CN108269980B - 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法 - Google Patents

一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法 Download PDF

Info

Publication number
CN108269980B
CN108269980B CN201810004902.0A CN201810004902A CN108269980B CN 108269980 B CN108269980 B CN 108269980B CN 201810004902 A CN201810004902 A CN 201810004902A CN 108269980 B CN108269980 B CN 108269980B
Authority
CN
China
Prior art keywords
electrode material
znfe
composite electrode
zinc
ferric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810004902.0A
Other languages
English (en)
Other versions
CN108269980A (zh
Inventor
李延伟
姚金环
郑远远
张天戈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Detai Energy Co ltd
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201810004902.0A priority Critical patent/CN108269980B/zh
Publication of CN108269980A publication Critical patent/CN108269980A/zh
Application granted granted Critical
Publication of CN108269980B publication Critical patent/CN108269980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法。(1)分别以六水合硝酸锌和六水合氯化铁为锌源和铁源,以蔗糖为助剂,用去离子水溶解得到原料液;(2)在空气气氛下焙烧原料液,得到三氧化二铁/铁酸锌(Fe2O3/ZnFe2O4)复合电极材料。本发明方法十分简单、成本低、产率高、制备条件易于控制,制备的Fe2O3/ZnFe2O4复合材料作为锂离子电池负极材料具有高的储锂性能。

Description

一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法
技术领域
本发明涉及锂离子电池负极材料的技术领域,具体涉及一种高性能三氧化二铁/铁酸锌 (Fe2O3/ZnFe2O4)复合电极材料的制备方法。
技术背景
铁基尖晶石型双过渡金属氧化物ZnFe2O4由于具有嵌锂容量高(其理论比容量为1072 mAhg-1,传统石墨负极仅为372mAhg-1),安全性好、环境友好、原料来源广泛、价格低廉等突出优点而被认为是非常具有应用前景的新一代锂离子电池负极材料之一。但是,ZnFe2O4作为锂离子电池负极材料在充放电过程中会发生明显的体积变化导致颗粒粉化,从而使其循环稳定性和倍率性能变差。Fe2O3/ZnFe2O4复合电极材料包含两个不同相,由于两相的协同效应,在充放电过程中能够缓解由于体积变化产生的内应力,从而提高ZnFe2O4电极材料嵌脱锂性能。ZnFe2O4基电极材料的制备方法有:水热法、聚合物裂解法、尿素燃烧法、均相沉淀法等。但大多数制备方法步骤多、条件要求苛刻。为此,本发明提出一种十分简单的制备高性能Fe2O3/ZnFe2O4复合电极材料的方法。
发明内容
本发明的目的在于提供一种制备高性能三氧化二铁/铁酸锌(Fe2O3/ZnFe2O4)复合电极材料的方法。
具体步骤为:
(1)将锌铁摩尔比为1:2的二价锌盐和三价铁盐混合。
(2)按蔗糖与三价铁盐的质量比为1:1的比例向步骤(1)的混合物中加入蔗糖,再向其中加入三价铁盐,步骤(2)加入的三价铁盐与步骤(1)加入的三价铁盐的摩尔比为1:32~1:2,然后加入去离子水使其全部溶解。
(3)将步骤(2)所得的混合溶液置于马弗炉中在空气气氛下,在600℃条件下烧结3小时,得到Fe2O3/ZnFe2O4复合电极材料。
所述二价锌盐为Zn(NO3)2·6H2O。
所述三价铁盐为FeCl3·6H2O。
本发明采用蔗糖辅助直接烧结法制备高性能Fe2O3/ZnFe2O4复合电极材料,方法十分简单、成本低、产率高、制备条件易于控制。
附图说明
图1为实施例1~3所得的铁酸锌电极材料的XRD图谱。
具体实施方式
下面结合具体实施例对本发明作进一步的说明,需要指出的是以下实施例是为了本领域的技术人员更好地理解本发明,而不是对本发明保护范围的限制,该领域的技术人员可以根据上述内容做出一些非本质的改进和调整。
实施例1:
(1)将1.1000g Zn(NO3)2·6H2O和2.0000g FeCl3·6H2O混合。
(2)向步骤(1)的混合物中加入2.0000g蔗糖,再向其中加入0.0625g FeCl3·6H2O(步骤(2) 加入的FeCl3·6H2O与步骤(1)加入的FeCl3·6H2O的摩尔比为1:32),然后加入5mL去离子水使其全部溶解。
(3)将步骤(2)所得的混合溶液置于马弗炉中在空气气氛下,在600℃条件下烧结3小时,得到Fe2O3/ZnFe2O4复合电极材料。
实施例2:
(1)将1.1000g Zn(NO3)2·6H2O和2.0000g FeCl3·6H2O混合。
(2)向步骤(1)的混合物中加入2.0000g蔗糖,再向其中加入0.2500g FeCl3·6H2O(步骤(2) 加入的FeCl3·6H2O与步骤(1)加入的FeCl3·6H2O的摩尔比为1:8),然后加入5mL去离子水使其全部溶解。
(3)将步骤(2)所得的混合溶液置于马弗炉中在空气气氛下,在600℃条件下烧结3小时,得到Fe2O3/ZnFe2O4复合电极材料。
实施例3:
(1)将1.1000g Zn(NO3)2·6H2O和2.0000g FeCl3·6H2O混合。
(2)向步骤(1)的混合物中加入2.0000g蔗糖,再向其中加入1.0000g FeCl3·6H2O(步骤(2) 加入的FeCl3·6H2O与步骤(1)加入的FeCl3·6H2O的摩尔比为1:2),然后加入5mL去离子水使其全部溶解。
(3)将步骤(2)所得的混合溶液置于马弗炉中在空气气氛下,在600℃条件下烧结3小时,得到Fe2O3/ZnFe2O4复合电极材料。
电化学性能测试:分别将实施例中制备的Fe2O3/ZnFe2O4作为活性材料,导电炭黑(Super P)作为导电剂,聚偏氟乙烯(PVDF)作为粘结剂按质量比6:3:1的比例混合研磨均匀后,加入适量的N-甲基-2-吡咯烷酮(NMP),调匀成浆后均匀涂覆在铜箔上,在80℃下干燥至恒重,冲裁后得到电极片。以铁酸锌电极片为工作电极,金属锂片为对电极,聚丙烯多孔膜(Celgard 2400)为隔膜,1mol/L LiPF6的碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和碳酸二乙酯(DEC)的混合液(m(EC):m(DMC):m(DEC)=1:1:1)为电解液,在充满氩气的手套箱中组装成CR2016型扣式电池。采用深圳新威公司的BTS-5V/10mA型充放电测试仪测试电池的恒流充放电及倍率性能,充放电电压范围为0.01~3.0V,其中倍率性能测试的电流密度分别为1、3、5、7和10A/g,循环性能测试的电流密度为1A/g,充放电循环500圈,具体测试结果列于表1中。
表1:实施例样品的性能测试结果
Figure BDA0001538293130000031
如图1所示,为实施例1~3制备的电极材料的XRD图谱。从图中可以看出,本发明制备的电极材料为Fe2O3/ZnFe2O4复合电极材料。

