CN108292674A - 形成掺杂源极/漏极触点的方法及由其形成的结构 - Google Patents

形成掺杂源极/漏极触点的方法及由其形成的结构 Download PDF

Info

Publication number
CN108292674A
CN108292674A CN201580084813.6A CN201580084813A CN108292674A CN 108292674 A CN108292674 A CN 108292674A CN 201580084813 A CN201580084813 A CN 201580084813A CN 108292674 A CN108292674 A CN 108292674A
Authority
CN
China
Prior art keywords
germanium
source
silicon
concentration
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580084813.6A
Other languages
English (en)
Other versions
CN108292674B (zh
Inventor
G·格拉斯
K·贾姆布纳坦
A·默西
C·莫哈帕特拉
S·金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN108292674A publication Critical patent/CN108292674A/zh
Application granted granted Critical
Publication of CN108292674B publication Critical patent/CN108292674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

描述了形成锗沟道结构的方法。一个实施例包括在衬底上形成锗鳍状物,其中,锗鳍状物的一部分包括锗沟道区域,在锗沟道区域上形成栅极材料,以及相邻于锗沟道区域形成渐变的源极/漏极结构。渐变的源极/漏极结构在与锗沟道区域相邻处所包括的锗浓度比在源极/漏极接触区域处高。

Description

形成掺杂源极/漏极触点的方法及由其形成的结构
背景技术
微电子器件,例如在沟道结构中利用锗的器件,可能表现出接触电阻问题。包括形成在半导体衬底上的晶体管、二极管、电阻器、电容器以及其他无源和有源电子器件的电路器件的性能的提高通常是在这些器件的设计、制造和操作期间考虑的主要因素。例如,在金属氧化物半导体(MOS)和隧道场效应(TFET)晶体管器件(例如互补金属氧化物半导体(CMOS)器件中使用的晶体管器件)的设计和制造或形成期间,通常期望将与源极/漏极区域和触点相关的电阻最小化。
附图说明
尽管说明书以特别指出并明确要求保护某些实施例的权利要求作出结论,但是当结合附图阅读时,可以从以下对本发明的描述中更容易地确定这些实施例的优点,在附图中:
图1a-1n表示根据实施例的结构的侧截面图。
图2表示根据实施例的方法的流程图。
图3表示实现一个或多个实施例的内插层。
图4表示根据实施例的系统的示意图。
具体实施方式
在下面的具体实施方式中,参考了附图,这些附图以举例说明的方式示出了可以实践这些方法和结构的具体实施例。足够详细地描述这些实施例以使本领域技术人员能够实践这些实施例。应该理解,各种实施例虽然不同,但并不一定是相互排斥的。例如,在不脱离实施例的精神和范围的情况下,本文结合一个实施例描述的特定特征、结构或特性可以在其他实施例内实现。另外,应该理解的是,在不脱离实施例的精神和范围的情况下,可以修改每个公开的实施例内的各个元件的位置或布置。因此,下面的具体实施方式不应视为限制性的,实施例的范围仅由适当解释的所附权利要求以及赋予权利要求的等同替代的全部范围来限定。在附图中,贯穿几个视图,相似的附图标记可以指代相同或相似的功能。如本文所使用的术语“在...上方”、“到”、“在...之间”和“在...上”可以指一层相对于其他层的相对位置。一层“在另一层上方”或“上”或结合“到”另一层可以与另一层直接接触或可以具有一个或多个居间层。层“之间的”一层可以与层直接接触或可以具有一个或多个居间层。彼此“相邻”的层和/或结构可以具有或不具有介于它们之间的居间结构/层。
本文的实施例的实现可以在诸如半导体衬底的衬底上形成或执行。在一个实施方式中,半导体衬底可以是使用块状硅或绝缘体上硅子结构形成的晶体衬底。在其他实施方式中,可以使用替代材料形成半导体衬底,该替代材料可以与硅组合或不与硅组合,所述替代材料包括但不限于锗、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓、砷化铟镓、锑化镓或III-V族或IV族材料的其他组合。尽管此处描述了可以形成衬底的材料的几个示例,但是可以用作其上可以构建半导体器件的基础的任何材料都在本发明的精神和范围内。
