CN114540382B - 烟草镉转运基因NtPLA1及应用 - Google Patents

烟草镉转运基因NtPLA1及应用 Download PDF

Info

Publication number
CN114540382B
CN114540382B CN202210151717.0A CN202210151717A CN114540382B CN 114540382 B CN114540382 B CN 114540382B CN 202210151717 A CN202210151717 A CN 202210151717A CN 114540382 B CN114540382 B CN 114540382B
Authority
CN
China
Prior art keywords
tobacco
gene
cadmium
ntpla1
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210151717.0A
Other languages
English (en)
Other versions
CN114540382A (zh
Inventor
张吉顺
张孝廉
王仁刚
王志红
林世锋
孔德钧
林英超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Institute of Tobacco Science
Original Assignee
Guizhou Institute of Tobacco Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Institute of Tobacco Science filed Critical Guizhou Institute of Tobacco Science
Priority to CN202210151717.0A priority Critical patent/CN114540382B/zh
Publication of CN114540382A publication Critical patent/CN114540382A/zh
Application granted granted Critical
Publication of CN114540382B publication Critical patent/CN114540382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01032Phospholipase A1 (3.1.1.32)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及烟草镉转运相关NtPLA1基因及应用。所述烟草NtPAL1基因的核苷酸序列及其编码蛋白质序列分别如SEQ ID NO:1和2所示。本发明首次从烟草中克隆得到NtPAL1基因,通过转入镉敏感酵母突变株Δycf1和基因编辑证明烟草NtPAL1基因具有镉转运功能。烟草NtPAL1基因在创制镉低积累烟草种质中具有重要应用价值。

