CN108265054A - 赋予植物黄化曲叶病毒病抗性的sl-linc2基因的应用 - Google Patents

赋予植物黄化曲叶病毒病抗性的sl-linc2基因的应用 Download PDF

Info

Publication number
CN108265054A
CN108265054A CN201810126724.9A CN201810126724A CN108265054A CN 108265054 A CN108265054 A CN 108265054A CN 201810126724 A CN201810126724 A CN 201810126724A CN 108265054 A CN108265054 A CN 108265054A
Authority
CN
China
Prior art keywords
linc2
gene
plant
tomato
tylcvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810126724.9A
Other languages
English (en)
Inventor
杨郁文
黄俊宇
张保龙
王金彦
张雨濛
周宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Academy of Agricultural Sciences
Original Assignee
Jiangsu Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Academy of Agricultural Sciences filed Critical Jiangsu Academy of Agricultural Sciences
Priority to CN201810126724.9A priority Critical patent/CN108265054A/zh
Publication of CN108265054A publication Critical patent/CN108265054A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Abstract

本发明涉及番茄非编码RNA基因SL‑LINC2及其应用,属于植物基因工程领域。该基因的cDNA序列SEQ ID NO.1为番茄中首次报道,表达分析表明该基因受TYLCV诱导后上调表达,对获得的转基因番茄植株进行PCR以及RT‑PCR验证后,接种TYLCV进行抗病性评价,结果表明,转基因植株与对照相比TYLCV的抗性显著提高。因此,SL‑ LINC2基因可作为目的基因导入植物,提高植物对病毒的抗病性。