可以在衬底上制造多个晶体管,例如金属氧化物半导体场效应晶体管(MOSFET或简称MOS晶体管)。在各种实施方式中,MOS晶体管可以是平面晶体管、非平面晶体管或两者的组合。非平面晶体管包括诸如双栅极晶体管和三栅极晶体管的FinFET晶体管、TFET以及诸如纳米带和纳米线晶体管的环绕式或环栅晶体管。
每个晶体管可以包括由至少两个层形成的栅极叠置体,例如栅电介质层和栅电极层。栅极电介质层可以包括一层或多层的叠置体。一层或多层可以包括氧化硅、二氧化硅(SiO2)和/或高k电介质材料。高k电介质材料可以包括诸如铪、硅、氧、钛、钽、镧、铝、锆、钡、锶、钇、铅、钪、铌和锌等元素。
栅电极层可以形成在栅极电介质层上,并且根据晶体管将是PMOS还是NMOS晶体管,可以由至少一种P型功函数金属或N型功函数金属构成。在一些实施方式中,栅电极层可以由两个或更多个金属层的叠置体构成,其中一个或多个金属层是功函数金属层并且至少一个金属层是填充金属层。
源极和漏极区域可以形成在与每个MOS晶体管的栅极叠置体相邻的衬底内。通常使用注入/扩散工艺或蚀刻/沉积工艺来形成源极和漏极区域。在前一种工艺中,可以将诸如硼、铝、锑、磷或砷的掺杂剂离子注入到衬底中以形成源极和漏极区域。通常在离子注入过程之后,是激活掺杂剂并使其进一步扩散到衬底中的退火过程。
在实施例中,可以首先蚀刻衬底以在源极和漏极区域的位置处形成凹陷。然后可以执行沉积工艺,例如外延工艺,以采用用于制造源极和漏极结构的材料填充凹陷,如将针对本文包括的各种实施例更详细讨论的。在一些实施方式中,源极和漏极结构可以使用诸如硅锗或碳化硅的硅合金来制造。在一些实施方式中,外延沉积的硅合金可以用诸如硼、砷或磷的掺杂剂原位掺杂。在进一步的实施例中,源极和漏极结构可以使用一种或多种替代半导体材料(例如锗或III-V族材料或合金)来形成。
一个或多个层间电介质(ILD)沉积在MOS晶体管结构上方/之内。ILD层可以使用已知的适用于集成电路结构的电介质材料(例如低k电介质材料)形成。可以使用的电介质材料的示例包括但不限于二氧化硅(SiO2)、碳掺杂氧化物(CDO)、氮化硅、例如全氟环丁烷或聚四氟乙烯的有机聚合物、氟硅酸盐玻璃(FSG)和例如倍半硅氧烷、硅氧烷或有机硅酸盐玻璃的有机硅酸盐。ILD层可以包括孔或气隙以进一步降低它们的介电常数。
诸如三栅极晶体管结构的非平面晶体管可以包括至少一个非平面晶体管鳍状物。如将在本文中进一步描述的,非平面晶体管鳍状物可以具有顶表面和一对横向相对的侧壁。至少一个非平面栅电极126可以形成在非平面晶体管鳍状物上方。非平面晶体管栅电极可以通过在非平面晶体管鳍状物顶表面上或邻近处并且在非平面晶体管鳍状物侧壁上或邻近处形成栅极电介质层来制造。在实施例中,非平面晶体管鳍状物可以在基本上垂直于非平面晶体管栅极的方向上延伸。源极/漏极结构可以形成在栅电极的相对侧上的非平面晶体管鳍状物中。在实施例中,源极和漏极结构可以通过去除非平面晶体管鳍状物的部分并且用合适的材料替换这些部分以形成源极和漏极结构来形成。根据特定应用,可以利用其他方法或方法的组合来形成源极/漏极结构。
本文描述了形成微电子器件结构的方法的实施例,诸如形成锗沟道源极/漏极接触结构的方法。这些方法/结构可以包括在衬底上形成锗鳍状物,在锗鳍状物的沟道部分上形成栅电极,以及相邻于锗沟道区域形成渐变的源极/漏极结构,其中,相邻于锗沟道区域形成渐变的源极/漏极结构的富锗的部分,并且其中,渐变的源极/漏极结构包括距锗沟道区域较远的距离处的较低锗浓度,并且其中,相邻于源极/漏极接触区域形成富硅部分。本文的方法显著降低或消除了可能与锗沟道n型器件相关的高接触电阻。
在图1a-1n中,示出了形成与渐变的源极/漏极接触区域耦合的锗沟道器件的结构和方法的侧截面图。这种渐变的源极/漏极结构改善了锗沟道器件的晶体管性能。在图1a中,诸如晶体管器件衬底100的器件衬底100可以包括鳍状物104。在实施例中,鳍状物104可以包括硅鳍状物104,并且可以形成/设置在衬底102(例如硅衬底102)中。在实施例中,鳍状物104可以包括牺牲鳍状物。例如,鳍状物104可以与电介质材料103相邻,例如浅沟槽隔离(STI)材料。鳍状物104可以包括相对的侧壁105和顶表面111。
在实施例中,鳍状物104的一部分可以从衬底102去除(图1b)。在实施例中,可以通过使用诸如干法/湿法蚀刻工艺的蚀刻工艺106或任何合适的去除工艺来去除鳍状物104部分。在实施例中,可以采用基于氢氧化铵的湿法蚀刻或基于氟化氮的低离子能量干法蚀刻,或基于SF6的干法蚀刻或基于溴化氢的干法蚀刻。产生开口/沟槽108,其中,预先定位鳍状物104的去除部分。在实施例中,鳍状物104的部分107可以保留在衬底102内/上,其中,部分107可以包括高度109。在另一个实施例中,鳍状物104的部分107可以在蚀刻工艺106之后不保留,并且可以被基本去除,使得高度109可以基本为零。
