CN108251550B - 一种HRM检测烟草镉转运基因NtHMA4突变的方法 - Google Patents

一种HRM检测烟草镉转运基因NtHMA4突变的方法 Download PDF

Info

Publication number
CN108251550B
CN108251550B CN201711320346.XA CN201711320346A CN108251550B CN 108251550 B CN108251550 B CN 108251550B CN 201711320346 A CN201711320346 A CN 201711320346A CN 108251550 B CN108251550 B CN 108251550B
Authority
CN
China
Prior art keywords
hrm
tobacco
nthma4
sample
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711320346.XA
Other languages
English (en)
Other versions
CN108251550A (zh
Inventor
张吉顺
任学良
赵海军
张超
王仁刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Guizhou Institute of Tobacco Science
Original Assignee
Zhejiang University ZJU
Guizhou Institute of Tobacco Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Guizhou Institute of Tobacco Science filed Critical Zhejiang University ZJU
Priority to CN201711320346.XA priority Critical patent/CN108251550B/zh
Publication of CN108251550A publication Critical patent/CN108251550A/zh
Application granted granted Critical
Publication of CN108251550B publication Critical patent/CN108251550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种HRM检测烟草镉转运基因NtHMA4突变的方法,其特征在于:包含以下步骤:(1)采用CTAB法提取烟草样品苗期叶片基因组DNA;(2)以所述基因组DNA为模板,利用引物对进行PCR扩增;(3)PCR扩增产物利用HRM检测仪器LightScanner96进行突变位点扫描;(4)根据HRM曲线结果,判断烟草待检样品的基因型;当待测样品的HRM曲线与野生型对照贵烟1号一致时,则为野生型材料;如果出现其他曲线类型,且HRM荧光曲线峰值ΔF≥0.05,则为疑似基因突变材料;(5)DNA测序验证HRM筛选结果;(6)NtHMA4材料的镉表型测定。