Description

赋予植物黄化曲叶病毒病抗性的SL-LINC2基因的应用
一、技术领域
本发明涉及一个赋予植物黄化曲叶病毒病抗性的SL-LINC2基因及其在植物抗黄化曲叶病毒病中的应用。
二、背景技术
番茄黄化曲叶病毒病是造成世界范围内番茄品质和产量降低的重要病害之一,造成该病的病原为双生病毒科(Geminiviridae)菜豆金色花叶病毒属(Begomovirus)的番茄黄化曲叶病毒(Tomato Yellow Leaf Curl Virus,TYLCV)。目前生产中解决这一问题最有效的是种植抗病品种,当前已经报道的番茄黄化曲叶病毒的抗性基因有Ty-1Ty-2Ty-3Ty- 3aTy-4Ty-5等。这些基因都来源于野生番茄品种。鉴于番茄栽培种资源中缺乏TYLCV的抗性基因,克隆可应用于生产的抗TYLCV的基因具有重要理论意义和实践价值。
长链非编码RNA(lncRNA)是一类转录本长度超过200nt的RNA分子,它们不编码蛋白,而是以RNA的形式在表观遗传调控,细胞周期调控和细胞分化调控等众多生命活动中发挥重要作用(Gupta et al., 2010; Wapinski et al., 2011)。人类中已经证明lncRNA与肿瘤的发生、发展、侵袭和转移等生物学行为密切相关(Gibb et al., 2011),但在植物中功能明确的lncRNA寥寥无几。目前已知植物lncRNA 的重要功能包括调控植物生殖发育,如成花转变(Swiezewski et al., 2009;Heo et al.,2011;Sun et al.,2013),水稻光敏核不育(Ding et al.,2012; Zhou et al., 2012),玉米花药发育(Ma et al., 2008);响应逆境胁迫,如磷胁迫(Burleigh and Harrison, 1999; Shin et al., 2006; Franco-Zorrilla et al., 2007a),干旱胁迫,盐胁迫(Ben Amor et al., 2009)。植物抗病,如拟南芥抗枯萎病(Zhu et al., 2014),番茄抗晚疫病(Cui et al., 2017)等。但番茄抗黄化曲叶病毒病相关lncRNA 的研究目前未见报道。
lncRNA在多种层面上调控基因的表达水平,其作用机制包括调控基因表达,即参与基因表观遗传调控,基因转录调控,基因转录后调控;与 DNA、RNA、蛋白质分子作用,顺式或反式调控靶基因表达(李睿等,2016)。调控拟南芥开花时间的lncRNA COOLAIR和lincRNACOLDAIR,水稻光敏核不育的LDMAR调控机制都属于基因表观遗传调控。基因转录调控是指lncRNA能够作为DNA元件,竞争性结合转录因子或进行可变剪切来调控基因转录。如生长阻滞特异转录物5(GAS5)通过模拟糖皮质激素应答元件来结合糖皮质激素受体的DNA 结合结构域,阻止糖皮质激素受体与糖皮质激素应答元件的相互作用,从而抑制下游基因的表达,促进细胞凋亡的发生(Kino et al., 2010)。lncRNA还可以通过结合蛋白质调控基因表达。首先,lncRNA 可作为引导分子将蛋白质招募到基因转录发生位置,调控基因的表达。拟南芥中 COLDAIR在春化过程中可以引导 PRC2 至 FLC 基因组位置引起 H3K27me3,抑制 FLC基因表达。Huart 等发现由 p53 诱导产生的长链基因间非编码 RNA p21可引导不均一核糖核蛋白K,将其定位到 p21基因启动子区,激活 p21 转录表达(Huarte et al., 2010)。lncRNA 还可作为两个或者两个以上蛋白质的支架分子,将这些蛋白质组合成蛋白质复合物。HOTAIR 能够作为支架结构同时结合 PRC2 和组蛋白赖氨酸特异性去甲基化酶 1(lysine-specific demethylase1, LSD1) 两种染色质修饰复合物,这两种复合物分别介导 H3K27me3 和组蛋白 H3 第 4 位赖氨酸去甲基化 (histone H3 lysine K4demethylation) 修饰,协同发挥转录抑制作用(Tsai et al., 2010)。最后,lncRNA 还可作为蛋白质的诱饵分子将结合在基因组的蛋白质调走,从而抑制基因的转录和表达。
通过对抗番茄黄化曲叶病毒病材料CLN2777A(Chen et al., 2013)的转录组分析,鉴定出529个可能与抗性相关的长链非编码RNA基因。进一步通过qRT-PCR以及病毒诱导的基因沉默(VIGS)筛选,获得了一个与黄化曲叶病毒病抗性密切相关的基因,将该基因命名为SL-LINC2,为一个长链非编码RNA。进行后续抗病性鉴定,结果显示此基因为黄化曲叶病毒病抗性基因。SL-LINC2的分离可以进一步丰富抗性基因资源,其功能研究为该类基因的进一步利用奠定基础。
参考文献:
李睿,杨永芳,李冉,朱鸿亮,罗云波. (2016).长链非编码RNA的功能及其作用机制.生命科学,28(6):703-711.
Ben Amor, B., Wirth, S., Merchan, F., Laporte, P., d'Aubenton-Carafa, Y.,Hirsch, J., Maizel, A., Mallory, A., Lucas, A., Deragon, J.M., Vaucheret, H.,Thermes, C., and Crespi, M. (2009). Novel long non-protein coding RNAsinvolved in Arabidopsis differentiation and stress responses. Genomeresearch, 19, 57-69.
Burleigh, S.H., and Harrison, M.J. (1999). The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involvesphosphate translocation to the shoots. Plant Physiol 119, 241-248.
Chen TZ, Lv YD, Zhao TM, Li N, Yang YW, Yu WG, He X, Liu TL, Zhang BL.(2013). Comparative Transcriptome Profiling of a Resistant vs.SusceptibleTomato (Solanum lycopersicum) Cultivar in Response to Infection by TomatoYellow Leaf Curl Virus. PLOS one, 8(11): e80816.
Cui, J., Luan, Y., Jiang, N., Bao, H., and Meng, J. (2017). Comparativetranscriptome analysis between resistant and susceptible tomato allows theidentification of lncRNA16397 conferring resistance to Phytophthora infestansby co-expressing glutaredoxin. The Plant Journal, 89, 577-589.
DingJ, LuQ, OuyangY, etal. (2012) A long noncoding RNA regulatesphotoperiod-sensitive male sterility, an essential component of hybrid rice.Proc. Natl. Acad. Sci. USA, 109:2654–2659.
Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I.,Rubio-Somoza, I., Leyva, A., Weigel, D., Garcia, J.A., and Paz-Ares, J.(2007a). Target mimicry provides a new mechanism for regulation of microRNAactivity. Nature genetics, 39, 1033-1037.
Gibb, E.A., Brown, C.J., and Lam, W.L. (2011). The functional role oflong non-coding RNA in human carcinomas. Molecular cancer, 10, 38.
Gupta R, Shah N, Wang K, et al. (2010) Long non-coding RNA HOTAIRreprograms chromatin state to promote cancer metastasis. Nature, 464: 1071-76.