在实施例中,可以在开口108内形成锗鳍状物112(图1c)。在实施例中,锗鳍状物112可以利用锗形成工艺110形成。在实施例中,锗形成工艺110可以包括化学气相沉积(CVD)工艺或任何其他合适的沉积技术,和/或外延形成工艺。例如,可以通过CVD,或者快速热CVD(RT-CVD),或者低压CVD(LP-CVD),或者超高真空CVD(UHV-CVD)或者气体源分子射束外延(GS-MBE)工具来执行沉积/形成。在实施例中,锗鳍状物112的阵列可以形成在衬底102内,并且通过电介质材料103彼此分离。锗鳍状物112的阵列可以包括个体的锗鳍状物112之间的间隔114,在一些情况下间隔114在大约100nm到小至15nm的范围内。
在实施例中,可以通过利用例如蚀刻工艺使电介质103凹陷,使得锗鳍状物112的一部分可以在电介质层103的平面之上(图1d)。在实施例中,锗鳍状物112可以包括高度113,并且可以设置在衬底102的一部分上。
在实施例中,可以在锗鳍状物112的阵列上和周围形成栅极结构115(图1e)。在实施例中,可以通过在锗鳍状物112的上表面121上或邻近处以及在横向相对的锗鳍状物侧壁118上或邻近处形成栅极电介质层(未示出),然后通过栅极优先或栅极最后工艺流程在栅极电介质层上或邻近处形成栅电极材料(如本领域技术人员将会理解的),来制造栅极结构115。在实施例中,栅极结构115包括可以围绕每个个体的锗鳍状物112的一种和/或多种栅极材料。在实施例中,栅电极材料115可以包括范围广泛的材料,例如多晶硅、氮化硅、碳化硅或各种合适的金属或金属合金,例如铝(Al)、钨(W)、钛(Ti)、钽(Ta)、铜(Cu)、氮化钛(TiN)或氮化钽(TaN)。在实施例中,例如,锗鳍状物112与栅极结构115相邻的一部分可以包括非平面器件的源极/漏极区域116。在实施例中,锗鳍状物112在栅极结构115下方的一部分可以包括锗沟道区域117(图1f,示出了穿过锗鳍状物112的横截面)。在实施例中,锗沟道区域可以包括大于约80%的锗。在另一个实施例中,锗沟道区域117可以包括基本上100%的锗。
在实施例中,蚀刻工艺118可以去除源极漏极区域116中的一部分锗鳍状物112(图1g)。在实施例中,锗鳍状物112的基本上全部锗材料可以从源极/漏极区域116去除,然而在其他实施例中,锗材料的一部分可以保留在衬底102上的源极/漏极区域116中。
在实施例中,可以利用源极/漏极区域116上的形成工艺120来形成渐变的源极/漏极结构122的阵列(图1h)。可以通过CVD、快速热CVD(RT-CVD)、低压CVD(LP-CVD)、超高真空CVD(UHV-CVD)或气体源分子束外延(GS-MBE)工具来在选择性工艺中执行沉积/形成。在实施例中,可以形成可以包括n型晶体管器件的器件结构131的一部分。在实施例中,渐变的源极/漏极结构122可以包括最接近/邻近锗沟道区域117设置的高锗浓度部分123,并且在一些情况下可以与沟道区域117直接相邻。在实施例中,高锗浓度部分的锗浓度可以包括至少约80%的锗,但是可以根据具体应用而变化。在实施例中,高锗浓度部分123可以包括n型掺杂剂物质,例如磷或砷。在实施例中,随着距锗沟道区域117的距离增加,高锗部分123中的锗的量/浓度可以降低。
在实施例中,渐变的源极/漏极结构122可以包括高硅浓度部分125,其中,硅浓度可以随着距沟道区域117的距离的增加而增加。在实施例中,在一些情况下,高硅浓度部分可以与源极/漏极接触区域相邻,并且可以与源极/漏极接触区域直接相邻。在实施例中,高硅浓度部分125的硅浓度可以包括至少约80%的硅,但是可以根据具体应用而变化。在实施例中,高硅浓度部分125可以包括磷的原位掺杂,其中,高硅浓度部分中的磷浓度大于高锗浓度部分123中的磷浓度。例如,在实施例中,高锗浓度部分123中的磷浓度可以包括约0至约1×1020个原子/cm3。在实施例中,高硅浓度部分125中的磷浓度可以包括约1×1021个原子/cm3及以上。在实施例中,随着距锗沟道区域117的距离的增加,高硅部分125中的硅的量/浓度可以增加。
在实施例中,高锗浓度部分123可以包括基本上小于高硅浓度部分125的高度134的高度132(图1j)。在另一个实施例中,高锗浓度部分123可以包括基本上大于高硅浓度部分125的高度134的高度132(图1k)。在实施例中,高硅浓度部分125可以设置在高锗浓度部分125上方。在实施例中,高锗浓度部分123与高硅浓度部分125之间的区域124可以包括过渡/界面区域124(图11)。在实施例中,过渡区域124可以包括在两个部分123、125之间清楚的轮廓,但是在其他实施例中,在两个部分之间可以存在不太突变的过渡,如图11所示,其中根据具体应用,可以优化过渡区域124中的富锗浓度和富硅浓度之间的渐变量。