Description

烟草镉转运基因NtPLA1及应用
技术领域
本发明涉及基因工程领域,具体来说,涉及烟草镉转运相关NtPLA1基因及应用。
背景技术
烟草具有较强的镉富集能力,烟草植株吸收过多的镉会增加烟气中的镉浓度而危害吸烟人群健康。此外,镉做为植物生长非必需元素之一,土壤中较高浓度的镉会影响烟草根系生长、叶绿体形成,进而影响其生物学产量和品质。植物中镉的积累涉及到镉的吸收、转运、分配等诸多过程,其调控网络及分子机制仍待进一步解析。
目前,烟草中发现的镉转运基因较匮乏,已报道的主要有NtHMA2/4,NtNRAMP5等少数几个,因此,发掘和鉴定新的烟草镉转运基因,进而通过基因编辑等手段获得低镉富集新品种,对保障烟叶安全性具有重要意义。
磷脂酶A(PLA)是参与磷脂水解的一类重要的酶,其家族成员众多,PLAs在拟南芥、水稻等植物的生长发育,脂信号转导,以及胁迫响应方面发挥着重要作用。本发明提供了一个新的烟草镉转运相关PLA基因及应用,为烟草镉积累分子机制研究及育种提供了新的靶标。
发明内容
本发明的目的是提供烟草NtPLA1基因及其编码的蛋白质。
本发明的另一目的是提供烟草NtPLA1基因的应用。
本发明烟草NtPLA1基因的核苷酸序列如SEQ ID NO:1所示,基因全长1239bp。
本发明提供的烟草NtPLA1基因,其为编码如下蛋白质(a)的基因:
(a)由SEQ ID NO:2所示的氨基酸序列组成的蛋白质;
本发明提供所述烟草NtPLA1基因或突变该基因在降低植物镉离子富集中的应用。
本发明还提供所述烟草NtPLA1基因或突变该基因的生物材料在植物育种中的应用。所述育种的目的为降低植物镉离子吸收和转运。
优选地,将所述烟草NtPLA1基因进行突变,使烟草NtPLA1基因产生突变以降低烟草植株对镉的富集能力,或通过杂交等方式获得携带NtPLA1基因突变的材料。
本发明还提供用于扩增烟草NtPLA1基因的特异性PCR引物对,所述引物对的核苷酸序列如SEQ ID NO:3和4所示。
本发明还提供一种降低植物镉离子吸收和转运的方法,所述方法为:
使烟草NtPLA1基因发生突变,所述方法包括但不限于基因编辑、诱变、杂交。
本发明首次从烟草中克隆得到磷脂酶家族基因NtPLA1,并通过酵母实验和基因编辑验证了该基因的生物学功能,将NtPLA1基因转入镉敏感酵母突变株Δycf后的重组酵母具有镉敏感特性,编辑所得突变体的镉含量相比野生型对照显著降低。因此,本发明提供的烟草NtPLA1基因具有镉转运的功能。
附图说明
图1为本发明实施例1中酵母功能互补实验结果。其中,A:培养基中镉离子浓度为0μM,B:培养基中镉离子浓度为20μM。图中,Δycf+pYES2为阴性对照组(转入空载体),Δycf+NtPLA1为转入烟草NtPLA1基因的重组酵母,Δycf+NtNramp5为阳性对照组(转入烟草NtNramp5基因)的重组酵母;从左到右依次为10倍稀释液、100倍、1000倍、10000倍稀释液在培养基上的生长结果。
具体实施方式
一、烟草NtPLA1基因克隆
烟草K326播种后,温室培养至5~6片真叶时,取新鲜叶片使用Axygen公司的植物总RNA提取试剂盒提取总RNA,使用TaKaRa公司反转录试剂盒进行反转录合成cDNA。
以Genbank数据库中的PLA基因(登录号:XM_016598298.1)为参考序列,使用Primer 5设计正向引物和反向引物。所述的正向引物核苷酸序列为SEQ NO:3:5’-ATGGGAAGGTTATTATTCTT-3’,所述反向引物核苷酸序列为SEQ NO:4:5’-TCAGTTGGTGTATCGAAGCT-3’。
以烟草‘K326’的cDNA模板,使用NEB公司的KOD Fx NEO高保真酶进行烟草PLA1基因扩增。反应体系为50μl:2×PCR Buffer 25μL,dNTPs 10μL,KOD Fx NEO 1μL,正向引物2μL,反向引物2μL,烟草cDNA 2μL,dd H2O 8μL;
扩增程序为:94℃预变性3min;94℃变性30s;60℃退火30s;68℃延伸30s;35个循环;72℃延伸15min;4℃保温。
利用胶回收试剂盒对PCR产物进行胶回收后,连入pGEM-T载体,将连接产物转化大肠杆菌DH5α,接种于加有氨苄青霉素的LB平板上进行筛选培养获得阳性克隆。采用菌落PCR的方法来验证阳性克隆,菌落PCR的正向引物为SEQ NO:5:5’-GCTTCGTGCATAGGATATTCA-3’,反向引物为SEQ NO:6:5’-AACTTTACACACATTAACGG-3’。
菌落PCR的反应体系为20μL,包括Premix Ex Taq10μL,正向引物1μL,反向引物1μL,dd H2O 7μL,菌液1μL。然后从已验证的阳性克隆中随机选取3个独立的阳性克隆送到生物公司进行测序,经测序得到烟草PLA1基因的序列如SEQ ID NO:1所示。
二、烟草NtPLA1基因酵母遗传转化及表型鉴定
1.酵母感受态制备
1)酵母菌株为Δycf1(MATa;his3Δl;leu2Δ0;lys2Δ0;ura3Δ0;YDRl35c::kanMX4)的镉敏感性菌株。挑酵母菌株(Δycf)在YPDA固体培养基上划板,30℃倒置培养,待菌生长至适宜大小。挑单菌落接种于含有3mL YPDA液体培养基的离心管中,30℃,250rpm摇菌8–12小时。吸取5μL菌液转入含有50mL YPDA液体培养基的250mL三角瓶中。30℃,250rpm继续摇16–20小时,期间测OD值,OD600达到0.15–0.3的时候停止摇菌。
2)室温下,700g离心5min收集菌体,弃上清,加入100mL YPDA液体培养基重悬菌体。30℃,250rpm摇3–5小时至OD600为0.4–0.5。取50mL菌液,700g离心5min收集菌体。加入30mL无菌超纯水,重悬菌体。700g离心5min收集菌体。弃上清,加入1.5mL 1.1xTE/LiAc重悬菌体。
3)将菌液转至1.5mL离心管中,高速离心15s。弃上清,加入600uL 1.1xTE/LiAc,重悬菌体,获得酵母感受态细胞。
2.重组酵母表达载体构建及转化
1)将连接有实施案例1种所述的PAL1基因的T载体与酵母表达载体pYES2分别进行SmalⅠ和BamHⅠ双酶切,回收目的基因和表达载体pYES2,然后用连接酶连接。获得含有目的基因的重组表达载体NtPLA1-pYES2,之后进行PCR扩增和测序验证,测序正确的质粒即重组酵母表达载体。