Heo J, Sung S. (2011)Vernalization-mediated epigenetic si-lencing by along intronic noncoding RNA. Science, 331: 76–79.
Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J.,Kenzelmann-Broz, D., Khalil, A.M., Zuk, O., Amit, I., Rabani, M., Attardi,L.D., Regev, A., Lander, E.S., Jacks, T., and Rinn, J.L. (2010). A LargeIntergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression inthe p53 Response. Cell, 142, 409-419.
Kino, T., Hurt, D.E., Ichijo, T., Nader, N., and Chrousos, G.P. (2010).Noncoding RNA Gas5 Is a Growth Arrest- and Starvation-Associated Repressor ofthe Glucocorticoid Receptor. Science signaling, 3(107):ra8.
Ma, J.X., Yan, B.X., Qu, Y.Y., Qin, F.F., Yang, Y.T., Hao, X.J., Yu,J.J., Zhao, Q., Zhu, D.Y., and Ao, G.M. (2008). Zm401, a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microsporedevelopment and can regulate the floret formation in maize. Journal ofcellular biochemistry, 105, 136-146.
Shin, H., Shin, H.-S., Chen, R., and Harrison, M.J. (2006). Loss of At4function impacts phosphate distribution between the roots and the shootsduring phosphate starvation. The Plant Journal, 45, 712-726.
Sun Q, Csorba T, Konstantina et al. (2013) R-Loop Stabilization RepressesAntisense Transcription at the Arabidopsis FLC Locus. Science , 340(6132):619-621.
Swiezewski S, Liu F, Magusin A, et al.(2009) Cold-induced silencing bylong antisense transcripts of an Arabidopsis Polycomb target. Nature, 462:799–802.
Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F.,Shi, Y., Segal, E., and Chang, H.Y. (2010). Long Noncoding RNA as ModularScaffold of Histone Modification Complexes. Science, 329, 689-693.
Wapinski O, Chang H. (2011) Long noncoding RNAs and human disease. TrendsCell Biol, 21: 354–361.
Zhou H, et al. (2012) Photoperiod- and thermo-sensitive genic malesterility in rice are caused by a point mutation in a novel noncoding RNAthat produces a small RNA. Cell Res, 22:649–660.
Zhu, Q.H., Stephen, S., Taylor, J., Helliwell, C.A., and Wang, M.B.(2014). Long noncoding RNAs responsive to Fusarium oxysporum infection inArabidopsis thaliana. The New phytologist 201, 574-584.
三、发明内容
技术问题
本发明的目的是:提供了一个赋予植物黄化曲叶病毒病抗性的SL-LINC2基因的应用,该基因不编码蛋白,受TYLCV诱导后表达量增加。过量表达可以显著提高烟草对TYLCV的抗性。可以利用本发明基因构建成各种植物表达载体,应用于农业生物技术育种以提高植物对TYLCV的抗病性。
技术方案
本发明涉及一个植物基因SL-LINC2的功能分析和应用,该基因来源于番茄CLN2777A。其转录本全长为3451bp, 缺少特异完整开放阅读框,是一个长链非编码RNA 。
本发明还提供了含有本发明基因的表达载体和宿主菌以及扩增该基因的任一片段的引物。
本发明赋予植物黄化曲叶病毒病抗性的SL-LINC2基因,该基因受TYLCV诱导后表达量增加。通过病毒诱导的基因沉默技术(VIGS)沉默抗病材料CLN2777A中的SL-LINC2基因,沉默植株的抗病性显著降低。将SL-LINC2与Pcambia2301构建植物表达载体转化番茄受体材料,结果该基因过量表达可以大幅降低平均发病率,说明该基因具有对TYLCV的抗性。可以利用本发明基因构建成各种植物表达载体,应用于农业生物技术育种以提高TYLCV相关寄主植物的抗病性状或用在番茄抗黄化曲叶病抗性改良中。
SL-LINC2的功能研究可为揭示其表达调控机理以及具体功能打下基础,还可应用于植物抗病基因工程的基因工程改良中。
赋予植物黄化曲叶病毒病抗性的SL-LINC2基因的应用,包括:
1)SL-LINC2基因的克隆和表达载体构建
以番茄抗病材料(CLN2777A) cDNA为模板,用引物
P1: 5’- TCAGGATCCGTAGCTAACTGTAAAAATAAG-3’,
P2: 5’- CGGGGTACCATCAGAAATTTAATAAAGCAA -3’
扩增得到3.4 kb片段,将该片段命名为SL-LINC2,将该基因用BamH1和KpnI酶切,并与Pcambia2301载体连接,连接产物用JM109感受态细胞进行热激转化,测序后成功构建的质粒命名为Pcambia2301: SL-LINC2
2)转基因植株的获得
将步骤1)中构建好的Pcambia2301: SL-LINC2提取质粒后,用冻融法将重组载体质粒转化农杆菌GV3101,用农杆菌介导法转化番茄受体材料AC,当代植株为T0代,种子为T1代,T1代种子喷施卡那霉素鉴定,叶片黄花的植株为非转基因植株。选择叶片正常绿色的植株,PCR方法分别在DNA和RNA水平上检测目的基因是否转入以及是否成功表达,用引物P1和P2扩增植株DNA进行PCR鉴定3457bp大小片段,用引物P3: 5’- TCATCTTTACCCTGAACGGAA-3’和P4: 5’- TGTATCGGAGTTCCCTACGGC-3’鉴定目的基因的表达量。获得转SL-LINC2基因的阳性转基因植株T1代植株,收获种子为T2代。选择T2代种子纯合不分离植株,收获种子为T3代。
有益效果
1、本发明获得了一个全新的赋予植物黄化曲叶病毒病抗性的SL-LINC2基因。尽管人类中已经证明lncRNA与肿瘤的发生、发展、侵袭和转移等生物学行为密切相关。但是植物中功能明确的lncRNA寥寥无几,而且已知植物lncRNA 的重要功能主要是调控生殖发育,很少有明确抗病作用的lncRNA。本发明通过大量筛选黄化曲叶病毒病诱导的基因,获得了抗病关键基因番茄长链非编码RNA基因SL-LINC2,该基因受TYLCV接种诱导后上调表达,在抗病材料中沉默该基因植株的抗性显著下降。转基因实验证明该基因的过量表达提高了番茄对TYLCV的抗性。说明其具有对黄化曲叶病毒病的抗性。
2、本发明有助于更好地了解长链非编码RNA的抗病机制。SL-LINC2基因的克隆为进一步了解病原菌与抗病基因互作,抗病信号传导通路奠定基础。本发明获得了SL-LINC2基因的转基因植株。通过对转基因植株的进一步分析,可以获得其调控的抗性信号传导通路。SL-LINC2基因的分离以及功能鉴定,一方面深化了人们对植物中长链非编码RNA在抗病中的作用机制的理解,另一方面为该基因的进一步应用奠定基础。
3、本发明应用于黄化曲叶病抗性育种。SL-LINC2基因的抗性效果好,可大幅降低平均发病率,所以在育种中有较大的应用价值。因此有望可作为目的基因导入植物,提高植物对病毒的抗病性,以进行植物品种改良。
四、附图说明
图1 利用RT-PCR克隆SL-LINC2
图2 番茄SL-LINC2受TYLCV的诱导表达
图3 SL-LINC2沉默后植株的抗性显著下降。a,TRV2:PDS注射后植株白化;b, 沉默植株的SL-LINC2表达量显著下降;c, 沉默植株的病毒数显著上升。
图4 SL-LINC2转基因植株的分子检测。a, DNA, 基因组水平检测;b, cDNA, RNA水平检测,M, Marker。mock为未转化植株,1-16为转化植株。
图5 SL-LINC2转基因植株的抗性鉴定。WT,野生型;T1, T2, T3均为SL-LINC2转基因烟草株系
五、具体实施方式
下述实施方式中所用方法如无特别说明均为常规方法,所用引物序列均由南京金斯瑞生物技术有限公司合成,所述百分含量均为质量百分含量。本实验中基因来源于番茄抗番茄黄化曲叶病毒病材料(CLN2777A)。
1)番茄SL-LINC2基因的克隆
选用番茄抗TYLCV 品种CLN2777A (Chen et al., 2013),待番茄长至3-4叶期,取番茄叶片液氮速冻后,研钵磨碎,用北京天根公司RNA提取试剂盒(DP419)抽提总RNA,电泳鉴定总RNA质量;根据番茄RNA-Seq数据(Chen TZ. et al, 2013),鉴定出529个可能与抗性相关的长链非编码RNA基因。通过qRT-PCR验证,发现多个EST在TYLCV侵染番茄过程中上调表达。同时利用VIGS验证鉴定出一个与黄化曲叶病毒病抗性密切相关的EST。根据该EST序列设计5’ RACE和3’ RACE 引物,经过两轮巢式PCR扩增,获得该基因的5’和3’末端。根据获得的末端片段设计扩增基因全长的引物P1和P2。用高保真Pfu 酶(TAKARA)进行扩增,PCR程序如下:94℃变性3分钟,94℃变性45s, 56℃复性1min,72℃延伸3min,38个循环后,72℃延伸5min。将扩增得到的片段克隆至pMD19-T载体(TAKARA),委托南京金斯瑞公司测序,获得序列全长3451bp,该载体命名为pMD19-T: SL-LINC2
分析上述获得的番茄SL-LINC2基因的cDNA序列SEQ ID NO. 1,该基因不编码蛋白,在NCBI比对发现与目前所有基因的同源性均较低。
2)SL-LINC2基因的诱导表达分析
番茄长到3~4 片真叶时接种TYLCV病毒(Chen TZ. et al, 2013)。分别取接种0,3,5,7dpi的幼嫩叶片,提取总RNA。用RQ1 DNnase(Promega公司)处理总RNA,并用HiScript II QRT SuperMix for qPCR (Vazyme公司)进行反转录,制备的cDNA于qRT-PCR,定量引物为P3,P4。根据番茄持家基因actin设计的引物JAGN1015:5’-TGGTCGGAATGGGACAGAAG-3’和JAGN1016:5’-CTCAGTCAGGAGAACAGGGT-3’作为参照以及检测是否有DNA污染。定量体系为15μL反应体系中加入cDNA模板1μL,引物各3 nmol,2×SYBR qPCR Master Mix(Vazyme公司)7.5μL。扩增条件为:94℃ 5'后94℃ 10'',60℃ 10'',72℃ 10'',循环40次。表达分析结果显示TYLCV处理3d 后表达量未见明显变化,处理5d后,表达量显著增加,处理7d后,表达量回到正常水平(图2)。
3)SL-LINC2基因的载体构建
VIGS载体构建。
以pMD19-T:SL-LINC2为模板,用引物P5: 5’-CTGTCTAGATCATCTTTACCCTGAACGGAA-3’, P6: 5’- CTTAGATCCTGTATCGGAGTTCCCTACGGC-3’扩增获得300bp片段,用BamH1和Xba1分别酶切扩增片段和TRV2载体(Tang Y, Lai YZ, Liu YL. Virus-Induced GeneSilencing Using Artificial miRNAs in Nicotiana benthamiana. 2013, Methods inMolecular Biology, 8: 99-107),将酶切产物清洁后连接。连接产物转化DH5α感受态细胞。测序鉴定阳性克隆命名为TRV2:SL-LINC。将测序正确的质粒电击转化农杆菌细胞。
过表达载体的构建。
以pMD19-T: SL-LINC2为模板,用引物P1和P2扩增获得3457bp片段,用BamH1和Kpn1分别酶切扩增片段和pcambia2301载体, 将酶切产物清洁后连接。连接产物转化DH5α感受态细胞。测序鉴定阳性克隆命名为pcambia2301: SL-LINC2。将测序正确的质粒电击转化农杆菌细胞。
)转基因植株的获得
番茄品种CLN2777A种于穴盘中,待子叶完全展开时,将TRV2: SL-LINC注射番茄子叶,同时设置PDS和空载体TRV2对照。15天后注射空载体TRV2以及TRV2: SL-LINC的植株表型未见改变;而注射PDS的番茄植株叶片白化,说明VIGS体系成功(图3a)。接种TYLCV病毒,15天后鉴定病毒含量。引物为根据TYLCV 外壳蛋白V2的定量引物, JAGN2126:5’-GGATTTCGTTGTATGTTAGC-3’和JAGN2127:5’- ATGATTATATCGCCTGGTC-3’,内参仍为番茄持家基因actin设计的引物JAGN1015和JAGN1016。结果表明SL-LINC沉默株的病毒数为TRV2的46倍,达到极显著水平。说明番茄SL-LINC基因对CLN2777A的抗病作用至关重要。
将pcambia2301: SL-LINC2提取质粒后,用冻融法将重组载体质粒转化农杆菌GV3101,用农杆菌介导法转化番茄受体材料AC,当代植株为T0代,种子为T1代,T1代种子喷施卡那霉素鉴定,叶片黄花的植株为非转基因植株。选择叶片正常绿色的植株,PCR方法分别在DNA和RNA水平上检测目的基因是否转入以及是否成功表达,用引物P1和P2扩增植株DNA进行PCR鉴定3457bp大小片段,结果获得了15株阳性植株(图4a)。用引物P3: 5’-TCATCTTTACCCTGAACGGAA-3’和P4: 5’- TGTATCGGAGTTCCCTACGGC-3’鉴定目的基因的表达量,结果有9个株系中SL-LINC2为过量表达(图4b)获得转SL-LINC2基因的阳性转基因植株T1代植株,收获种子为T2代。选择T2代种子纯合不分离植株,收获种子为T3代。挑选表达量最高的株系LINC2-5和LINC2-7进行抗病性鉴定。接种15d进行病毒含量分析。结果表明,转基因株系的病毒数显著低于对照植株,LINC2-5和LINC2-7的相对病毒量仅为对照的31.1%和55.2%(图5)。说明SL-LINC2可以赋予受体植株的黄化曲叶病毒病抗性。
SEQ ID NO.1:
GTAGCTAACTGTAAAAATAAGTTACAAAATTAAATTTAAGTATAGATTGAAAAAAAAATATAAAATTATTTTTTCTTCTGAAAAATAAAATAGAATAATATGTTTGAGCCTAAAGGTAATGCGATATATATAATAATTTTTTTTGATTAAAAAAACCCAATAATTACAGAAATACCCTTCACTCTCTCCGCCGATTTTCTCTCTTCTCGCCAAACTCCGGTGAGACAACCAAATCCACTGGCTTCCTCTATTCCCCAGCCGAGACCACCAACGAATCCCCATCATCTTTACCCTGAACGGAAAACCCTAGCCGCCGTCCTCGCTCCTCCTTTCCCTTATCTCCTCGTCTACCTCCAAACAGAACCACCGTGAAACCACCAAAGACAACGAAACGCGGCCTTCTTTCTTGCTTTTCTCCGTTGACAGCCACCATTGAAACCCCCAACATATGATTTCGTTTCTTCGTCTTCACTATATCGTCAACGAACAAGACCCCTCCACTATTGCGTCGTCCTCAACAACGAACCAGGCAAACCAGCCGTAGGGAACTCCGATACAGAAATTCCACGAGTCAATAGCATCTATATCCTGAAATGATAATTGCAGCGAGTCAGCATCAAATCTTGGTTCAGCTAAAGGCAAAACAGAAGATGTTGAAGCTTTCAAAAGAGACCTCCAGAATAAGCTAACTCAGATAGTTTCTCAGATCACTAAAGAAGAAGAGGAATACCGAGTTGAACAGAATATTCATCGGCAGGTTGAAGAAGAATTGATTATTTTGGAAAGTAAAGCATCACCGGTAGAGGGAATCACAAAAGAAAATATGGAAACAAGAGTTAGCCAGATATCCTTGAATTTGTGTTTTTTGCTCTTCTGCTACTTAGGAAATTTGTTGCTATCTGAACCAAAATTCCTGCCATAGTAGAGAATGCTAAGCATTTCCAGAAGGTAAAAAGAACTTCTATCCAAGTACCTTTACACACGAAGTTGCAAAATCCTAAACTGCTTCAGCTTGTATATTCATAGGGATATTCATGTCTGGGGCTTATCTAATTGTTTGACAATGGACATGAACCTCCTATTGTGGAGGTTGAGAATTAGAGTGGAGGGTCAATAGGTAGTTGGGCGTATTGCTTTTCTTTTCTCTCTGTTGTTCCTTTAGCCTCTGCTATCTTATTATCTTCTTGTTGTTTCTGCTTGTTGCTACTTTCTCTTTTTTATCATTTTTAGTATCGATGGTCTATTGGAAATAACTTCTCTACCTTCCCAAGGTAGGATTATAGTCTGTGTGCACTCTACCTTCCCAACGCAGGTGTAGAGCTAACTTTTATAGTTCATTTGCATCCTTTGGCACTCTTCCTCTGTCCATTCTGTTTTTTTTTTTATTAAGACAACTAGCAATTGATCTTGAAGCATCCCAACAATATTAACTCTTTTGCTATCAACAATATCAGTACAACAATATTAACTCTTTTGGTCGTTTTGGGGTGTTGTATGTCTATTTTTTTTTCCTTTCTTGTGTTCTTTGGCTCTTTTTTGTTTAGTTTATTCTCTTGGGTCTACTCTGTTATTTTGCACCTTCACATAATCTTGTTTTGTCTACTTATGTTTTGTGAATAATTCCGTGTAGGTGTACTATGTTGCTCATAACAAAAATTCTTGTGTTTATCTCGATGATATATTAACAAATAATAATTAGTAATTAATTTACTTTTTAAGTGAGCTATCAATTTTGATTTGCAAGTTACAATCACTTTAATAGAATAAAAAAAATTCGATCATTACTTATTCTATCTATTTTGTCAATATATGTTATTTCTTAATTTCTATTACTCTTCAAATCTCAGATCATATCAGTAAATACAAATGTGTTTGAGCACTCAAAAAAGTACTATTCAATTGTATTTTGTTTAATATAATTTGACAAAATGAGATTTGAAAAGTAATTACTCAAAATAATATCGTTTTTGTTATGAAAAATTGTATAGGTTTAGAAAAACTTTGATGAAATATGCTTTCTTCTATCTCCTTTTATGAATCTTCCTTTCAGGGTTAAAAGATTTTTTCAAGTTCCTTACTTTAACTTCTTTAAGCAAATAATATGTTGCCTTTTCAAAACTCTTCAAGAGTTTCAATTATAGTTATCAACTTGCATAACAATACTTGTATATGCTCTATGCATTTTGAATCCATTTAATCCTTATGAGGATGATAAACAAGTTTTTCAAAACCTTGTATATGCTAGATTTCGAACCCATTGGATATTTTCATATTAGTTTTGTCAAGTGACAACATTCAATATTAGATGTATGACATCTTCTAATGCCTAAATTGCAAGTCAATTAAGCTTTATGCTTATCAAGATGCACCATTCCACTTTTCACTTGATAATTATTTCTGCACCAACATGCTTTAATAGTCATAGAATTTATATCATAATAAATTTTTTCAATATTGCGTGCTATTGTATCAAAGATACCGTCAACGATATATCATTTTGCATTGATTCACAATACGACATAACTTCTCAGGAGGTTTCATAAAGTGTTATGTCGTAGGCTCTCCAAGAGCACATTATCTTCTTATTATGATCATTTTAATTCTTTCATCCTCTTCCTTTTTCAAAGATTATTTTATTTAGAATTGATTAGTCTATCATGCTTCATGCATGTCGTAGACTCTATTTTAAGGGACATTCAATAGGAGTATTTACAACTTTTGTGTTGCTACTAATCTCCCCCTTATGTTAGACAAACTAACATATATCTCAATTTTTGCAGAATCTATCCTTGTGCATCAATGTATATTCATTGATTATATACCACATATTAACATAATCAGATAAAAATTATTTGGTCCTCGACCATAAATCAATTGAAAGAAAATTTGATCATAATTTATCGGTCTGATGCGTACAATTACTTTTGTATGCAATATCGTATTTCATATCGACATATGAAGCTTTATTTTCGTAAACAGTAATTTTACTATTTGAGACATTTAGTGTCACATCATCTTGAGTATTTATCAATATTATCAAGATAAATTGTCTTGATTACATATTCTGAAATTGTGCTCTTAACTCAATTATTTTTGCACAAATAATTTTGTGAATGTCAAACTACATGTTGACAACAAATGCACATGTGATTATCTTATAAATATATCTTTTTATCATGTCACATGATAGGTGAACGGGCTCATATTCACCTTTTATACTTTTCAGAATTTAGAGATTTAATCTCAACATTAGTTGATCCAATCAATTTGTCATGAGAACAAACAACAAAAGAATTCTTGAAGAATCTTCTAGTTTTTTAATGTATGTCCATTACTCAGTATGCACATCTTTGGGATGACCAAATTATTCATGCCAACTAATAAAATTATTAGTACTTGTAAACTCCAAGTTTACTAGGCCATGTGCCTTTTGCTTTATTAAATTTCTGAT
序列表
<110> 江苏省农业科学院
<120> 赋予植物黄化曲叶病毒病抗性的SL-LINC2基因的应用
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3451
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 1
gtagctaact gtaaaaataa gttacaaaat taaatttaag tatagattga aaaaaaaata 60
taaaattatt ttttcttctg aaaaataaaa tagaataata tgtttgagcc taaaggtaat 120
gcgatatata taataatttt ttttgattaa aaaaacccaa taattacaga aatacccttc 180
actctctccg ccgattttct ctcttctcgc caaactccgg tgagacaacc aaatccactg 240
gcttcctcta ttccccagcc gagaccacca acgaatcccc atcatcttta ccctgaacgg 300
aaaaccctag ccgccgtcct cgctcctcct ttcccttatc tcctcgtcta cctccaaaca 360
gaaccaccgt gaaaccacca aagacaacga aacgcggcct tctttcttgc ttttctccgt 420
tgacagccac cattgaaacc cccaacatat gatttcgttt cttcgtcttc actatatcgt 480
caacgaacaa gacccctcca ctattgcgtc gtcctcaaca acgaaccagg caaaccagcc 540
gtagggaact ccgatacaga aattccacga gtcaatagca tctatatcct gaaatgataa 600
ttgcagcgag tcagcatcaa atcttggttc agctaaaggc aaaacagaag atgttgaagc 660
tttcaaaaga gacctccaga ataagctaac tcagatagtt tctcagatca ctaaagaaga 720
agaggaatac cgagttgaac agaatattca tcggcaggtt gaagaagaat tgattatttt 780
ggaaagtaaa gcatcaccgg tagagggaat cacaaaagaa aatatggaaa caagagttag 840
ccagatatcc ttgaatttgt gttttttgct cttctgctac ttaggaaatt tgttgctatc 900
tgaaccaaaa ttcctgccat agtagagaat gctaagcatt tccagaaggt aaaaagaact 960
tctatccaag tacctttaca cacgaagttg caaaatccta aactgcttca gcttgtatat 1020
tcatagggat attcatgtct ggggcttatc taattgtttg acaatggaca tgaacctcct 1080
attgtggagg ttgagaatta gagtggaggg tcaataggta gttgggcgta ttgcttttct 1140
tttctctctg ttgttccttt agcctctgct atcttattat cttcttgttg tttctgcttg 1200
ttgctacttt ctctttttta tcatttttag tatcgatggt ctattggaaa taacttctct 1260
accttcccaa ggtaggatta tagtctgtgt gcactctacc ttcccaacgc aggtgtagag 1320
ctaactttta tagttcattt gcatcctttg gcactcttcc tctgtccatt ctgttttttt 1380
ttttattaag acaactagca attgatcttg aagcatccca acaatattaa ctcttttgct 1440
atcaacaata tcagtacaac aatattaact cttttggtcg ttttggggtg ttgtatgtct 1500
attttttttt cctttcttgt gttctttggc tcttttttgt ttagtttatt ctcttgggtc 1560
tactctgtta ttttgcacct tcacataatc ttgttttgtc tacttatgtt ttgtgaataa 1620
ttccgtgtag gtgtactatg ttgctcataa caaaaattct tgtgtttatc tcgatgatat 1680
attaacaaat aataattagt aattaattta ctttttaagt gagctatcaa ttttgatttg 1740
caagttacaa tcactttaat agaataaaaa aaattcgatc attacttatt ctatctattt 1800
tgtcaatata tgttatttct taatttctat tactcttcaa atctcagatc atatcagtaa 1860
atacaaatgt gtttgagcac tcaaaaaagt actattcaat tgtattttgt ttaatataat 1920
ttgacaaaat gagatttgaa aagtaattac tcaaaataat atcgtttttg ttatgaaaaa 1980
ttgtataggt ttagaaaaac tttgatgaaa tatgctttct tctatctcct tttatgaatc 2040
ttcctttcag ggttaaaaga ttttttcaag ttccttactt taacttcttt aagcaaataa 2100
tatgttgcct tttcaaaact cttcaagagt ttcaattata gttatcaact tgcataacaa 2160
tacttgtata tgctctatgc attttgaatc catttaatcc ttatgaggat gataaacaag 2220
tttttcaaaa ccttgtatat gctagatttc gaacccattg gatattttca tattagtttt 2280
gtcaagtgac aacattcaat attagatgta tgacatcttc taatgcctaa attgcaagtc 2340
aattaagctt tatgcttatc aagatgcacc attccacttt tcacttgata attatttctg 2400
caccaacatg ctttaatagt catagaattt atatcataat aaattttttc aatattgcgt 2460
gctattgtat caaagatacc gtcaacgata tatcattttg cattgattca caatacgaca 2520
taacttctca ggaggtttca taaagtgtta tgtcgtaggc tctccaagag cacattatct 2580
tcttattatg atcattttaa ttctttcatc ctcttccttt ttcaaagatt attttattta 2640
gaattgatta gtctatcatg cttcatgcat gtcgtagact ctattttaag ggacattcaa 2700
taggagtatt tacaactttt gtgttgctac taatctcccc cttatgttag acaaactaac 2760
atatatctca atttttgcag aatctatcct tgtgcatcaa tgtatattca ttgattatat 2820
accacatatt aacataatca gataaaaatt atttggtcct cgaccataaa tcaattgaaa 2880
gaaaatttga tcataattta tcggtctgat gcgtacaatt acttttgtat gcaatatcgt 2940
atttcatatc gacatatgaa gctttatttt cgtaaacagt aattttacta tttgagacat 3000
ttagtgtcac atcatcttga gtatttatca atattatcaa gataaattgt cttgattaca 3060
tattctgaaa ttgtgctctt aactcaatta tttttgcaca aataattttg tgaatgtcaa 3120
actacatgtt gacaacaaat gcacatgtga ttatcttata aatatatctt tttatcatgt 3180
cacatgatag gtgaacgggc tcatattcac cttttatact tttcagaatt tagagattta 3240
atctcaacat tagttgatcc aatcaatttg tcatgagaac aaacaacaaa agaattcttg 3300
aagaatcttc tagtttttta atgtatgtcc attactcagt atgcacatct ttgggatgac 3360
caaattattc atgccaacta ataaaattat tagtacttgt aaactccaag tttactaggc 3420
catgtgcctt ttgctttatt aaatttctga t 3451
<210> 2
<211> 30
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 2
tcaggatccg tagctaactg taaaaataag 30
<210> 3
<211> 30
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 3
cggggtacca tcagaaattt aataaagcaa 30
<210> 4
<211> 21
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 4
tcatctttac cctgaacgga a 21
<210> 5
<211> 21
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 5
tgtatcggag ttccctacgg c 21
<210> 6
<211> 20
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 6
tggtcggaat gggacagaag 20
<210> 7
<211> 20
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 7
ctcagtcagg agaacagggt 20
<210> 8
<211> 30
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 8
ctgtctagat catctttacc ctgaacggaa 30
<210> 9
<211> 30
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 9
cttagatcct gtatcggagt tccctacggc 30
<210> 10
<211> 20
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 10
ggatttcgtt gtatgttagc 20
<210> 11
<211> 19
<212> DNA
<213> 人工序列(2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 11
atgattatat cgcctggtc 19

Claims (6)

1.一种来自番茄的抗黄化曲叶病毒病(TYLCVD)基因SL-LINC2,其核苷酸序列为序列表中SEQ ID NO.1所示的DNA序列或者可与序列表中SEQ ID NO.1限定的DNA序列杂交的核苷酸序列,其特征在于,将其转化植物,可赋予植物对黄化曲叶病毒病的抗性。
2.根据权利要求1所述的抗TYLCVD基因SL-LINC2,其特征在于,与序列表中SEQ IDNO.1限定的DNA序列杂交的条件为0.1×SSPE或 0.1×SSC、0.1% SDS的溶液中,65℃条件下洗膜。
3.根据权利要求1或2所述的抗TYLCVD基因SL-LINC2,其特征在于该基因不编码蛋白,是一个长链非编码RNA基因。
4.根据权利要求1或2所述的抗TYLCVD基因SL-LINC2,其特征在于,所述转化植物包括单子叶植物和双子叶植物。
5.根据权利要求1或2所述的抗TYLCVD基因SL-LINC2,其特征在于,所述单子叶植物可以是拟南芥。
6.含有权利要求1或2所述抗TYLCVD基因SL-LINC2的表达载体。
CN201810126724.9A 2018-02-08 2018-02-08 赋予植物黄化曲叶病毒病抗性的sl-linc2基因的应用 Pending CN108265054A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810126724.9A CN108265054A (zh) 2018-02-08 2018-02-08 赋予植物黄化曲叶病毒病抗性的sl-linc2基因的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810126724.9A CN108265054A (zh) 2018-02-08 2018-02-08 赋予植物黄化曲叶病毒病抗性的sl-linc2基因的应用

Publications (1)

Publication Number Publication Date
CN108265054A true CN108265054A (zh) 2018-07-10

Family

ID=62773871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810126724.9A Pending CN108265054A (zh) 2018-02-08 2018-02-08 赋予植物黄化曲叶病毒病抗性的sl-linc2基因的应用

Country Status (1)

Country Link
CN (1) CN108265054A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807137A (zh) * 2021-07-07 2022-07-29 忻州师范学院 马铃薯高温响应lncRNA及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003404A1 (en) * 1993-07-22 1995-02-02 Gene Shears Pty Limited Dna virus ribozymes
CN103667322A (zh) * 2013-11-21 2014-03-26 上海市农业科学院 一种抗番茄黄化曲叶病毒的多基因嵌合体avctc及其制备方法和应用
CN103849649A (zh) * 2012-12-03 2014-06-11 上海市农业科学院 一种利用病毒载体诱导番茄抗tylcv的方法
CN104822833A (zh) * 2012-10-16 2015-08-05 孟山都技术公司 用于控制植物病毒感染的方法和组合物
CN105274107A (zh) * 2015-10-14 2016-01-27 江苏省农业科学院 番茄非编码RNA基因LelncRNA1及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003404A1 (en) * 1993-07-22 1995-02-02 Gene Shears Pty Limited Dna virus ribozymes
CN104822833A (zh) * 2012-10-16 2015-08-05 孟山都技术公司 用于控制植物病毒感染的方法和组合物
CN103849649A (zh) * 2012-12-03 2014-06-11 上海市农业科学院 一种利用病毒载体诱导番茄抗tylcv的方法
CN103667322A (zh) * 2013-11-21 2014-03-26 上海市农业科学院 一种抗番茄黄化曲叶病毒的多基因嵌合体avctc及其制备方法和应用
CN105274107A (zh) * 2015-10-14 2016-01-27 江苏省农业科学院 番茄非编码RNA基因LelncRNA1及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINYAN WANG ET AL.: "Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection", 《SCIENTIFIC REPORTS》 *
无: "NCBI Reference Sequence: XR_738657.2", 《GENBANK》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807137A (zh) * 2021-07-07 2022-07-29 忻州师范学院 马铃薯高温响应lncRNA及其应用

Similar Documents

Publication Publication Date Title
CN101050461B (zh) 来源于拟南芥的与耐逆性相关的转录因子及其编码基因与应用
CN101220363B (zh) 水稻bZIP及其基因在提高植物耐逆性能上的应用
Checker et al. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress
Liu et al. The R3-MYB gene GhCPC negatively regulates cotton fiber elongation
US9809827B2 (en) Transgenic maize
US8222484B2 (en) Floral transition genes in maize and uses thereof
CN103408648B (zh) 水稻bg1蛋白及其编码基因在调节植物生长发育中的应用
Tang et al. Alternative splicing is required for RCT1-mediated disease resistance in Medicago truncatula
WO2009127897A1 (zh) 水稻蛋白激酶基因OsCIPK15及其在提高植物耐盐能力中的应用
Duan et al. CMYB1 encoding a MYB transcriptional activator is involved in abiotic stress and circadian rhythm in rice
WO2017092538A1 (zh) 烟草基因NtTCTP在植物抗马铃薯Y病毒中的应用
JPWO2013111755A1 (ja) 向上した環境ストレスに対する耐性を示す植物体及びその製造方法
CN108341858B (zh) 水稻基因OsNAR2.1在抗旱方面的应用
CN111154786B (zh) 调控植物种子萌发与幼苗生长的基因及其编码蛋白与应用
CN110713994A (zh) 一种植物耐逆性相关蛋白TaMAPK3及其编码基因和应用
CN105237631B (zh) 一种来源于羊草与抗寒相关的蛋白及其编码基因与应用
CN108265054A (zh) 赋予植物黄化曲叶病毒病抗性的sl-linc2基因的应用
CN108546705B (zh) 一种拟南芥开花时间调节基因ssf及其应用
CN103266093A (zh) 水稻油菜素内酯受体激酶类似蛋白及其编码基因与应用
BR102013007201B1 (pt) Composições e métodos contendo promotor específico de folhas para modificar a expressão de genes de interesse em plantas
KR20150074560A (ko) 벼 유래 OsMDB1 유전자를 이용한 초장이 조절된 형질전환 식물체의 제조방법 및 그에 따른 식물체
CN114561387B (zh) 花生启动子及其应用
CN114644702B (zh) Tango蛋白、其相关生物材料以及植物育种方法
Lee et al. Transgene instability due to promoter hypermethylation and deletion in transgenic Nicotiana benthamiana
Kumar et al. Nuclear localization and target genes analysis of an ABA and drought-responsive transcription factor (RDA1) in rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180710