Claims (1)

1.一种制备高性能Fe2O3/ZnFe2O4复合电极材料的方法,其特征在于具体步骤为:
(1) 将锌铁摩尔比为1:2的二价锌盐和三价铁盐混合;
(2) 按蔗糖与三价铁盐的质量比为1:1的比例向步骤(1)的混合物中加入蔗糖,再向其中加入一定量的三价铁盐,步骤(2)加入的三价铁盐与步骤(1)加入的三价铁盐的摩尔比为1:32~1:2,然后加入去离子水使其全部溶解;
(3) 将步骤(2)所得的混合溶液置于马弗炉中在空气气氛下,在600 ℃条件下烧结3小时,得到Fe2O3/ZnFe2O4复合电极材料;
所述二价锌盐为Zn(NO3)2·6H2O;
所述三价铁盐为FeCl3·6H2O。
CN201810004902.0A 2018-01-03 2018-01-03 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法 Active CN108269980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810004902.0A CN108269980B (zh) 2018-01-03 2018-01-03 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810004902.0A CN108269980B (zh) 2018-01-03 2018-01-03 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法

Publications (2)

Publication Number Publication Date
CN108269980A CN108269980A (zh) 2018-07-10
CN108269980B true CN108269980B (zh) 2020-06-05

Family

ID=62773322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810004902.0A Active CN108269980B (zh) 2018-01-03 2018-01-03 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法

Country Status (1)