在实施例中,与图1h中的非平面晶体管器件131类似,器件135的一部分(显示为穿过栅极结构115的透射电子显微镜(TEM)或扫描电子显微镜(SEM)横截面的近似)例如可以包括锗沟道区域117,并且可以由栅极结构115围绕(图1m)。在实施例中,设置在栅极结构115下方的锗沟道区域117可以包括基本上100%的锗。锗沟道区域117可以包括锗鳍状物121的一部分,并且可以设置在衬底102上。例如,个体锗鳍状物121可以由电介质103分隔开,电介质103可以包括STI材料。例如,栅极材料115可以包括多层(诸如钛、碳、铝、栅极填充材料等)并且可以设置在栅极电介质材料119上,栅极电介质材料119例如高k栅极电介质材料119,例如由铪、铝、钪和/或镧中的一种或其组合形成的氧化物。
图1n示出了穿过晶体管器件135的鳍状物结构121的横截面(类似于TEM/SEM横截面)。例如,器件135包括栅极结构115,栅极结构115可以包括多层,例如功函数层140和填充金属层142。在实施例中,根据具体应用,栅极结构115可以包括更多或更少的层。在实施例中,栅极结构115可以包括纳米线结构或纳米带结构。在实施例中可以包括高k栅极电介质层119的栅极电介质层可以设置在/相邻于栅极结构115。在实施例中,栅极间隔物137可以与栅极结构115相邻,并且可以包括在栅极结构115的相对侧上的一对栅极间隔物。渐变的源极/漏极结构122可以与栅极间隔物相邻并且与栅极结构115相邻。
渐变的源极/漏极结构122可以与源极/漏极接触结构144耦合,其中,源极/漏极接触结构144可以包括金属,例如在实施例中包括钨、铝、铜、钌或钴,并且还可以包括TaN、TiN或其他扩散阻挡衬层146。在实施例中,衬层146可以另外包括硅化物或绝缘体材料,并且可以设置在源极/漏极接触结构144和渐变的源极/漏极结构之间。在实施例中,渐变的源极/漏极结构122可以包括最靠近/邻近锗沟道区域117的高锗浓度部分123,并且可以包括远离锗沟道区域117的高硅浓度部分125。在实施例中,渐变的源极/漏极结构122可以包括直接邻近锗沟道区域117的比在源极/漏极接触界面区域处高的锗浓度。
在实施例中,高锗浓度部分123可以与锗沟道区域117直接接触。更靠近源极/漏极接触结构144的富硅部分125改善/减小了器件135的接触电阻。通过提供本文实施例的渐变的源极/漏极结构122的渐变方案,富硅部分125的能量势垒(其可包括约0.5eV)可以与源极/漏极触点144接触,且因此器件135的接触电阻相对于金属触点而言可以大大改善。
本文的实施例实现了硅之上的锗器件的改善的沟道迁移率。本文实施例的渐变的源极/漏极结构将功能性磷掺杂的硅与金属触点性质结合,同时利用锗沟道,使得器件性能在晶体管处于导通状态时的给定源-漏电压下的电流流动方面得到优化。本文描述的渐变的源极/漏极结构可以提供接触电阻的大于两倍的改善。本文的渐变的源极/漏极结构实施例与任何种类的衬底(包括块状硅、锗)兼容。实施例可以采用通过均厚沉积或通过ART沟槽填充形成的锗晶体管。他们可以使用任何类型的应变弛豫缓冲器(SRB),并且与栅极优先或栅极最后处理兼容。此外,源极漏极结构可以在源极/漏极之上的隔离之前或在替代实施例中在已经沉积隔离部且钻出接触孔之后被处理。
图2示出了根据本文实施例的方法。在步骤202,可以在衬底上形成锗鳍状物。在步骤204中,可以在锗鳍状物上形成栅极材料,其中锗鳍状物的一部分在栅极下面形成锗沟道区域。在步骤206,可以(在源极/漏极区域中)去除锗鳍状物与锗沟道区域相邻的一部分。在步骤208,可以相邻于锗沟道区域形成渐变的源极/漏极区域,其中,渐变的源极/漏极区域包括与锗沟道区域相邻的富锗部分以及与源极/漏极接触区域相邻的富硅部分。另外,渐变的源极/漏极结构可以包括例如磷等的n型掺杂剂,其中富锗部分中的磷浓度低于富硅部分中的磷浓度。
在实施例中,可以在形成渐变的源极/漏极结构之后采用绝缘沉积工艺,其可以包括栅极氧化物沉积或可以用于将锗沟道区域与下面的层隔离的任何其他工艺。可以随后执行金属栅极填充,栅极和沟槽接触以及后端流程过程,但是顺序和工艺细节将取决于特定的器件架构。
在实施例中,本文实施例的结构可以与能够在布置在封装结构中的微电子器件(例如管芯)和封装结构可以耦合的下一级部件(例如,电路板)之间提供电通信的任何合适类型的结构耦合。
例如,本文的实施例的器件结构及其部件可以包括电路元件,例如用于在处理器管芯中使用的逻辑电路。金属化层和绝缘材料可以包括在本文的结构中,以及可以将金属层/互连耦合到外部器件/层的导电触点/凸块。例如,本文各图中描述的结构/器件可以包括硅逻辑管芯或存储器管芯的部分或任何类型的合适的微电子器件/管芯。在一些实施例中,取决于特定实施例,器件可以进一步包括多个管芯,其可以彼此叠置。在实施例中,管芯可以部分或完全嵌入封装结构中。
本文包括的器件结构的各种实施例可以用于片上系统(SOC)产品,并且可以在例如智能电话、笔记本、平板电脑、可穿戴设备和其他电子移动设备的设备中得到应用。在各种实施方式中,封装结构可以被包括在膝上型计算机、上网本、笔记本、超极本、智能电话、平板电脑、个人数字助理(PDA)、超便携PC、移动电话、台式计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数码相机、便携式音乐播放器或数字录像机以及可穿戴设备中。在进一步的实施方式中,本文的封装器件可以被包括在处理数据的任何其他电子设备中。
本文的实施例通过减小金属与渐变的源极/漏极区域之间的能量势垒,实现金属触点与源极/漏极结构之间的显著改善的接触电阻。各种实施例用于消除n型器件的高接触电阻,并且使得能够制造具有集成的基于锗的沟道电子传输(n型)晶体管的有成本效益且大规模的MOS和TFET器件。
图3示出了包括本文所包括的一个或多个实施例的器件300。器件300可以包括内插层301,内插层301可以包括用于将第一衬底302桥接到第二衬底307的居间衬底。第一衬底302可以是例如任何类型的集成电路管芯,并且可以包括本文描述的渐变的源极/漏极结构的实施例,并且在实施例中可以包括存储器设备。第二衬底304可以是例如存储器模块、计算机主板、处理器设备或任何其他集成电路管芯,并且可以包括本文描述的渐变的源极/漏极结构的实施例。通常,内插层301的目的是将连接扩展到更宽的间距或者将连接重新布线到不同的连接。
例如,内插层301可以将集成电路管芯耦合到随后可耦合到第二衬底304的球栅阵列(BGA)506。在一些实施例中,第一衬底302和第二衬底307附接到内插层301的相反侧。在其他实施例中,第一衬底302和第二衬底304附接到内插层301的同一侧。并且在另外的实施例中,三个或更多个衬底通过内插层301相互连接。
内插层301可以由环氧树脂、玻璃纤维增强环氧树脂、陶瓷材料或例如聚酰亚胺的聚合物材料形成。在进一步的实施方式中,内插层可以由交替的刚性或柔性材料形成,其可以包括上述用于半导体衬底的相同材料,例如硅、锗、以及其它III-V族和IV族材料。内插层可以包括金属互连308和过孔310,并且还可以包括穿硅过孔(TSV)312。内插层301还可以包括嵌入器件314,包括无源器件和有源器件。这样的器件包括但不限于电容器、去耦电容器、电阻器、电感器、保险丝、二极管、变压器、传感器和静电放电(ESD)器件。也可以在内插层301上形成诸如射频(RF)器件、功率放大器、功率管理器件、天线、阵列、传感器和MEMS器件之类的更复杂的器件。根据实施例,本文公开的装置或过程可以用于制造内插层301。
图4是根据实施例的计算设备400的示意图。在实施例中,例如,计算设备400容纳板402,例如主板402。板402可以包括可以与集成电路管芯403通信地耦合的多个部件,包括但不限于处理器404和管芯上存储器406,以及至少一个通信芯片408。处理器404可以物理且电耦合到板402。在一些实施方式中,至少一个通信芯片408可以物理且电耦合到板402。在进一步的实施方式中,通信芯片406是处理器404的一部分。
取决于其应用,计算设备400可以包括其他部件,其可以或可以不物理且电耦合到板402,并且可以或可以不彼此通信地耦合。这些其他部件包括但不限于易失性存储器(例如,DRAM)410、非易失性存储器(例如ROM)412、闪存(未示出)、图形处理器单元(GPU)414、数字信号处理器(DSP)416、密码处理器442、芯片组420、天线422、诸如触摸屏显示器的显示器424、触摸屏控制器426、电池428、音频编码解码器(未示出)、视频编码解码器(未示出)、全球定位系统(GPS)设备429、指南针430、加速度计、陀螺仪及其他惯性传感器432、扬声器434、相机436、各种输入设备438和大容量储存设备(例如,硬盘驱动器、或固态驱动器)440、光盘(CD)(未示出)、数字多用途盘(DVD)(未示出),等等)。这些部件可以连接到系统板402,安装到系统板或与任何其他部件组合。
通信芯片408实现了无线和/或有线通信,用于往来于计算设备400传送数据。术语“无线”及其派生词可以用于描述可以通过非固态介质借助使用调制电磁辐射传送数据的电路、设备、系统、方法、技术、通信信道等。该术语并非暗示相关设备不包含任何导线,尽管在一些实施例中它们可以不包含。通信芯片408可以实施多个无线或有线标准或协议中的任意一个,包括但不限于Wi-Fi(IEEE 802.11族)、WiMAX(IEEE 802.16族)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、其以太网派生物,以及被指定为3G、4G、5G及之后的任何其他无线或有线协议。计算设备400可以包括多个通信芯片408。例如,第一通信芯片可以专用于近距离无线通信,例如Wi-Fi和蓝牙,第二通信芯片可以专用于远距离无线通信,例如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等。术语“处理器”可以指代任何设备或设备的部分,其处理来自寄存器和/或存储器的电子数据,以将该电子数据转变为可以存储在寄存器和/或存储器中的其他电子数据。