2)将6μL重组质粒、10μL变性的Yeast maker宿主DNA,加入预冷的离心管中(1.5mL),混合均匀。加入100μL酵母感受态细胞和500μL PEG/LiAc,轻轻混匀。置于30℃恒温箱孵化30min后加20μL DMSO,轻柔混匀。
3)在42℃水浴锅中温浴15min。高速离心1min收集菌体。弃上清,加入1mL YPDPlus液体培养基。30℃,150rpm震荡培养30min。高速离心1min收集菌体。弃上清,加入1mL0.9%(w/v)NaCl溶液重悬菌体。
4)涂板,30℃恒温箱倒置培养2-3天。
3.酵母镉胁迫表型鉴定
1)从酵母转化平板中挑单克隆至SD-Ura培养基中,30℃180rpm过夜摇菌。
2)用2mL离心管收集菌液,每次1.5mL,12000rpm离心60s,收集两次,用无菌水洗菌体2-3次,离心,弃上清,加1mL无菌水,吸打混匀,取200μL测定OD600的吸光值,测定三次重复。
3)按OD600吸光值为10-1、10-2、10-3和10-4进行梯度稀释,在分别含有0μM和20μM镉的固体培养基上进行点样。
4)30℃倒置培养3-7天,观察拍照。
实施案例结果表明,转入空载的对照组酵母(Δycf+pYES2),转入烟草NtPLA1基因的重组酵母(Δycf+NtPLA1),转入烟草NtNramp5基因的阳性对照组酵母(Δycf+NtNramp5),在不含镉的培养基上生长状态一致(图1A),而在含镉的培养基上(图1B),相比转入空载的对照组酵母(Δycf+pYES2),转入烟草NtPLA1基因的重组酵母(Δycf+NtPLA1)和转入烟草NtNramp5基因的阳性对照组酵母(Δycf+NtNramp5)的生长受到明显抑制,证明烟草PLA1基因具有镉吸收及转运功能。
三、烟草NtPLA1基因编辑及镉含量测定
1)NtPLA1基因的SgRNA设计及载体构建
设计特异性sgRNA为:CCATTCAAGTTGTACAACCTCCA,将sgRNA通过gateway的方法连接到载体上得到重组载体,获得重组CRISPR/Cas9载体。
2)烟草遗传转化及突变检测
将构建的重组CRISPR/Cas9载体通过热激转至农杆菌感受态GV3101,获得阳性克隆,通过烟草遗传转化实验将重组CRISPR/Cas9载体转入栽培烟草K326中,在抗性培养基上长出的抗性芽转移到生根培养基中,待根长出后,洗去根部培养基,转移至烟草育苗基质中,放入人工气候室进行培养20天后提取基因组DNA测序鉴定靶标序列的突变情况,经检测,pla-N株系的突变形式为:TAACTTTGTTAGTGACCATTCA-----TACAACCTCCAAT,野生型K326的序列为TAACTTTGTTAGTGACCATTCAAGTTGTACAACCTCCAAT证明该株系发生了突变。
3)烟草镉含量测定
将编辑纯合株系pla-N和野生型K326同时播种,待幼苗长至6-8叶期移栽至水培装置中,采用1/2的Horgland营养液培养2周后,使用含有30μM的CdCl2溶液进行处理,处理15天后分别进行取样,105度杀青15分钟,65度烘干至恒重后,采用GC-MS方法测定样品中镉含量。
结果表明,野生型对照K326的叶片镉含量为80.32mg/Kg,而编辑株系叶片的镉含量为55.07mg/Kg,烟草NtPLA1基因的突变可显著降低烟草叶片镉含量。
序列表
<110> 贵州省烟草科学研究院
<120> 烟草镉转运基因NtPLA1及应用
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1239
<212> DNA
<213> PLA1
<400> 1
atgggaaggt tattattctt agtttcacta actttgttag tgaccattca agttgtacaa 60
cctccaatat ttgtttgtgc tgctaccaaa ggaaagaatt ttataacagt tttgagcatt 120
gacgggggtg gaatcagagg cattattcca ggaacccttc ttgcctttct tgaatccaag 180
cttcaggagg ttgatggacg aaatgcaagg attatagact attttgatgt agtagcagga 240
acaagcacag gtggattaat tactactatg ctcacagctc caaacagaga taatcgccct 300
ttatatgcag ctaaagatat ttccaacttc tatatggaac actgccctca catctttccc 360
gcaaaccgcc gtaacagctt cgtgcatagg atattcaatt tgtttggagg accaaagtac 420
gatggcaact acttaagatt gttgcttgaa tcaatattag gcaaacttac tatgaagcag 480
acattgactc atactgtcat ccctgctttt gatatcaagc gccttcaacc aattatcttc 540
accactgttg atgccagagc aaatgtctct aagaatgttc tattatcaga catctgcctc 600
agtacctccg cagcaccaac cttttttccg gtacactatt ttgagactag ggatgctcaa 660
gggagaatac gcacatttga tatgattgac ggaggtgtgg ctgcaaataa tccaacacaa 720
atggcaatta cacacatttc aaaagaaatc atgaggggca aatttcagta tgaagagatg 780
gaaacaatag acagcaagaa gatgttggtt ctatcattag gcacaggtat tggcaagcat 840
caagggtata acgcagcctc ggcatcaaaa tggggtttac ttggttgggt ttacaacaat 900
ggtcagaccc caatattgga tgtttataat gatgcaagtg ctgatatggt agatatacat 960
gtttcaacta tgtttcagac acttcgcagt gaaaagaatt acctcagaat tcaggaggat 1020
aatttgattg gggatgctac atcaatggat atagcaacca caaaaaatat gcagacactt 1080
gtgcagattg gtaacaatct attgaaaaag ccagtatcaa gggtcaactt agagacaggc 1140
caatatgaac ccgttcaagg ggaaggaaca aatgaagaag ctctaatccg ttttgctaag 1200
ttgctttcac aagaaaagaa gcttcgatac accaactga 1239
<210> 2
<211> 412
<212> PRT
<213> PLA1
<400> 2
Met Gly Arg Leu Leu Phe Leu Val Ser Leu Thr Leu Leu Val Thr Ile
1 5 10 15
Gln Val Val Gln Pro Pro Ile Phe Val Cys Ala Ala Thr Lys Gly Lys
20 25 30
Asn Phe Ile Thr Val Leu Ser Ile Asp Gly Gly Gly Ile Arg Gly Ile
35 40 45
Ile Pro Gly Thr Leu Leu Ala Phe Leu Glu Ser Lys Leu Gln Glu Val
50 55 60
Asp Gly Arg Asn Ala Arg Ile Ile Asp Tyr Phe Asp Val Val Ala Gly
65 70 75 80
Thr Ser Thr Gly Gly Leu Ile Thr Thr Met Leu Thr Ala Pro Asn Arg
85 90 95
Asp Asn Arg Pro Leu Tyr Ala Ala Lys Asp Ile Ser Asn Phe Tyr Met
100 105 110
Glu His Cys Pro His Ile Phe Pro Ala Asn Arg Arg Asn Ser Phe Val
115 120 125
His Arg Ile Phe Asn Leu Phe Gly Gly Pro Lys Tyr Asp Gly Asn Tyr
130 135 140
Leu Arg Leu Leu Leu Glu Ser Ile Leu Gly Lys Leu Thr Met Lys Gln
145 150 155 160
Thr Leu Thr His Thr Val Ile Pro Ala Phe Asp Ile Lys Arg Leu Gln
165 170 175
Pro Ile Ile Phe Thr Thr Val Asp Ala Arg Ala Asn Val Ser Lys Asn
180 185 190
Val Leu Leu Ser Asp Ile Cys Leu Ser Thr Ser Ala Ala Pro Thr Phe
195 200 205
Phe Pro Val His Tyr Phe Glu Thr Arg Asp Ala Gln Gly Arg Ile Arg
210 215 220
Thr Phe Asp Met Ile Asp Gly Gly Val Ala Ala Asn Asn Pro Thr Gln
225 230 235 240
Met Ala Ile Thr His Ile Ser Lys Glu Ile Met Arg Gly Lys Phe Gln
245 250 255
Tyr Glu Glu Met Glu Thr Ile Asp Ser Lys Lys Met Leu Val Leu Ser
260 265 270
Leu Gly Thr Gly Ile Gly Lys His Gln Gly Tyr Asn Ala Ala Ser Ala
275 280 285
Ser Lys Trp Gly Leu Leu Gly Trp Val Tyr Asn Asn Gly Gln Thr Pro
290 295 300
Ile Leu Asp Val Tyr Asn Asp Ala Ser Ala Asp Met Val Asp Ile His
305 310 315 320
Val Ser Thr Met Phe Gln Thr Leu Arg Ser Glu Lys Asn Tyr Leu Arg
325 330 335
Ile Gln Glu Asp Asn Leu Ile Gly Asp Ala Thr Ser Met Asp Ile Ala
340 345 350
Thr Thr Lys Asn Met Gln Thr Leu Val Gln Ile Gly Asn Asn Leu Leu
355 360 365
Lys Lys Pro Val Ser Arg Val Asn Leu Glu Thr Gly Gln Tyr Glu Pro
370 375 380
Val Gln Gly Glu Gly Thr Asn Glu Glu Ala Leu Ile Arg Phe Ala Lys
385 390 395 400
Leu Leu Ser Gln Glu Lys Lys Leu Arg Tyr Thr Asn
405 410
<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 3
atgggaaggt tattattctt 20
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 4
tcagttggtg tatcgaagct 20
<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence
<400> 5
gcttcgtgca taggatattc a 21
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 6
aactttacac acattaacgg 20
<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 7
ccattcaagt tgtacaacct cca 23
<210> 8
<211> 35
<212> DNA
<213> pla-N
<400> 8
taactttgtt agtgaccatt catacaacct ccaat 35
<210> 9
<211> 40
<212> DNA
<213> K326
<400> 9
taactttgtt agtgaccatt caagttgtac aacctccaat 40

Claims (5)

1.PLA1基因在降低植物镉离子吸收和转运中的应用,所述的PLA1基因的核苷酸序列如SEQ ID NO:1所示,所述植物为烟草。
2.PLA1基因在制备具有降低的镉离子吸收和转运能力的转基因植物中的应用,所述的PLA1基因的核苷酸序列如SEQ ID NO:1所示,所述植物为烟草。
3.PLA1在植物育种中的应用,所述植物具有降低镉离子吸收和转运能力,所述的PLA1基因的核苷酸序列如SEQ ID NO:1所示,所述植物为烟草。
4.如权利要求1-3任一所述的应用,PLA1基因编码的氨基酸序列如SEQ ID NO:2所示。
5.一种降低植物镉离子吸收和转运的方法,其特征在于:使烟草中PLA1基因发生突变以丧失功能,所述使烟草中PLA1基因发生突变的方法包括基因编辑,所述的PLA1基因的核苷酸序列如SEQ ID NO:1所示。
CN202210151717.0A 2022-02-18 2022-02-18 烟草镉转运基因NtPLA1及应用 Active CN114540382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210151717.0A CN114540382B (zh) 2022-02-18 2022-02-18 烟草镉转运基因NtPLA1及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210151717.0A CN114540382B (zh) 2022-02-18 2022-02-18 烟草镉转运基因NtPLA1及应用

Publications (2)

Publication Number Publication Date
CN114540382A CN114540382A (zh) 2022-05-27
CN114540382B true CN114540382B (zh) 2023-07-18

Family

ID=81676282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210151717.0A Active CN114540382B (zh) 2022-02-18 2022-02-18 烟草镉转运基因NtPLA1及应用

Country Status (1)

Country Link
CN (1) CN114540382B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981194A (zh) * 2014-06-10 2014-08-13 云南省烟草农业科学研究院 一种烟草镉转运基因NtHMA2及其克隆方法与应用
CN104004770A (zh) * 2014-06-10 2014-08-27 云南省烟草农业科学研究院 一种烟草镉转运基因NtHMA4及其克隆方法与应用
CN108251550A (zh) * 2017-12-12 2018-07-06 贵州省烟草科学研究院 一种HRM检测烟草镉转运基因NtHMA4突变的方法
CN109438563A (zh) * 2018-11-12 2019-03-08 贵州省烟草科学研究院 一种烟草kup7蛋白及其编码基因与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733837C2 (ru) * 2014-05-08 2020-10-07 Филип Моррис Продактс С.А. Снижение превращения никотина в норникотин в растениях

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981194A (zh) * 2014-06-10 2014-08-13 云南省烟草农业科学研究院 一种烟草镉转运基因NtHMA2及其克隆方法与应用
CN104004770A (zh) * 2014-06-10 2014-08-27 云南省烟草农业科学研究院 一种烟草镉转运基因NtHMA4及其克隆方法与应用
CN108251550A (zh) * 2017-12-12 2018-07-06 贵州省烟草科学研究院 一种HRM检测烟草镉转运基因NtHMA4突变的方法
CN109438563A (zh) * 2018-11-12 2019-03-08 贵州省烟草科学研究院 一种烟草kup7蛋白及其编码基因与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs";Dan Cheng et al.;《BMC Genomics》;第19卷;第1-15页 *
"PREDICTED: Nicotiana tabacum patatin-like protein 3 (LOC107778101 ), mRNA",Accession Number:XM_016598298.1;genbank;《GenBank》;第1-2页 *
"植物中镉及其螯合物相关转运蛋白研究进展";曹玉巧 等;《作物杂志》(第3期);第15-24页 *

Also Published As

Publication number Publication date
CN114540382A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN109053871B (zh) AtBIX基因在调控植物开花时间中的应用
CN111996181B (zh) Drk蛋白及其编码基因在植物抗旱中的应用
CN107299103B (zh) 厚藤IpASR基因及其编码蛋白和应用
CN107177610B (zh) 一种调控种子大小的拟南芥mpk基因及增加种子大小的方法
KR20210039306A (ko) CRISPR/Cas9과 gRNA 개별 발현 형질전환 식물체를 이용한 유전자 편집 방법
CN110317250B (zh) Myb6基因及其编码蛋白在调控植物对黄萎病抗性中的应用
CN114672511B (zh) 玉米ZmBES1/BZR1-3基因在增加植物种子产量中的应用
CN114752579A (zh) ZmMAPK蛋白及其编码基因在调控植物低温胁迫耐性中的应用
CN111018959B (zh) Bmdr蛋白及其编码基因在调控植物抗旱性中的应用
CN108949786A (zh) 拟南芥e3泛素连接酶编码基因atl27在调控植物耐盐性能中的应用
CN114369147B (zh) Bfne基因在番茄株型改良和生物产量提高中的应用
CN113621625A (zh) 芝麻SiERF103基因在增强植物抗性中的应用
CN113501867A (zh) 玉米抗旱基因ZmMYBR38及其应用
CN107779456B (zh) 蒺藜苜蓿MtWOX11基因及其在提高种子脂肪酸含量中的应用
CN110684088B (zh) 蛋白ZmbZIPa3及其编码基因在调控植物生长发育与耐逆性中的应用
CN114540382B (zh) 烟草镉转运基因NtPLA1及应用
CN114540373B (zh) 一种降低水稻籽粒中镉含量的基因及其应用
CN114438099A (zh) 一种烟草镉转运基因NtNRAMP6A及其应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN113337522B (zh) 棉花GhNFYC4基因在促进植物开花中的应用
CN114958867A (zh) 玉米穗粒重和产量调控基因kwe2、其编码蛋白、功能标记、表达载体及应用
CN114921583A (zh) 一种控制小麦株高的QTL及其候选基因TaDHL-7B和应用
AU2021107431A4 (en) Application of Galega orientalis gibberellin receptor gene GoGID1 for improving alfalfa biomass
CN111218460B (zh) 棉花GhACO基因在促进植物开花中的应用
CN113005106B (zh) 玉米耐低温基因ZmCIPK10.1在提高植物抗寒性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant