh) 隧穿氧化层钝化结构及其制作方法与应用
CN114050105A (zh) 一种TopCon电池的制备方法
CN113035997A (zh) 一种太阳能电池制造工艺及链式镀膜设备
CN115763633A (zh) 一种具有硼选择性发射极的太阳能电池的制备工艺
CN115425114A (zh) 一种异质结太阳能电池的制造方法
CN115036384A (zh) 一种N型TOPCon太阳能电池及其制作方法
CN111477696B (zh) 一种基于钝化接触的太阳能电池片及其制备方法
CN217522020U (zh) 一种N-TOPCon光伏太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200619

WD01 Invention patent application deemed withdrawn after publication