Country Link
CN (1) CN108269980B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109326774B (zh) * 2018-07-25 2021-08-03 桂林理工大学 由湿法炼锌渣酸浸液制备高性能三氧化二铁/铁酸锌复合电极材料的方法及应用
CN112209423B (zh) * 2020-09-25 2022-03-18 南京理工大学 火焰合成法一步合成超薄空心球微米铝酸锌的方法
CN112194187B (zh) * 2020-09-25 2022-03-15 南京理工大学 预混火焰合成铁酸锌球形纳米材料的方法
CN112694132A (zh) * 2020-12-28 2021-04-23 惠州亿纬锂能股份有限公司 一种ZnMn2O4负极材料、其制备方法及用途
CN114242977B (zh) * 2021-12-06 2024-04-05 桂林理工大学 一种蔗糖辅助铁矾渣盐酸浸出液制备高性能复合负极材料的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094558A (zh) * 2012-12-18 2013-05-08 深圳市贝特瑞新能源材料股份有限公司 一种铁酸锌基纳米复合材料、制备方法及其用途
CN104741123A (zh) * 2015-03-11 2015-07-01 大连理工大学 一种新型纳米铁氧体吸附脱硫催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094558A (zh) * 2012-12-18 2013-05-08 深圳市贝特瑞新能源材料股份有限公司 一种铁酸锌基纳米复合材料、制备方法及其用途
CN104741123A (zh) * 2015-03-11 2015-07-01 大连理工大学 一种新型纳米铁氧体吸附脱硫催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Mn-doped Fe2O3-ZnFe2O4 Composites for High Performance Lithium Ion Battery Anodes;Lixia Liao等;《Int. J. Electrochem. Sci.》;20160906;第11卷;第8221-8228页 *
Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis;Elahe Esmaeili等;《Chemical Engineering Journal》;20110305;第170卷;第278-285页 *
PSynthesis, characterization and electromagnetic properties of Zn-substituted CoFe2O4 via sucrose assisted combustion route;M.A. Gabal等;《Journal of Magnetism and Magnetic Materials》;20161029;第426卷;第670-679页 *
Solution Combustion Synthesis and Characterization of Magnetite, Fe3O4, Nanopowders;Robert Ianos等;《J. Am. Ceram. Soc.》;20120320;第95卷;第2236-2240页 *

Also Published As

Publication number Publication date
CN108269980A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
CN108269980B (zh) 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法
EP2819226B1 (en) Positive-electrode material for nonaqueous-electrolyte secondary battery, manufacturing method therefor, and nonaqueous-electrolyte secondary battery using said positive-electrode material
US10784507B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR102186729B1 (ko) 리튬티타늄 황화물, 리튬니오븀 황화물 및 리튬티타늄니오븀 황화물
US20180287143A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP6201277B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
KR20170075596A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN108039463A (zh) 一种固态电解质/电极复合材料的制备及应用该材料的固态电池
Zhao et al. The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries
CN107210439B (zh) 非水系电解质二次电池用正极活性物质和其制造方法、及非水系电解质二次电池
Guo et al. Effects of sodium substitution on properties of LiMn2O4 cathode for lithium ion batteries
Yang et al. The contradiction between the half-cell and full-battery evaluations on the tungsten-coating LiNi0. 5Co0. 2Mn0. 3O2 cathode
JP2018142402A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
CN100453454C (zh) 一种磷酸亚铁锂正极材料的制备方法
CN108281647B (zh) 一种制备具有微/纳分级二维片状形貌的高性能锂离子电池用氧化铁负极材料的方法
Hong et al. Nail penetration-safe LiNi0. 6Co0. 2Mn0. 2O2 pouch cells enabled by LiMn0. 7Fe0. 3PO4 cathode safety additive
JP2018195419A (ja) 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。
CN107591534B (zh) 一种磷镁协同掺杂改性的富锂锰基正极材料及其制备方法和锂离子电池
CN109742341B (zh) 葡萄糖辅助制备高储锂性能Fe掺杂二维多孔NiO电极材料的方法
JP2018073562A (ja) 非水系電解質二次電池用正極材料、該正極材料を用いた非水系電解質二次電池、および非水系電解質二次電池用正極材料の製造方法。
CN108281626B (zh) 一种锂离子电池用高性能氧化锌/三氧化二铁/铁酸锌三元复合负极材料的制备方法
JP2020123493A (ja) リチウムイオン二次電池用正極活物質およびその製造方法と、リチウムイオン二次電池
CN103594713A (zh) 一种磷酸铁锂电极材料的制造方法
CN110459758B (zh) 一种制备锂离子动力电池高压富锂锰基正极材料的方法
Li et al. Rhombohedral-structured LiVO2 prepared by a novel two-step method and its electrochemical properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240605

Address after: Room 401, Building 4, No. 235 Roma Road, Qingxi Town, Dongguan City, Guangdong Province, 523000

Patentee after: Dongguan detai Energy Co.,Ltd.

Country or region after: China

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin City Seven Star District Building Road No. 12

Patentee before: GUILIN University OF TECHNOLOGY

Country or region before: China