Description

一种HRM检测烟草镉转运基因NtHMA4突变的方法
技术领域
本发明属于农业生物技术领域,尤其涉及一种筛选烟草低镉突变材料的方法。
背景技术
镉(Cd)是土壤和环境中毒性和生物迁移性最强的重金属元素之一,镉污染居我国土壤重金属污染首位。全球约2.35x1012平方米的耕地受到重金属污染,中国约有2.79x109平方米的镉污染农田。土壤中,即使极低浓度的镉也可被植物吸收富集,并通过食物链进入人体,进而损害肾脏、肺、心血管和肌肉骨骼系统的功能,严重危害人类健康。
烟草是一种具有较强的镉富集能力的经济作物。且香烟中的镉含量与烟气中镉含量相关性高,在香烟燃烧过程中,烟叶中约有40-55%的镉进入烟气,约10%的镉可通过烟气进入人体肺部,严重危害人体健康。同时,土壤中较高浓度的镉会影响烟草根系生长、叶绿体形成,进而影响其生物学产量,并通过抑制钾等元素的吸收影响烟叶品质等。因此,降低烟叶中的镉含量、选育低镉烟草新品种可从源头上解决上述问题,日益受到烟草遗传育种学家的重视。
利用理化诱变技术创制新种质已成为作物育种的重要手段。而突变基因分子筛选是诱变育种的关键。针对烟草EMS等诱变群体,目前已经建立了一些突变基因筛选方法,如基于CELI核酸内切酶的TILLING,基于变性凝胶电泳的SSLP检测,和近年新发展的基于高通量DNA测序的Seq-TILLING方法。但上述方法耗时、耗力或成本较高,迫切需要建立一种简易、快速的烟草突变基因检测体系。
HRM(高熔解曲线分辨技术)是一种新兴分子诊断技术,其依据碱基序列不同导致核苷酸片段熔解温度不同的物理性质,在实时荧光定量PCR的基础上通过饱和染料监控核酸的熔解曲线变化来判断核苷酸片段性质。HRM技术具有操作简单、PCR产物无需后处理(如酶切、电泳等)可直接闭管快速检测等优势,已在玉米、小麦、油菜等作物的突变位点扫描和基因分型等方面得到广泛应用。目前,利用HRM技术筛选烟草突变基因的研究迄今尚未见报道。
发明内容
本发明要解决的技术问题是:提供了一种烟草镉转运相关基因NtHMA4的突变检测方法,利用该检测方法能快速筛选获得烟草镉转运基因NtHMA4的突变材料,从而获得相应的烟草低镉突变体,加快低镉烟草新品种选育。
本发明的技术方案是:一种HRM检测烟草镉转运基因NtHMA4突变的方法,包含以下步骤:(1)采用CTAB法提取烟草样品苗期叶片基因组DNA;(2)以所述基因组DNA为模板,利用引物对进行PCR扩增;(3)PCR扩增产物利用HRM检测仪器LightScanner96进行突变位点扫描;(4)根据HRM曲线结果,判断烟草待检样品的基因型;当待测样品的HRM曲线与野生型对照贵烟1号(附图中Ⅱ号线)一致时,则为野生型材料;如果出现其他曲线类型,且HRM荧光曲线峰值ΔF≥0.05,则为疑似基因突变材料;(5)DNA测序验证HRM筛选结果;(6)NtHMA4材料的镉表型测定。
所述的引物对为HZ1、HZ2、HZ3、HZ4、HZ5和HZ6,具体如下:
Figure GDA0003249303360000031
本发明的有益效果:本发明提供的方法利用HRM技术可以快速进行突变基因的检测,PCR反应后的HRM突变基因扫描仅需15分钟可完成一块96孔PCR板的检测;
高通量,可构建样品池提高检测通量,同时结合野生型和纯合突变型对照的HRM曲线可对未知样本快速进行基因分型。
附图说明
图1为鉴定烟草NtHMA4突变基因a)HRM烟草NtHMA4突变基因;b),c),d)依次为a)中组I和组III中三份NtHMA4突变基因材料的测序峰图。
具体实施方式
(1)样品采集与烟草基因组DNA提取
于烟草团棵期采集嫩叶,每株系取样6株,每3株叶片层叠后,利用打孔器获取等量叶片用于构建基因池,利用改良的CTAB法提取烟草基因组DNA,终溶于适量TE缓冲液,用Nanodrop 2000紫外分光光度计测定每个样品DNA浓度,并以1%琼脂糖凝胶电泳检测DNA质量。将合格的DNA样本统一稀释至100ng/μl,-20℃保存在96孔PCR板。
(2)PCR扩增
以提取的基因组DNA为模板,利用HZ1、HZ2、HZ3、HZ4、HZ5和HZ6引物对进行PCR扩增。10μl PCR体系包括5μl的2×Gene Solution mastermix(上海硕盟生物科技有限公司),20×EvaGreen Dye(Biotium,Hayward,USA)0.5μl,正、反向引物(10μM)各0.2μl,1μl的DNA模板,去离子无菌水补足至10μl,最后加一滴矿物油防止溶液蒸发。PCR反应程序为:94℃预变性5min;94℃变性30s,65℃退火30s,72℃延伸30s,40个循环;72℃终延伸7min;4℃保存。
(3)HRM检测
PCR产物利用HRM检测仪器LightScanner96进行HRM曲线扫描。PCR结束后,将PCR板短暂离心后直接用HRM检测仪器LightScanner96(Idaho Technology Inc.,USA)对PCR产物进行扫描。PCR产物以每秒0.1℃的速度从55℃加热至95℃,荧光信号强度随温度升高而发生变化形成熔解曲线,之后用LightScanner数据分析软件Call IT TM 2.0(IdahoTechnology Inc.)根据操作说明分析数据。观察并分析表示样本与对照(野生型)的荧光值相对差异(ΔFluorescence,ΔF)的荧光变化曲线以及非标记探针分型的荧光值随温度变化的导数(-dF/dT)曲线。当荧光曲线峰值ΔF≥0.05认为有明显的差异,并重复验证。