在各种实施方式中,计算设备400可以是膝上型计算机、上网本、笔记本、超极本、智能电话、平板电脑、个人数字助理(PDA)、超便携PC、可穿戴设备、移动电话、台式计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数码相机、便携式音乐播放器或数字录像机。在进一步的实施方式中,计算设备400可以是处理数据的任何其他电子设备。
实施例可以实现为一个或多个存储器芯片、控制器、CPU(中央处理单元)、使用主板互连的微芯片或集成电路、专用集成电路(ASIC)和/或现场可编程门阵列(FPGA)的一部分。
示例
示例1是一种微电子结构,包括衬底,其中,衬底包括硅,设置在所述衬底上的锗鳍状物,其中,一部分锗鳍状物包括锗沟道区域,在所述衬底上与锗沟道区域相邻的渐变的源极/漏极结构,以及锗沟道区域上的栅极材料,其中,渐变的源极/漏极结构所包括的锗浓度在与锗沟道区域相邻处比在源极/漏极接触区域处高。
在示例2中,示例1的结构包括:其中,渐变的源极/漏极结构的锗浓度包括与沟道区域相邻的大于约80%的锗。
在示例3中,示例1的结构包括:其中,渐变的源极/漏极结构包括与源极/漏极接触区域相邻的富硅部分。
在实施例4中,示例3的结构包括:其中,所述富硅区域包括大于约1×E21个原子/cm3的磷掺杂浓度。
在示例5中,示例1的结构包括:其中,渐变的源极/漏极结构包括比富硅部分厚的富锗部分,其中,所述富硅部分在所述富锗部分上方。
在示例6中,示例1的结构包括:其中,渐变的源极/漏极结构包括比富硅部分薄的富锗部分,其中,所述富硅部分在所述富锗部分上方。
在示例7中,示例1的结构包括:其中,渐变的源极/漏极结构包括高锗浓度部分和高硅浓度部分之间的过渡区域。
在示例8中,示例7的结构,其中,高锗浓度部分中的磷掺杂剂浓度小于约1×E20个原子/cm3
示例9是一种器件结构,包括:硅衬底;衬底上的锗鳍状物,其中,锗鳍状物包括锗沟道区域;衬底上的源极/漏极结构,其中,源极/漏极结构耦合到锗鳍状物结构;与锗沟道区域相邻的源极/漏极结构的高锗浓度部分,其中,高锗浓度部分的锗浓度在相邻于源极/漏极接触区域处较低;锗沟道区域上的金属栅极结构;以及与源极/漏极结构的高硅浓度部分耦合的源极/漏极触点。
在示例10中,示例9的器件,其中,高锗浓度部分中的n型掺杂剂浓度低于约1×E20个原子/cm3
在示例11中,示例9的器件,其中,高锗浓度部分掺杂有n型掺杂剂。
在示例12中,示例9的器件,其中,所述器件包括NMOS晶体管结构的一部分。
在示例13中,示例9的器件,其中,源极/漏极结构包括过渡区域,其中,过渡区域位于高锗浓度部分和高硅浓度部分之间。
在示例14中,示例9的器件进一步包括:其中,高硅浓度部分包括大于约1×E21个原子/cm3的n型掺杂剂浓度。
在示例15中,根据权利要求9所述的器件,其中,所述高硅浓度部分包括原位掺杂磷物质。
在示例16中,示例9的器件,其中,所述器件结构包括纳米线或纳米带晶体管结构。
示例17是一种形成微电子结构的方法,包括:
在衬底上形成锗鳍状物,在锗鳍状物上形成栅极材料,其中,锗鳍状物的一部分包括器件的沟道区域,以及
相邻于所述锗沟道区域形成源极/漏极结构,其中,相邻于所述沟道区域形成所述源极/漏极结构的富锗部分,并且其中,相邻于源极/漏极接触区域形成所述源极/漏极结构的富硅部分。
在示例18中,示例17的方法还包括:其中,用n型掺杂剂对源极/漏极结构进行掺杂。
在示例19中,示例17的方法还包括:其中,富锗部分包括小于约1E20个原子/cm3的n型掺杂剂浓度。
在示例20中,示例17的方法还包括:其中,富硅部分包括大于约1E21个原子/cm3的n型掺杂剂浓度。
在示例21中,示例17的方法还包括:其中,源极/漏极结构包括过渡区域,其中,所述过渡区域形成在高锗浓度部分和高硅浓度部分之间。
在示例22中,示例17的方法还包括:其中,富锗部分包括比富硅部分小的高度。
在示例23中,示例17的方法进一步包括:其中,所述器件包括FINFET、三栅极、纳米线、纳米带或平面晶体管结构中的一个的一部分。
在示例24中,示例17的方法还包括:其中,富锗部分包括比富硅部分高的高度。
在示例25中,示例17的方法还包括:其中,所述器件包括NMOS器件。
尽管前面的描述已经指定了可以在实施例的方法中使用的某些步骤和材料,但是本领域技术人员将认识到可以做出许多修改和替换。因此,其意图是所有这些修改、变更、替换和添加都被认为属于由所附权利要求限定的实施例的精神和范围内。另外,本文提供的附图仅示出了与实施例的实践有关的示例性微电子器件和相关封装结构的部分。因此,实施例不限于本文描述的结构。

Claims (25)

1.一种微电子结构,包括:
衬底,其中,所述衬底包括硅;
设置在所述衬底上的锗鳍状物,其中,所述锗鳍状物的一部分包括锗沟道区域;
在所述衬底上并且与所述锗沟道区域相邻的渐变的源极/漏极结构;以及
所述锗沟道区域上的栅极材料,其中,所述渐变的源极/漏极结构所包括的锗浓度在与所述锗沟道区域相邻处比在源极/漏极接触区域处高。
2.根据权利要求1所述的结构,其中,所述渐变的源极/漏极结构的锗浓度在与所述沟道区域相邻处包括大于约80%的锗。
3.根据权利要求1所述的结构,其中,所述渐变的源极/漏极结构在与所述源极/漏极接触区域相邻处包括富硅部分。
4.根据权利要求3所述的结构,其中,所述富硅区域包括大于约1×1021个原子/cm3的磷掺杂浓度。
5.根据权利要求1所述的结构,其中,所述渐变的源极/漏极结构包括比富硅部分厚的富锗部分,其中,所述富硅部分在所述富锗部分上方。
6.根据权利要求1所述的结构,其中,所述渐变的源极/漏极结构包括比富硅部分薄的富锗部分,其中,所述富硅部分在所述富锗部分上方。
7.根据权利要求1所述的结构,其中,所述渐变的源极/漏极结构包括在高锗浓度部分和高硅浓度部分之间的过渡区域。
8.根据权利要求7所述的结构,其中,所述高锗浓度部分中的磷掺杂剂浓度小于约1×E20个原子/cm3
9.一种器件结构,包括:
硅衬底;
在所述衬底上的锗鳍状物,其中,所述锗鳍状物包括锗沟道区域;
在所述衬底上的源极/漏极结构,其中,所述源极/漏极结构耦合到所述锗鳍状物结构;
源极/漏极结构的与所述锗沟道区域相邻的高锗浓度部分,其中,所述高锗浓度部分的锗浓度在相邻于源极/漏极接触区域处较低;
在所述锗沟道区域上的金属栅极结构;以及
与所述源极/漏极结构的高硅浓度部分耦合的源极/漏极触点。
10.根据权利要求9所述的器件结构,其中,所述高锗浓度部分中的n型掺杂剂浓度包括低于约1×1020个原子/cm3
11.根据权利要求9所述的器件结构,其中,所述高锗浓度部分掺杂有n型掺杂剂。
12.根据权利要求9所述的器件,其中,所述器件包括NMOS晶体管结构的一部分。
13.根据权利要求9所述的器件结构,其中,所述源极/漏极结构包括过渡区域,其中,所述过渡区域位于所述高锗浓度部分和所述高硅浓度部分之间。
14.根据权利要求9所述的器件,其中,所述高硅浓度部分包括大于约1×E21个原子/cm3的n型掺杂剂浓度。
15.根据权利要求9所述的器件,其中,所述高硅浓度部分包括原位掺杂的磷物质。
16.根据权利要求9所述的器件,其中,所述器件结构包括纳米线或纳米带晶体管结构。
17.一种形成微电子结构的方法,包括:
在衬底上形成锗鳍状物;
在所述锗鳍状物上形成栅极材料,其中,所述锗鳍状物的一部分包括器件的沟道区域;以及
相邻于所述锗沟道区域形成源极/漏极结构,其中,相邻于所述沟道区域形成所述源极/漏极结构的富锗部分,并且其中,相邻于源极/漏极接触区域形成所述源极/漏极结构的富硅部分。
18.根据权利要求17所述的方法,还包括:其中,所述源极/漏极结构掺杂有n型掺杂剂。
19.根据权利要求17所述的方法,还包括:其中,所述富锗部分包括小于约1E20个原子/cm3的n型掺杂剂浓度。
20.根据权利要求17所述的方法,其中,所述富硅部分包括大于约1E21个原子/cm3的n型掺杂剂浓度。
21.根据权利要求17所述的方法,还包括:其中,所述源极/漏极结构包括过渡区域,其中,所述过渡区域形成在所述高锗浓度部分和所述高硅浓度部分之间。
22.根据权利要求17所述的方法,还包括:其中,所述富锗部分包括比所述富硅部分小的高度。
23.根据权利要求17所述的方法,还包括:其中,所述器件包括FINFET、三栅极、纳米线、纳米带或平面晶体管结构中的一个的一部分。
24.根据权利要求17所述的方法,还包括:其中,所述富锗部分包括比所述富硅部分高的高度。
25.根据权利要求17所述的方法,还包括:其中,所述器件包括NMOS器件。
CN201580084813.6A 2015-12-24 2015-12-24 形成掺杂源极/漏极触点的方法及由其形成的结构 Active CN108292674B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/000352 WO2017111806A1 (en) 2015-12-24 2015-12-24 Methods of forming doped source/drain contacts and structures formed thereby

Publications (2)

Publication Number Publication Date
CN108292674A true CN108292674A (zh) 2018-07-17
CN108292674B CN108292674B (zh) 2022-05-13

Family

ID=59090937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580084813.6A Active CN108292674B (zh) 2015-12-24 2015-12-24 形成掺杂源极/漏极触点的方法及由其形成的结构

Country Status (4)

Country Link
US (2) US10573750B2 (zh)
EP (1) EP3394896A4 (zh)
CN (1) CN108292674B (zh)
WO (1) WO2017111806A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111806A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Methods of forming doped source/drain contacts and structures formed thereby
US10276663B2 (en) * 2016-07-18 2019-04-30 United Microelectronics Corp. Tunneling transistor and method of fabricating the same
US10916633B2 (en) * 2018-10-23 2021-02-09 International Business Machines Corporation Silicon germanium FinFET with low gate induced drain leakage current
US10937654B2 (en) 2019-01-24 2021-03-02 Micron Technology, Inc. Methods of doping a silicon-containing material and methods of forming a semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314434A (zh) * 2011-01-19 2013-09-18 国际商业机器公司 具有源极/漏极缓冲区的应力沟道fet
US20140110755A1 (en) * 2012-10-24 2014-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and Method for Forming Semiconductor Contacts
US20140151761A1 (en) * 2012-12-04 2014-06-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-Like Field Effect Transistor (FinFET) Channel Profile Engineering Method And Associated Device
CN104835844A (zh) * 2013-11-26 2015-08-12 三星电子株式会社 鳍式场效应晶体管半导体装置及其制造方法
CN105185712A (zh) * 2014-05-02 2015-12-23 三星电子株式会社 包括鳍式场效应晶体管的集成电路器件及其形成方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078742B2 (en) * 2003-07-25 2006-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel semiconductor structure and method of fabricating the same
JP4369359B2 (ja) * 2004-12-28 2009-11-18 富士通マイクロエレクトロニクス株式会社 半導体装置
US8324660B2 (en) * 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP4635897B2 (ja) 2006-02-15 2011-02-23 株式会社東芝 半導体装置及びその製造方法
JP4271210B2 (ja) * 2006-06-30 2009-06-03 株式会社東芝 電界効果トランジスタ、集積回路素子、及びそれらの製造方法
JP5141029B2 (ja) * 2007-02-07 2013-02-13 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP5269478B2 (ja) * 2008-05-26 2013-08-21 株式会社東芝 半導体装置
US8247285B2 (en) 2008-12-22 2012-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. N-FET with a highly doped source/drain and strain booster
US8264032B2 (en) * 2009-09-01 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Accumulation type FinFET, circuits and fabrication method thereof
US9245805B2 (en) * 2009-09-24 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs with metal gates and stressors
US20120305893A1 (en) 2010-02-19 2012-12-06 University College Cork-National University of Ireland ,Cork Transistor device
US8796759B2 (en) * 2010-07-15 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8753942B2 (en) * 2010-12-01 2014-06-17 Intel Corporation Silicon and silicon germanium nanowire structures
WO2013095377A1 (en) * 2011-12-20 2013-06-27 Intel Corporation Self-aligned contact metallization for reduced contact resistance
US8710632B2 (en) * 2012-09-07 2014-04-29 United Microelectronics Corp. Compound semiconductor epitaxial structure and method for fabricating the same
US20140167163A1 (en) * 2012-12-17 2014-06-19 International Business Machines Corporation Multi-Fin FinFETs with Epitaxially-Grown Merged Source/Drains
US8853008B1 (en) * 2013-03-14 2014-10-07 Intermolecular, Inc. Counter-doped low-power FinFET
US9034741B2 (en) * 2013-05-31 2015-05-19 International Business Machines Corporation Halo region formation by epitaxial growth
US10396201B2 (en) * 2013-09-26 2019-08-27 Intel Corporation Methods of forming dislocation enhanced strain in NMOS structures
US9583590B2 (en) * 2013-09-27 2017-02-28 Samsung Electronics Co., Ltd. Integrated circuit devices including FinFETs and methods of forming the same
US9190418B2 (en) * 2014-03-18 2015-11-17 Globalfoundries U.S. 2 Llc Junction butting in SOI transistor with embedded source/drain
KR102167519B1 (ko) * 2014-03-21 2020-10-19 인텔 코포레이션 Ge-풍부 p-mos 소스/드레인 컨택트들의 집적을 위한 기술들
US9202920B1 (en) 2014-07-31 2015-12-01 Stmicroelectronics, Inc. Methods for forming vertical and sharp junctions in finFET structures
KR102241974B1 (ko) * 2014-09-23 2021-04-19 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR102230198B1 (ko) * 2014-09-23 2021-03-19 삼성전자주식회사 반도체 소자 및 이의 제조 방법
US9859423B2 (en) * 2014-12-31 2018-01-02 Stmicroelectronics, Inc. Hetero-channel FinFET
US9343300B1 (en) * 2015-04-15 2016-05-17 Globalfoundries Inc. Methods of forming source/drain regions for a PMOS transistor device with a germanium-containing channel region
US9818761B2 (en) * 2015-06-25 2017-11-14 International Business Machines Corporation Selective oxidation for making relaxed silicon germanium on insulator structures
US9812571B2 (en) * 2015-09-30 2017-11-07 International Business Machines Corporation Tensile strained high percentage silicon germanium alloy FinFETs
WO2017111806A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Methods of forming doped source/drain contacts and structures formed thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314434A (zh) * 2011-01-19 2013-09-18 国际商业机器公司 具有源极/漏极缓冲区的应力沟道fet
US20140110755A1 (en) * 2012-10-24 2014-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and Method for Forming Semiconductor Contacts
US20140151761A1 (en) * 2012-12-04 2014-06-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-Like Field Effect Transistor (FinFET) Channel Profile Engineering Method And Associated Device
CN104835844A (zh) * 2013-11-26 2015-08-12 三星电子株式会社 鳍式场效应晶体管半导体装置及其制造方法
CN105185712A (zh) * 2014-05-02 2015-12-23 三星电子株式会社 包括鳍式场效应晶体管的集成电路器件及其形成方法

Also Published As

Publication number Publication date
US20180261696A1 (en) 2018-09-13
EP3394896A1 (en) 2018-10-31
US11004978B2 (en) 2021-05-11
WO2017111806A1 (en) 2017-06-29
EP3394896A4 (en) 2019-12-18
CN108292674B (zh) 2022-05-13
US10573750B2 (en) 2020-02-25
US20200176601A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US10672868B2 (en) Methods of forming self aligned spacers for nanowire device structures
TWI770252B (zh) 具有汲極場板的氮化鎵電晶體、具有其之電路和系統及其製造方法
KR20160045923A (ko) n-형 및 p-형 MOS 소스-드레인 콘택들을 위한 III-V 층들
CN107004713B (zh) 形成具有非对称外形的鳍状物结构的装置和方法
US11004978B2 (en) Methods of forming doped source/drain contacts and structures formed thereby
CN107004710A (zh) 形成具有侧壁衬垫的鳍状物结构的装置和方法
US11756998B2 (en) Source-channel junction for III-V metal-oxide-semiconductor field effect transistors (MOSFETs)
CN112151609A (zh) 具有电介质隔离部的堆叠式三栅极晶体管及其形成工艺
EP4109523A1 (en) Buried power rail with a silicide layer for well biasing
US11574910B2 (en) Device with air-gaps to reduce coupling capacitance and process for forming such
US11508824B2 (en) Gallium nitride transistors with multiple threshold voltages and their methods of fabrication
CN108292687B (zh) 用于ge nmos的低肖特基势垒触点结构
US11916118B2 (en) Stacked source-drain-gate connection and process for forming such
US11721766B2 (en) Metal-assisted single crystal transistors
EP4203072A1 (en) Transistors with epitaxial source/drain liner for improved contact resistance
US20240222228A1 (en) Devices in a silicon carbide layer coupled with devices in a gallium nitride layer
CN116314192A (zh) 硅化钛接触部和低温、高锗、高硼sige:b pepi
CN116344547A (zh) 具有源漏区上用于改善接触电阻的掺杂本征锗盖的晶体管
CN115527969A (zh) 到自对准栅极触点的倒锥形过孔
TW201810674A (zh) 減少漏洩之寬帶隙第四族子鰭部

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant