CN108298551B - 一种核-壳-核结构介孔分子筛纳米复合材料的制备方法 - Google Patents

一种核-壳-核结构介孔分子筛纳米复合材料的制备方法 Download PDF

Info

Publication number
CN108298551B
CN108298551B CN201711450250.5A CN201711450250A CN108298551B CN 108298551 B CN108298551 B CN 108298551B CN 201711450250 A CN201711450250 A CN 201711450250A CN 108298551 B CN108298551 B CN 108298551B
Authority
CN
China
Prior art keywords
core
ato
mcm
nano
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711450250.5A
Other languages
English (en)
Other versions
CN108298551A (zh
Inventor
常萌蕾
陈东初
张玉媛
魏红阳
叶秀芳
户华文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201711450250.5A priority Critical patent/CN108298551B/zh
Publication of CN108298551A publication Critical patent/CN108298551A/zh
Application granted granted Critical
Publication of CN108298551B publication Critical patent/CN108298551B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种核‑壳‑核结构介孔分子筛纳米复合材料的制备方法,是通过化学共沉淀法制备锑掺杂二氧化锡(ATO)纳米粒子,以锑掺杂二氧化锡(ATO)纳米粒子为核,采用自组装法通过加入复合模板剂CTMAB和TBAB,在ATO核表面引入一层MCM‑41包覆层制备了ATO/MCM‑41,结合溶胶凝胶法将纳米TiO2再组装入MCM‑41孔道中,合成了ATO/TiO2‑MCM‑41分子筛纳米复合材料,该材料可一体化实现纳米ATO及纳米TiO2的功能,可广泛应用于涂料、光催化、光电等领域,具有较强的应用前景。

Description

一种核-壳-核结构介孔分子筛纳米复合材料的制备方法
技术领域
本发明涉及纳米材料领域,特别涉及一种核-壳-核结构介孔分子筛纳米复合材料的制备方法。
背景技术
自上世纪90年代初介孔材料的成功发现以来,人们一直致力于在此基础上研发新的结构、新型复合材料和具有特殊功能的新材料的尝试与创新,并且在介孔材料主-客体装载复合物的合成方面取得了显著的进步,人们已找到了一些把客体纳米颗粒引入介孔材料中的方法。MCM-41介孔分子筛是在1992年由美国Mobil公司的Beck等人首次报道的,其孔径在1.5-10nm范围内变化,成为分子筛发展的一个重要里程碑。由于MCM-41介孔材料的孔径大且孔分布均匀,具有良好的热稳定性,突破了沸石分子筛孔径长期限于微孔范畴(<1.5nm)的局面。因为MCM-41具有大的孔径以及极性的羟基,为分子筛内表面的修饰及大客体分子组装提供了必备的条件,也为组装化学提供了优良的主体材料。
近年来,由于核壳型异质纳米结构材料具有不同于任何单一物质的性质,在材料化学和纳米技术领域引起了广泛的关注。核壳型异质纳米结构材料可由不同组成功能的材料构成,通过材料复合、互补和优化可以构建更优质的复合功能材料与器件,满足发展的需求。在颗粒表面包覆壳层物质形成核壳结构材料,可以很好地控制粒子之间的相互作用,通过改变包覆物的尺寸、结构以及粒子的组成能够赋予颗粒特殊的功能特性,从而具有更加广泛的潜在应用前景。
纳米锑掺杂二氧化锡(Antimony doped Tin Oxide,ATO),是一种n型半导体材料,具有优良的导电性、浅色透明性、良好的耐候性、耐高温性、化学稳定性以及低的红外发射率,广泛应用于隔热涂料、建筑用低辐射率玻璃、红外吸收隔热材料、抗静电塑料、防辐射抗静电涂层材料、纤维、电极材料、气敏元件等领域。纳米TiO2是一种白色宽禁带的n型半导体纳米材料,具有较高的光催化氧化能力、特殊的光电性能、化学稳定性、紫外屏蔽能力等优势,广泛应用于光催化、染料敏化太阳能电池、卫生用品杀菌及涂料等领域。以分子筛为壳,形成核-壳-核的纳米双核结构材料在文献中鲜有报道,若将纳米ATO、纳米TiO2与MCM-41相复合将在隔热涂料、光催化、光电等领域具有很强的工业化能力与应用前景。
发明内容
本发明的目的在于克服现有技术中存在的缺点,提供一种核-壳-核结构介孔分子筛纳米复合材料的制备方法,具体是ATO/TiO2-MCM-41分子筛纳米复合材料。该材料可以保持ATO与TiO2两种材料的特性,又使各组分间协同作用,制作工艺简单,成本低,在涂料、光催化、光电等领域具有很强的应用前景。
本发明的目的通过下述技术方案实现:
一种核-壳-核结构介孔分子筛纳米复合材料的制备方法,是采用化学共沉淀法制备纳米锑掺杂二氧化锡(ATO)前驱物;然后以锑掺杂二氧化锡(ATO)纳米粒子为核,加入复合模板剂(CTAB+TBAB),采用自组装法在ATO核表面引入一层MCM-41包覆层,得到ATO/MCM-41;再采用溶胶凝胶法,将纳米TiO2再组装入MCM-41孔道中,合成了核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料。
具体包括下述步骤:
(1)采用化学共沉淀法制备纳米ATO前驱物:按锑掺杂摩尔浓度为2~10%称取SnCl4·5H2O和SbCl3溶于盐酸溶液中,加入体积浓度为5~30%的氨水至pH=3~4;将溶液50~80℃恒温水热15~120min,生成浅黄色沉淀;抽滤,用乙醇和去离子水清洗,获得纳米ATO前驱物;
(2)制备ATO/MCM-41粉体:将质量比为(1~5):(50~300)的纳米ATO前驱物加入无水乙醇中,超声分散10~60min;加入10~25wt%的氨水和质量比为(0.5~2):(2~10):(50~300)的四丁基溴化铵(TBAB)、十六烷基三甲基溴化铵(CTMAB)、水,搅拌10-60min;滴加正硅酸乙酯反应3~4h;抽滤,用乙醇和去离子水清洗,烘干,程序升温到450~750℃恒温煅烧2~8h,获得ATO/MCM-41粉体;
(3)配制TiO2溶胶:在无水乙醇中加入二乙醇胺,加入钛酸四丁酯,常温下封口搅拌1~12h;再缓慢滴加去离子水,搅拌1~12h,获得TiO2溶胶;
(4)将ATO/MCM-41粉体加入到TiO2溶胶中,超声分散15~30min;磁力搅拌反应1~12h,静止吸附1~12h;乙醇洗涤,抽滤,烘干;450~750℃煅烧2~8h,得到核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料。
步骤(1)中,所述SnCl4·5H2O和SbCl3的质量比为(30~40):2;所述盐酸溶液浓度为2~3mol/L。
步骤(2)中,所述程序升温的升温速率为1℃/min。
步骤(3)中,无水乙醇、二乙醇胺、钛酸四丁酯、去离子水按体积配比为(100-300):(5-30):5:(1-10)。
步骤(4)中,ATO/MCM-41粉体和TiO2溶胶的配比为1:(30~60)g/ml。
所述核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料,是以纳米ATO为内核,MCM-41为包覆层,在MCM-41孔道中组装有纳米TiO2的核壳结构。
本发明与现有技术相比具有如下优点和效果:
(1)本发明的核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料,实验设备及工艺方法简单,经济成本低。
(2)通过MCM-41分子筛为壳层,将纳米ATO和纳米TiO2两种纳米粒子共组装,可一体化实现纳米ATO及纳米TiO2的功能,发挥其协同作用,在隔热涂料、光催化、光电等领域具有应用前景。
附图说明
图1是核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料的透射电子显微镜图。
图2是核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料的XRD图谱。
图3是核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料的XRD小角-射线衍射图。
图4是核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料的EDS图谱。
具体实施方式
下面结合实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1
称量33g SnCl4·5H2O及2g SbCl3溶于2mol/L盐酸溶液中,加入体积浓度为10%的氨水至pH=3;将溶液60℃恒温水热30min,至生成浅黄色沉淀;抽滤,用乙醇和去离子水清洗10次,得到黄色沉淀的纳米ATO前驱物。
将1g纳米ATO前驱物加入100mL无水乙醇,超声分散30min;加入9mL的氨水(25wt%),将0.6125g TBAB溶解于10mL去离子水中,2.7698g CTMAB溶解于50mL去离子水中加入溶液搅拌30min;滴加11mL正硅酸乙酯,反应3h;反应物摩尔比为CTMAB:TEOS:NH3:H2O:TBAB=0.152:1:2.8:141.2:0.038;抽滤,用乙醇和去离子水清洗,烘干,程序升温(升温速率为1℃/min)到550℃恒温煅烧4h,获得ATO/MCM-41粉体。
在75mL无水乙醇中加入5mL二乙醇胺,滴加2.5mL钛酸四丁酯,常温下封口搅拌1小时;再缓慢滴加1mL去离子水,搅拌1h获得TiO2溶胶。将制得的ATO/MCM-41粉体加入到上述TiO2溶胶中,超声分散15~30min;磁力搅拌反应1h,静止吸附6h;乙醇洗涤3次,抽滤,80℃烘干12h,取出放入马弗炉550℃煅烧4h,得到核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料。
图1是核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料的透射电子显微镜图。从图1中可以看出,样品均为球型核壳结构,核内为晶相的ATO纳米粒子,MCM-41包覆层可以直观的观测到有序介孔孔道的存在,厚度约为20nm。图中观察不到孔道表面出现TiO2粒子析出或富集的区域,说明经过浸渍吸附及后续热处理的工艺,纳米TiO2可以均匀分散在有序介孔氧化硅的孔道中。
图2为核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料的XRD图。如图2所示,出现了SnO2的(110),(101),(200),(211),(220),(310),(301)等晶面的多重衍射峰,,其衍射数据与JCPDS(21~1250)标准卡片相符,为金红石结构结构的SnO2。未见氧化锑的衍射峰出现,表明锑已完全掺杂进入到SnO2晶格中;且在2θ≈26.5o处出现金红石TiO2(101)晶面特征衍射峰,与SnO2的(110)晶面的特征衍射峰叠加。
图3是ATO/TiO2-MCM-41的XRD小角-射线衍射图。从图3中可以看出,在2.35°有一个较强的衍射峰,为MCM-41结构(100)晶面特征峰,是具有六方结构介孔相材料的最主要特征峰。该特征峰的存在,表明了无机硅酸根离子与表面活性剂离子通过自组装方式生成了呈周期性排列的液晶织态结构,证实所合成样品壳层中的无机骨架形成了具有MCM-41特征的六方介孔结构。
图4为核壳结构ATO/TiO2-MCM-41分子筛纳米复合材料的EDS图谱。从图4中我们可以清楚的看出Sn、Sb、Si、O和Ti元素存在,进一步证明了ATO、SiO2及TiO2层的存在。

Claims (6)

1.一种核-壳-核结构介孔分子筛纳米复合材料的制备方法,其特征在于:
(1)采用化学共沉淀法制备纳米ATO前驱物:按锑掺杂摩尔浓度为2~10%称取SnCl4·5H2O和SbCl3溶于盐酸溶液中,加入体积浓度为5~30%的氨水至pH=3~4;将溶液50~80℃恒温水热15~120min,生成浅黄色沉淀;抽滤,用乙醇和去离子水清洗,获得纳米ATO前驱物;
(2)制备ATO@MCM-41粉体:将质量比为(1~5):(50~300)的纳米ATO前驱物加入无水乙醇中,超声分散10~60min;加入10~25wt%的氨水和质量比为(0.5~2):(2~10):(50~300)的四丁基溴化铵(TBAB)、十六烷基三甲基溴化铵(CTMAB)、水,搅拌10-60min;滴加正硅酸乙酯反应3~4h;抽滤,用乙醇和去离子水清洗,烘干,程序升温到450~750℃恒温煅烧2~8h,获得ATO@MCM-41粉体;
(3)配制TiO2溶胶:在无水乙醇中加入二乙醇胺,加入钛酸四丁酯,常温下封口搅拌1~12h;再缓慢滴加去离子水,搅拌1~12h,获得TiO2溶胶;
(4)将ATO@MCM-41粉体加入到TiO2溶胶中,超声分散15~30min;磁力搅拌反应1~12h,静止吸附1~12h;乙醇洗涤,抽滤,烘干;450~750℃煅烧2~8h,得到核-壳-核结构介孔分子筛纳米复合材料,即核壳结构ATO@TiO2-MCM-41分子筛纳米复合材料。
2.根据权利要求1所述的核-壳-核结构介孔分子筛纳米复合材料的制备方法,其特征在于:步骤(1)中,所述SnCl4·5H2O和SbCl3的质量比为(30~40):2;所述盐酸溶液浓度为2~3mol/L。
3.根据权利要求1所述的核-壳-核结构介孔分子筛纳米复合材料的制备方法,其特征在于:步骤(2)中,所述程序升温的升温速率为1℃/min。
4.根据权利要求1所述的核-壳-核结构介孔分子筛纳米复合材料的制备方法,其特征在于:步骤(3)中,无水乙醇、二乙醇胺、钛酸四丁酯、去离子水按体积配比为(100-300):(5-30):5:(1-10)。
5.根据权利要求1所述的核-壳-核结构介孔分子筛纳米复合材料的制备方法,其特征在于:步骤(4)中,ATO@MCM-41粉体和TiO2溶胶的配比为1:(30~60)g/ml。
6.一种核-壳-核结构介孔分子筛纳米复合材料,其特征在于:采用权利要求1~5中任一项所述的方法制备得到,是以纳米ATO为内核,MCM-41为包覆层,在MCM-41孔道中组装有纳米TiO2的核壳结构。
CN201711450250.5A 2017-12-27 2017-12-27 一种核-壳-核结构介孔分子筛纳米复合材料的制备方法 Expired - Fee Related CN108298551B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711450250.5A CN108298551B (zh) 2017-12-27 2017-12-27 一种核-壳-核结构介孔分子筛纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711450250.5A CN108298551B (zh) 2017-12-27 2017-12-27 一种核-壳-核结构介孔分子筛纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN108298551A CN108298551A (zh) 2018-07-20
CN108298551B true CN108298551B (zh) 2020-09-18

Family

ID=62867874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711450250.5A Expired - Fee Related CN108298551B (zh) 2017-12-27 2017-12-27 一种核-壳-核结构介孔分子筛纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN108298551B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111300567A (zh) * 2019-11-29 2020-06-19 安徽智晟通讯科技有限公司 一种高效复合型木材阻燃剂的制备方法
CN111072045B (zh) * 2019-12-26 2022-12-20 闽南师范大学 一种多级孔分子筛材料及制备方法
CN112521775A (zh) * 2020-12-30 2021-03-19 江南大学 一种用于制备兼具减反射及透明隔热涂层的复合纳米粉体及涂层的制备方法
CN113004609B (zh) * 2021-02-08 2022-04-15 江南大学 一种“ZnO@SiO2/UV-9”粉体改性PP包装薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031357A1 (en) * 2010-09-10 2012-03-15 Ozin Geoffrey A Photoactive material comprising nanoparticles of at least two photoactive constiuents
CN102872774A (zh) * 2011-07-11 2013-01-16 张�林 二氧化钛(壳)-掺杂物(核)复合材料及其制备方法
CN102909045A (zh) * 2012-07-20 2013-02-06 天津城市建设学院 微米级负载型TiO2催化剂的制备方法
CN103290525A (zh) * 2013-05-25 2013-09-11 北京化工大学 一种核壳结构TiO2/ATO纳米纤维及其制备方法
CN107057549A (zh) * 2017-05-27 2017-08-18 新疆新光保环保科技有限公司 一种超亲水自清洁的高透明玻璃隔热涂料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031357A1 (en) * 2010-09-10 2012-03-15 Ozin Geoffrey A Photoactive material comprising nanoparticles of at least two photoactive constiuents
CN102872774A (zh) * 2011-07-11 2013-01-16 张�林 二氧化钛(壳)-掺杂物(核)复合材料及其制备方法
CN102909045A (zh) * 2012-07-20 2013-02-06 天津城市建设学院 微米级负载型TiO2催化剂的制备方法
CN103290525A (zh) * 2013-05-25 2013-09-11 北京化工大学 一种核壳结构TiO2/ATO纳米纤维及其制备方法
CN107057549A (zh) * 2017-05-27 2017-08-18 新疆新光保环保科技有限公司 一种超亲水自清洁的高透明玻璃隔热涂料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种白色导电粉的制备研究;陈忠伟 等;《上海化工》;20020315(第5期);第16-19页 *
导电ATO@TiO2纳米晶须的制备工艺优化研究;高强 等;《化工新型材料》;20160930;第44卷(第9期);第81-83页 *

Also Published As

Publication number Publication date
CN108298551A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN108298551B (zh) 一种核-壳-核结构介孔分子筛纳米复合材料的制备方法
CN108295836B (zh) 一种核壳结构ato/二氧化硅/二氧化钛复合材料的制备方法
Ramimoghadam et al. Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material
Wang et al. Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites
JP4304343B2 (ja) 酸化亜鉛微粒子及びその集合体と分散溶液の製造方法
US8986580B2 (en) Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
JP2005528309A (ja) ナノスケールのルチル(rutile)又はナノスケールの酸化物、及びそれらの生成方法
US20210147690A1 (en) Method for forming a titania-coated inorganic particle
EP3656740B1 (en) Method for producing titanium oxide fine particles
CN105762283B (zh) 一种钙钛矿太阳电池光吸收层纳米溶胶镀膜液及制备方法
CN100445209C (zh) 一种纳米二氧化钛粉体制备方法
US12018160B2 (en) Methods for forming and uses of titania-coated inorganic particles
Verhovšek et al. The Synthesis of Anatase Nanoparticles and the Preparation of Photocatalytically Active Coatings Based on Wet Chemical Methods for Self‐Cleaning Applications
Ali et al. Structural and optical properties of heat treated Zn2SiO4 composite prepared by impregnation of ZnO on SiO2 amorphous nanoparticles
KR101408696B1 (ko) 금 나노입자를 함유하는 하이브리드 나노구조체 및 이를 포함하는 태양전지용 광전극
Yang et al. In situ synthesis of bifunctional TiO 2–Cs x WO 3 composite particles with transparent heat shielding and photocatalytic activity
AU2013206052B2 (en) Surface treatment method for making high durability universal titanium dioxide rutile pigment
Tian et al. Egg albumin-assisted sol–gel synthesis and photo-catalytic activity of SnO 2 micro/nano-structured biscuits
CN106311100B (zh) 一种光催化复合微球的制作方法
JP4631013B2 (ja) 針状酸化チタン微粒子、その製造方法及びその用途
KR101114708B1 (ko) 염료감응형 태양전지용 정방형 이산화티탄 나노입자 제조방법
JP5633571B2 (ja) ルチル型酸化チタン微粒子分散液の製造方法
CN101445270A (zh) 高纯金红石纳米二氧化钛制备
EP3141526A1 (en) Method for preparation of tio2-sno2 nanocomposites
WO2024071312A1 (ja) 結晶性酸化チタンコアシェル粒子およびそれを含む分散液

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200918