(4)DNA测序
筛选获得的HMA4基因候选突变材料,利用相应的引物,采用KOD高保真Taq酶进行PCR反应,PCR反应体系及扩增程序参照产品说明书。PCR产物经1%琼脂糖凝胶电泳分离后,在凝胶紫外分析仪下用手术刀切割目的片段,并用AxyPrep凝胶回收试剂盒回收、纯化,进行DNA测序。
结合HRM分析和DNA测序结果,共鉴定出21份NtHMA4基因的SNP突变材料,包括15份引起密码子改变的错义突变和6份同义突变(表1)
表1.NtHMA4基因突变材料的序列分析
Figure GDA0003249303360000051
Figure GDA0003249303360000061
(5)烟叶中的镉含量测定
每份材料挑选健康饱满的烟草种子50粒,消毒后播入灭菌后的泥炭/蛭石培养基质,在人工气候箱(白天28℃,光照14小时,光强1000lux;黑夜20℃,10小时)培养至4到5叶期,选取生长一致的烟苗,移栽至7.5升长方形塑料盆中,于温室(白天16小时,光强800lux;夜晚10小时,恒温25℃)中进行液体培养,每3天更换一次营养液。试验采用随机区组设计,3次重复。液体培养6周时,以终浓度为1mM CdCl2进行镉胁迫处理,7天后收集烟草植株,超纯水漂洗3次,分离烟草地上部分,120℃杀青处理10分钟,50℃烘干48小时,样品采用组织研磨仪研磨成细粉,密封后4℃备用。
样品中二价Cd元素含量的测定采用ICP-MS法。大致如下:称取0.1g样品粉末置入消煮管,加入5mL HNO3+1mL H2O2,采用微波消解法消煮样品,过滤入50ml离心管中,加超纯水定容到30ml待测,采用ICP-MS(Elan 9000型号,Perkin Elmer Sciex,加拿大)测定材料中的Cd含量,内标溶液浓度为1μg/mL。三次生物学重复。
表2 NtHMA4基因纯合突变材料叶片中的Cd含量
Figure GDA0003249303360000062
Figure GDA0003249303360000071
平均值多重比较采用One-way ANOVA Duncan法,P<0.05.
可见相比野生型贵烟1号,突变体镉含量下降幅度在4.72%~42.08%之间,其中有8份材料相比贵烟1号野生型存在显著性差异(P<0.05),编号953材料下降幅度最大,这些材料为低镉烟草新品种的的选育提供了较为丰富的种质资源。
序列表
<110> 贵州省烟草科学研究院 浙江大学
<120>一种HRM检测烟草镉转运基因NtHMA4突变的方法
<160>13
<210>1
<211>4254
<212> DNA
<213>贵烟1号(突变型)NtHMA4
<400>1
ATGGTGGAAA GTGAAAAAAT GAATGAAACA AAGAAGTTGA GCAAGAGCTA TTTTGATGTT 60
TTGGGAATTT GCTGTACTTC AGAAGTTGTT CTAGTTGAAA AAATTCTCAA GAATCTTGAA 120
GGGGTTAAAG AGGTTTCAGT AATTGTCACA ACAAAGACTG TCATTGTTAT TCATGATTCT 180
CTTCTCATTT CTCCGCAACA AATTGTTAAA GCATTGAATC AAGCAAGATT AGAAGCAAGC 240
ATAAGAGTGA AAGGAGAGAA AAACTACCAA AAGAAATGGC CAAGTCCATT TGCAATTGGC 300
AGTGGAATAT TGCTTGGACT CTCATTTTTG AAGTACTTTT TTGCACCTTT CCAATGGTTA 360
GCACTTGCAG CTGTTGCAGT TGGGATTCCT CCAATTATTT TTAGAGGTGT GGCTGCCGTG 420
CGAAACCTCA CTCTTGACAT CAACATTCTT GTTTTAATAG CAGTGGCTGG ATCAATTGTT 480
TTACACGATT ATTGGGAAGC TGGTACTATT GTCTTCTTAT TCGCCATTGC AGAATGGCTA 540
GAGTCAAGGG CAAGTCACAA GGCTACCGCT GCTATGTCAT CACTGGTCAA TATAGTCCCT 600
CCAACAGCAG TTTTAGCTGA AAGCGGAGAA GTCGTAAATG TTGATGAAGT CAAGGTGAAT 660
AGCATTCTTG CTGTGAAAGC TGGTGAAACT ATACCTATTG ATGGAGTTGT AGTGGAAGGG 720
GAATGTGACG TGGACGAGAA AACACTGACA GGCGAGTCGT TTCCAGTTTC TAAGCAAAGA 780
GATTCAACGG TCTGGGCTGG CACTACAAAT CTAAATGGCT ATATCAGTGT TAAGACTACG 840
GCTTTGGCTG AAGATTGTGC GGTGGCTAGG ATGGCACAGC TTGTCGAAGA TGCTCAGAAC 900
AAGAAATCAA AAACCCAAAG ATACATCGAC AAGTGTGCTA AATATTATAC ACCAGCAATT 960
GTGGCTATAT CAGCTTCTTT GGCAATTGTT CCTACTGCAT TAAGAGTTCA CAATCGAAAT 1020
GAATGGTATC GCTTGGCTTT GGTCACATTG GTGAGTGCAT GTCCGTGTGC ACTTGTTCTA 1080
TCTACACCAG TTGCCATGTG TTGCGCACTT TCAAAAGCAG CAACGTCCGG TCTTCTGTTT 1140
AAAGGAGCAG AGTACCTTGA GACTCTAGCT AAAATCAAAA TCATGGCTTT TGACAAAACA 1200
GGGACTATAA CTAAAGGAGA ATTTATGGTG ACCGAGTTCA AGTCTCTGAT TGATGGTTTT 1260
AGTCTCAATA CACTGCTTTA CTGGGTTTCA AGCATTGAGA GCAAGTCAGG TCATCCGATG 1320
GCAGCCGCTC TGGTGGACTA TGCACAATCA AATTCCGTTG AGCCAAAGCC TGATAGAGTT 1380
GAGCAGTTTC AAAATTTTCC TGGTGAAGGG ATATTTGGAA GAATTGATGG AATGGAAATC 1440
TATGTCGGGA ATAGGAAAAT TTCTTCAAGA GCTGGATGTA CCACAGTACC AGAAATAGAG 1500
GGTGATAGTT TCAAAGGAAA GTCTGTTGGA TACATATTTT TGGGATCATC TCCAGCTGGA 1560
ATTTTCAGTC TTTCCGATGT TTGTCGAATT GGTGTAAAAG AAGCAATGAG AGAACTGAAG 1620
CAGATGGGTA TCAAAACCGC GATGCTTACT GGTGATTGTT ATGCAGCTGC CAACCATGTG 1680
CAGGATCAGT TAGGTGGAGC TTTGGATGAA TTTCAAGCAG AACTCCTACC AGAGGACAAG 1740
GCAACAATCA TCAAGGGTTT TCAGAAGGAA GCTCCAACAG CGATGATAGG CGACGGCCTT 1800
AATGATGCTC CTGCATTAGC AACAGCTGAC ATTGGCATCT CAATGGGCAT CTCTGGGTCA 1860
GCTCTCGCTA AAGAAACAGG CCATGTTATA CTAATGACAA ATGACATCGG AAGAATACCG 1920
AAAGCTGCAC GTCTTGCTAG AAGAGTTCGA AGGAAGATTG TTGAGAATAT GATTATATCA 1980
GTCGTTACAA AGGCTGCCAT AGTTGCATTG GCAATAGCAG GTTATCCATT GGTTTGGGCT 2040
GCTGTCCTCG CAGATACTGG GACATGCTTG CTAGTGATTT TGAACAGCAT GCTACTTCTA 2100
CGAGGAGGCA CACGCAGACA TGGGAAAAAA TGTTGGAGAT CTTCTACTCC TTCGCATGCT 2160
CCCCACCACA AAGACAAAGC TTCATGTTGC AAGTCGGAAA ATGCTCCCCA GCTGTGTTGC 2220
TCTGATATTG AGTCACAAAA GAAATGTACA AGTCAATCAT GCTCGTCCGA GGTGTGTGTT 2280
CCAAGATGTC AACCTGTCTC CTCAGGATCA AAGTCATGTG GAAATAATCA GTGCCCAGAC 2340
TCCATTGAAA ATAGTGGTTT TCATTCTCAT CGCCGTCCTC AATGCTGCTC GTCGAAGATG 2400
GCTGCTAAAG CATGCCAATC TGCAGTTTCA GAATCAAAGT CATGCGGAAA TAATCAGTGC 2460
CCAGACTCCG TTGAAAATAG TGGTTTTCAT TCTCATCCCC GTCCTGAATG CTGCTCGTCG 2520
AAGATGGCTG CTAAAGCGTG CCAATCTGCA GTTTCAGAAT CAAAGTCATG TGGAAATAAT 2580
CAGTGCCCAG ACTCCGTTGA AAATAGTGGT TTTCATTCTC ATCCCCGTCC TCAATGCTGT 2640
TCATCGAAGA TGGCTGCTAA AGCAGGCCAA TCTGCACTTT CAGAATCAAA GTCATGTGGA 2700
AATAACAATT GCTCAGACTC CATTCACAAG AGTAATTGTC ATTCTTTAAC TAACTCTCTA 2760
GTATGTTCTT CCAAGATGTC TGCTCCACAA TGTCATTCTG CTACTTCAAG CAACAAATCA 2820
TGTGGAAGTA CCAAGTGCTC CGACTTCAGT GACAAAAAAT GTTGTCAATC CGACAAAATT 2880
CCTCAAACGT GCTCTACCAA GAAGTCTGCT CCAGGATGTC AATCTGCAGT TTCTGGGTCT 2940
AAATCATGTG GAAATAGCAA GTGTTCAGAC TCAAAAGACA ATAGTAGCCA TCCTTCACAT 3000
CCCGATCATC AAACATGCAT GTCTAAGTTG TGTGCTCCAC AAAGCCAATC TGCAACTTCA 3060
AGCTCCAGGA CATGTGGAAA TACAAAGTGC TCGGACACCA ATAGCAAGAA TTCTTGTTAT 3120
TCACAAACCA ACTCTGAATC ATGCTCTTCA AAGATGTCTG GTCCATCATG CAAAACTGCT 3180
AATTCAGGTT CAAGGTCATG CAGAAATAAG AAGTGCCAGG ACTCTGCAAC CGAGAACAGT 3240
TTTCATTCAC CACTTACTAA TCCACTCAGT GGGGAAAAGC TTTCGGAGCA GAAAAGCTTG 3300
GATTTAGTCC GAAAAGATAA GGAATCAAGT CATGATCTTC GTCATGGCTG CTCTGACGAG 3360
GAACATGATC ATACAAATTT AGACAAGGCA TATGACAGTT GTGCCTTACA AGAATGTTGT 3420
TATTCGGTTC AAGGCAATAA AACTGATGTA TCAGAAACTG GAATCCAGGA AACTGCTCAT 3480
TGTGACAGCA CCAATCAAAC ATGCCAAACT GCAAGTTCAG GATCGATGAC ATGCGGAAAT 3540
GATAAGATCC TGGACTCTCT AAGCATCCAT GGTTGTCATT CGCATGATAA TCCACTCCAC 3600
GAGGAGAACA ACTTGGAGCA GAAAATCTTG GATGTTGTTG GAGAAGGTAT AAAATCACCT 3660
CATGCTGTCG GTCATGGCTG TTCGGACAAG GAACACGATC ACTCACATCC AGAAAAGGCA 3720
TATGACAGTT GTGCAACAGA TGATTGTTGT TTTTCAGTTC AAGTCCATGG CATTGACGAC 3780
GTATCAAAAA GTGAAATTCA AGAAACTGCT CATTGTGACA GCACAAAGCA GAGCATGGTC 3840
ATCTCCAGCA GCTGCAAACA TGAACCAAAA GATCAGGTAA ATCACTGTGG ACTTCACTCT 3900
AAAACTACTC CAACTGATGA AGAACTAGCC AAGCTGGTTA GAAGATGCTG CAAATACAAA 3960
CCATGCCACG ACGTCCGTTC TGGCTGCAGG AAGCATGCTG CAGAATGTGG TCCAACCGTT 4020
CGATCAACCA TCAATATCTT ACGGGACAAC CATCATCATT ACCTAGACTG CAGTGGTCGT 4080
AAGGTTTGTT CGCTGTTGGA GAAGAGACAC ATCGGTGGAT GCTGTGACAG CTTCAGAAAA 4140
GAATGTTGTG CCAAGAAAAA ACACCTTGGA GCAAGTTTTG GAGGAGGTTT ATCAGAAATT 4200
GTCATAGAGT AGAT 4214
<210> 2
<211>22
<212> DNA
<213>人工合成
<400> 2
GGTGAATAGCATTCTTGCTGTG
<210> 3
<211>22
<212> DNA
<213>人工合成
<400> 3
GCACAACATAAGATTCACTAAC
<210> 4
<211>22
<212> DNA
<213>人工合成
<400> 4
GTTGAATAGCATTCTTGCTGTT
<210> 5
<211>22
<212> DNA
<213>人工合成
<400> 5
GCACAACATAAGATTCACTAAC
<210> 6
<211>21
<212> DNA
<213>人工合成
<400> 6
GTCTGATTTCGACTGGTGATG
<210> 7
<211>23
<212> DNA
<213>人工合成
<400> 7
AAGAATATGTATGAGTGGTAACC
<210> 8
<211>22
<212> DNA
<213>人工合成
<400>8
GAAATAGAGGGTGATAGTTTCC
<210> 9
<211>23
<212> DNA
<213>人工合成
<400> 9
CATTTCAGCGTAATGCAGAATTT
<210>10
<211>22
<212> DNA
<213>人工合成
<400> 10
TCAAGCAAGATTAGAAGCAAGC
<210> 11
<211>22
<212> DNA
<213>人工合成
<400> 11
TAAATTGGGACAAAAGGGAGTA
<210> 12
<211>22
<212> DNA
<213>人工合成
<400> 12
ATTTATCCAGAGCAGTGAGCCA
<210> 13
<211>24
<212> DNA
<213>人工合成
<400> 13
GCATGCGAAGGAGTAGAAGATCTC

Claims (1)

1.一种HRM检测烟草镉转运基因NtHMA4突变的方法,其特征在于:包含以下步骤:(1)采用CTAB法提取烟草样品苗期叶片基因组DNA;(2)以所述基因组DNA为模板,利用引物对进行PCR扩增;(3)PCR扩增产物利用HRM检测仪器LightScanner96进行突变位点扫描;(4)根据HRM曲线结果,判断烟草待检样品的基因型;当待测样品的HRM曲线与野生型对照贵烟1号一致时,则为野生型材料;如果出现其他曲线类型,且HRM荧光曲线峰值ΔF≥0.05,则为疑似基因突变材料;(5)DNA测序验证HRM筛选结果;(6)NtHMA4材料的镉表型测定;所述NtHMA4基因的序列如Seq ID No.1所示,所述NtHMA4基因的SNP突变位点为G1594A,所示NtHMA4基因发生纯合突变时镉含量下降;所述的引物对为HZ1、HZ2、HZ3、HZ4、HZ5和HZ6,具体如下:
Figure FDA0003270493500000011
CN201711320346.XA 2017-12-12 2017-12-12 一种HRM检测烟草镉转运基因NtHMA4突变的方法 Active CN108251550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711320346.XA CN108251550B (zh) 2017-12-12 2017-12-12 一种HRM检测烟草镉转运基因NtHMA4突变的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711320346.XA CN108251550B (zh) 2017-12-12 2017-12-12 一种HRM检测烟草镉转运基因NtHMA4突变的方法

Publications (2)

Publication Number Publication Date
CN108251550A CN108251550A (zh) 2018-07-06
CN108251550B true CN108251550B (zh) 2021-11-16

Family

ID=62722596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711320346.XA Active CN108251550B (zh) 2017-12-12 2017-12-12 一种HRM检测烟草镉转运基因NtHMA4突变的方法

Country Status (1)

Country Link
CN (1) CN108251550B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207496A (zh) * 2018-09-27 2019-01-15 榆林学院 一种重金属镉特异性结合蛋白基因BjHMA4R及其编码蛋白和应用
CN114397349B (zh) * 2022-01-14 2024-04-12 中国热带农业科学院热带生物技术研究所 基于琼脂糖堆叠凝胶的蛋白电泳分离方法
CN114540382B (zh) * 2022-02-18 2023-07-18 贵州省烟草科学研究院 烟草镉转运基因NtPLA1及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261421A (zh) * 2010-09-30 2013-08-21 国营烟草火柴工业开发公司 镉含量降低的烟草
CN105154566A (zh) * 2015-10-14 2015-12-16 无锡哈勃生物种业技术研究院有限公司 一种用于筛选水稻靶向基因编辑植株的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261421A (zh) * 2010-09-30 2013-08-21 国营烟草火柴工业开发公司 镉含量降低的烟草
CN105154566A (zh) * 2015-10-14 2015-12-16 无锡哈勃生物种业技术研究院有限公司 一种用于筛选水稻靶向基因编辑植株的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination;Victor Hermand等;《Metallomics》;20140831;第6卷(第8期);第1427-1440页 *
烟草镉转运基因突变体的鉴定和功能分析;高玉龙等;《烟草科技》;20170930;第50卷(第9期);第1-6页 *

Also Published As

Publication number Publication date
CN108251550A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
CN103796508B (zh) 具有有用性状的植物和相关方法
Sasaki et al. Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots
CN110241248A (zh) 与盐胁迫条件下小麦粒重相关的kasp标记及其应用
CN108251550B (zh) 一种HRM检测烟草镉转运基因NtHMA4突变的方法
CN106755481A (zh) 一种鉴定嘎拉苹果后代植株的ssr分子标记vi及其应用
CN108588249B (zh) 一种用于检测甘薯茎腐病菌的引物对及其检测方法
KR101642702B1 (ko) 초위성체 마커를 이용한 배 품종식별 방법
CN102304587A (zh) 一种快速鉴定水稻直立穗的方法
CN110241245A (zh) 检测黄瓜细菌性角斑病基因的kasp引物及其应用
CN106498048A (zh) 一种与大豆结瘤数相关的qtl、snp分子标记及应用
CN106755413B (zh) 水稻氮素吸收利用位点qNUE6及其分子标记方法
CN110527742B (zh) 与低盐条件下小麦穗长相关的kasp标记及其应用
CN107557437A (zh) 一种鉴定烟草低降烟碱突变体杂交后代基因型的引物对及方法
CN103834647A (zh) 小麦矮杆基因RhtDC20紧密连锁的SSR标记Xgwm537及其用途
JP2008220228A (ja) Lamp法を用いたイネ苗立枯細菌病菌及びイネもみ枯細菌病菌の検出法
Omoigui et al. Application of fast technology for analysis (FTA)® for sampling and recovery of deoxyribonucleic acid (DNA) for molecular characterization of cowpea breeding lines for Striga resistance
CN105506152A (zh) 一种高效检测水稻抗性基因Pita的特异性引物、分子标记及其检测方法
CN113832249A (zh) 小麦骨干种质周8425b特异性染色体片段检测的分子标记及其应用
CN107904323B (zh) 一种鉴定烟草低镉突变体杂交后代基因型的引物对及方法
CN111304359B (zh) 一种与水稻种子萌发耐盐紧密连锁的分子标记及应用
Olawuyi et al. Genetic Assessment of Amaranthus Linn. Genotypes in Treatment Combinations of Glomus clarum and Leucaena leucocephala Lam. Using Simple Sequence Repeat (SSR) Marker
CN116397041B (zh) 一种与谷子盐碱敏感度紧密连锁InDel标记SiDmr6及其引物和应用
CN113604594B (zh) 枣和酸枣柠檬酸相关的snp分子标记及其应用
Wang et al. Efficient mutation induction using carbon-ion beams irradiation and simple genomic screening with SSR and RAPD in japonica rice
CN112111591B (zh) 白皮松est-ssr引物及其在群体遗传多样性分析中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhang Jishun

Inventor after: Ren Xueliang

Inventor after: Zhao Haijun

Inventor after: Zhang Chao

Inventor after: Wang Rengang

Inventor before: Zhao Haijun

Inventor before: Ren Xueliang

Inventor before: Zhang Jishun

Inventor before: Zhang Chao

Inventor before: Wang Rengang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant