CN108246328B - 一种同质异形体的三维氮化碳多孔材料及其制备方法和应用 - Google Patents

一种同质异形体的三维氮化碳多孔材料及其制备方法和应用 Download PDF

Info

Publication number
CN108246328B
CN108246328B CN201711350552.5A CN201711350552A CN108246328B CN 108246328 B CN108246328 B CN 108246328B CN 201711350552 A CN201711350552 A CN 201711350552A CN 108246328 B CN108246328 B CN 108246328B
Authority
CN
China
Prior art keywords
powder
carbon nitride
porous material
chain
dimensional carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711350552.5A
Other languages
English (en)
Other versions
CN108246328A (zh
Inventor
徐颖峰
郭乔琪
冯华军
沈东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201711350552.5A priority Critical patent/CN108246328B/zh
Publication of CN108246328A publication Critical patent/CN108246328A/zh
Application granted granted Critical
Publication of CN108246328B publication Critical patent/CN108246328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种同质异形体的三维氮化碳多孔材料及其制备方法和应用,三维氮化碳多孔材料由g‑C3N4粉末均匀分散在链状C3N4凝胶中制成:(1)将g‑C3N4粉末分散于强碱溶液中,然后将分散液在搅拌条件下,水浴加热4~8小时,再依次经冷却、离心和透析后得链状C3N4凝胶;(2)将g‑C3N4粉末超声分散到水溶液中,然后再均匀分散到所述链状C3N4凝胶中;(3)将步骤(2)所得混合体系加温保温后,冷却至室温即得。本发明利用丰富的‑OH、‑NHx等官能团,吸附染料等有机污染物并利用C3N4的光催化活性在光照条件下降解有机污染物,实现污水净化。

Description

一种同质异形体的三维氮化碳多孔材料及其制备方法和应用
技术领域
本发明属于材料合成以及环境化学领域,具体涉及一种同质异形体的三维氮化碳多孔材料及其制备方法和应用。
背景技术
由于工业的快速发展而大量排放的含有各类有机污染物的废水,对环境具有严重的潜在危害。近年来也发展出多种污水的净化技术,如高级化学氧化法、膜过滤法、微生物法等,不过这些方法存在高成本,容易引发二次污染等问题。近年来发展的光催化技术,利用光照产生的光生电子和空穴与表面吸附的水、氧气等发生反应,生成·OH、O2-·、HO2·、H2O2具有高氧化还原能力的物质,从而去除污水中的有机污染物,实现污水净化的目的。然而,由于大部分合成的光催化材料均以粉末形式存在,其在实际应用中不便于回收再利用。传统方法将光催化材料固定在载体上,不过这样不便于催化剂与污染物的充分接触,并且负载的光催化材料容易从载体上剥落。因此,设计出合理的光催化剂宏观体,可以有效实现光催化材料的回收利用,对光催化污水治理技术推广到实际应用中具有重要的意义。
发明内容
针对现有技术的以上问题,本发明的目的在于提供一种同质异形体的三维氮化碳多孔材料的设计与制备方法,利用丰富的-OH、-NHx等官能团,吸附染料等有机污染物并利用C3N4的光催化活性在光照条件下降解有机污染物,实现污水净化。
一种同质异形体的三维氮化碳多孔材料,由g-C3N4粉末均匀分散在链状C3N4凝胶中制成。
C3N4凝胶为一种链状C3N4材料,富含-OH、-NHx等官能团,可吸附有机污染物,并且可以通过氢键、缩合形成三维多孔的块体结构;石墨相C3N4为一种二维片层状结构,具有优良的光催化性能,可降解吸附的有机污染物。
优选地,所述链状C3N4凝胶与g-C3N4粉末的质量比为50~20:1。
优选地,所述链状C3N4凝胶制备如下:g-C3N4粉末分散于强碱溶液中,然后将分散液在搅拌条件下,水浴加热4~12小时,再依次经冷却、离心和透析后得链状C3N4凝胶。
本发明的凝胶是由水解得到的纤维状C3N4与类石墨相C3N4纳米颗粒复合而成。该同质异形体的三维C3N4多孔材料利用纤维状C3N4富含的-OH,-NH3等官能团,可高效吸附有机污染物,负载的石墨相C3N4具有优异的光催化性能,可高效降解吸附的有机污染物。由此,实现污染物的吸附降解一体化过程,用于污水净化。
本发明还提供一种同质异形体的三维氮化碳多孔材料的制备方法,包括如下步骤:
(1)将g-C3N4粉末分散于强碱溶液中,然后将分散液在搅拌条件下,水浴加热4~12小时,再依次经冷却、离心和透析后得链状C3N4凝胶;
(2)将g-C3N4粉末超声分散到水溶液中,然后再均匀分散到所述链状C3N4凝胶中;
(3)将步骤(2)所得混合体系加温保温后,冷却至室温即得。
优选地,步骤(1)和步骤(2)中所用g-C3N4粉末由g-C3N4的前驱体在500~750℃煅烧4~7小时后研磨制得。煅烧升温速率为2~10K/min。
所述g-C3N4材料的前驱体为含C、N的有机分子,优选地,g-C3N4的前驱体为尿素、单氰氨、双氰氨中的一种。
优选地,步骤(1)中水浴温度在40~80℃,磁力搅拌4~10小时。进一步优选地,步骤(1)中水浴加热温度为60~80℃,加热时间为4~6小时,更进一步优选地,步骤(1)中水浴加热温度为68~72℃,加热时间为5.5~6小时。
强碱溶液为可电离出OH-的溶液,优选地,所述强碱为NaOH,KOH,Mg(OH)2中的一种。其中OH-离子的浓度为2M~6M之间,进一步优选为2.5M~~4M;C3N4的浓度控制在10~35mg/ml;进一步优选控制在20~35mg/ml。使C3N4能在OH-的作用下水解形成富含-OH、-NHx等官能团的链状C3N4
更进一步优选地,OH-离子的浓度为2.8M~3.2M之间,C3N4的浓度控制在30~35mg/ml。
优选地,步骤(2)中以g-C3N4粉末与链状C3N4凝胶的质量比为1:50~20进行配比。进一步优选地,以g-C3N4粉末与链状C3N4凝胶的质量比为1:50~40进行配比;更进一步优选地,以g-C3N4粉末与链状C3N4凝胶的质量比为1:50~45进行配比。
步骤(2)中g-C3N4粉末超声分散到水溶液中g-C3N4粉末质量与水体积比为0.5~1mg/mL。
优选地,步骤(3)中加热缩合温度温度为60~80℃,保温10~20分钟。进一步优选地,60~65℃烘箱中保温18~20min。
一种最优选的制备方法,包括如下步骤:
(1)将g-C3N4粉末按30~35mg/ml分散于4M强碱溶液中,然后将分散液在搅拌条件下,68~72℃水浴加热5.5~6小时,再依次经冷却、离心和透析后得链状C3N4凝胶;
(2)将g-C3N4粉末按0.5~0.6mg/mL超声分散到水溶液中,然后再均匀分散到所述链状C3N4凝胶中;g-C3N4粉末与链状C3N4凝胶的质量比为1:50;
(3)将步骤(2)所得混合体系60~65℃烘箱中保温18~20min,冷却至室温即得。
本发明还提供一种所述同质异构的三维氮化碳多孔材料在有机污染物的吸附与光催化降解中的应用。
本发明利用不同特性的C3N4组合形成的三维多孔材料,含有丰富的-OH、-NHx等官能团,可以吸附吸附染料等有机污染物。随后,利用石墨相C3N4优良的光催化性能将吸附的有机污染物降解。制备的块体有利于材料的回收再利用,而且内部多级孔道的贯穿结构,可以物质在内部自由扩散,充分与材料内的活性位点和光催化剂反应,实现高效的有机污染物的吸附与光催化降解,净化污水。
在此,本发明提供的技术方案是,将C3N4粉末在强碱条件下水解成富含-NHx,-OH的链状C3N4,其可交联形成三维多孔的网络结构。将C3N4纳米颗粒均匀分散在链状C3N4凝胶中,加热缩合之后在冷冻干燥即可得到同质异形体的三维氮化碳多孔材料。
本发明在纤维状氮化碳纳米线交联形成的C3N4水凝胶中原位负载类石墨相的C3N4纳米颗粒,制备得到具有三维多孔结构的同质异形氮化碳宏观体。该体系利用纤维状C3N4富含的-OH,-NH3等官能团,可高效吸附有机污染物,而负载的石墨相C3N4具有优异的光催化性能,可高效降解吸附的有机污染物,从而实现污染物的吸附降解一体化过程。本发明制备得到的同质异形氮化碳宏观体具有低成本,高稳定性,可多次循环使用等特点,用于高效的污水净化处理过程
附图说明
图1为实施例1所得的煅烧得到的C3N4粉末投射电镜图。
图2为实施例1所得的C3N4凝胶投射电镜图。
图3为实施例1所得的同质异构C3N4体系的投射电镜图。
图4为实施例1所得的同质异构C3N4体系的扫描电镜图以及对应区域的元素分布。
图5为实施例1所得的C3N4粉末,纤维状的C3N4,同质异构C3N4的红外光谱图。
图6为实施例1所得的C3N4粉末(a)、纤维状的C3N4(b)、同质异构C3N4(c)的处理前后溶液中亚甲基蓝的浓度变化。
图7为实施例1所得的吸附亚甲基蓝的同质异构C3N4(b)和纤维状C3N4(a)光照前后的样品变化。
图8为实施例1所得的C3N4粉末,纤维状C3N4和同质异构C3N4处理亚甲基蓝溶液的10次循环测试。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
实施例1
称取10g双氰氨,室温下研磨30分钟,收集到研钵中,以10K/min的升温速率升温至650℃,保温3h,得到的类石墨C3N4粉末。之后称取1g C3N4粉末超声分散于30ml 4M的NaOH,在70℃水浴加热6小时,离心,得到的链状C3N4凝胶。最后,取20mg类石墨C3N4粉末,超声分散于20ml去离子水中,加入制备得到的链状C3N4凝胶,在60℃烘箱中保温20分钟之后冷却到室温,等到凝固之后取出,通过冷冻干燥技术即可得到所需的三维同质异构氮化碳多孔材料。
之后,将制备的同质异构三维多孔氮化碳材料置于200ml,浓度为25mg/L的亚甲基蓝溶液中,吸附20分钟之后取出样品。之后用300w的氙灯光照1小时,将吸附的亚甲基蓝通过光催化技术降解。
图1为该实施例所得的煅烧得到的C3N4粉末投射电镜图,可以看出C3N4是层片状结构;图2为该实施例所得的C3N4凝胶投射电镜图,可以看出在强碱条件下水解得到的C3N4凝胶呈纤维状结构;图3为该实施例所得的同质异构C3N4体系的投射电镜图,可以看出颗粒状的C3N4均匀分布于纤维状C3N4的结构中,图4为该实施例所得的同质异构C3N4体系的扫描电镜图以及对应区域的元素分布,可以看出经过高温缩合之后,其呈现三维的多孔结构;图5为该实施例所得的C3N4粉末,纤维状的C3N4,同质异构C3N4的红外光谱图,可以看出水解之后纤维状的C3N4含有丰富的-OH、-NHx等官能团,而且在同质异构C3N4中的-OH、-NHx等官能团能够保留;图6为该实施例所得的C3N4粉末,纤维状的C3N4,同质异构C3N4的处理前后溶液中亚甲基蓝的浓度变化,可以看出纤维状的C3N4和同质异构的C3N4由于含有丰富的-OH、-NHx的官能团,可以高效吸附有机污染物;图7为该实施例所得的吸附亚甲基蓝的同质异构C3N4和纤维状C3N4光照前后的样品变化,可以看出由于同质异构C3N4具有优异的光催化性能,可以高效降解有机污染物;图8为该实施例所得的C3N4粉末,纤维状C3N4和同质异构C3N4处理亚甲基蓝溶液的10次循环测试,可以看出由于同质异构C3N4可以高效吸附和光催化降解有机污染物,而且自己具有良好的稳定性,可以多次循环处理有机污染物。
实施例2
称取15g尿素,室温下研磨30分钟,收集到研钵中,以10K/min的升温速率升温至550℃,保温4h,得到的类石墨C3N4粉末。之后称取1g C3N4粉末超声分散于50ml 3M的NaOH,在70℃水浴加热12小时,离心,得到的链状C3N4凝胶。最后,取40mg类石墨C3N4粉末,超声分散于30ml去离子水中,加入制备得到的链状C3N4凝胶,在60℃烘箱中保温20分钟之后冷却到室温,等到凝固之后取出,通过冷冻干燥技术即可得到所需的三维同质异构氮化碳多孔材料。
之后,将制备的同质异构三维多孔氮化碳材料置于300ml,浓度为25mg/L的亚甲基蓝溶液中,吸附20分钟之后取出样品。之后用300w的氙灯光照1小时,将吸附的亚甲基蓝通过光催化技术降解。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (7)

1.一种同质异形体的三维氮化碳多孔材料,其特征在于,由g-C3N4粉末均匀分散在链状C3N4凝胶中制成;
所述链状C3N4凝胶与g-C3N4粉末的质量比为50~20:1;
所述同质异形体的三维氮化碳多孔材料的制备方法包括如下步骤:
(1)将g-C3N4粉末分散于强碱溶液中,然后将分散液在搅拌条件下,水浴加热4~12小时,再依次经冷却、离心和透析后得链状C3N4凝胶;
(2)将g-C3N4粉末超声分散到水溶液中,然后再均匀分散到所述链状C3N4凝胶中;
(3)将步骤(2)所得混合体系60~80℃加温保温缩合10~20分钟后,冷却至室温即得。
2.根据权利要求1所述三维氮化碳多孔材料,其特征在于,步骤(1)和步骤(2)中所用g-C3N4粉末由g-C3N4的前驱体在500~750℃煅烧4~7小时后研磨制得,g-C3N4的前驱体为尿素、单氰氨和双氰氨中的一种。
3.根据权利要求1所述三维氮化碳多孔材料,其特征在于,强碱为NaOH、KOH和Mg(OH)2中的一种。
4.根据权利要求1所述三维氮化碳多孔材料,其特征在于,强碱溶液的浓度为2M~6M,g-C3N4粉末按10~35mg/mL 分散在强碱溶液中。
5.根据权利要求1所述三维氮化碳多孔材料,其特征在于,步骤(1)中的水浴温度为40~80℃。
6.根据权利要求1所述三维氮化碳多孔材料,其特征在于,步骤(2)中以g-C3N4粉末与链状C3N4凝胶的质量比为1:50~20进行配比。
7.一种如权利要求1~6任一权利要求所述三维氮化碳多孔材料在有机污染物的吸附与光催化降解中的应用。
CN201711350552.5A 2017-12-15 2017-12-15 一种同质异形体的三维氮化碳多孔材料及其制备方法和应用 Active CN108246328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711350552.5A CN108246328B (zh) 2017-12-15 2017-12-15 一种同质异形体的三维氮化碳多孔材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711350552.5A CN108246328B (zh) 2017-12-15 2017-12-15 一种同质异形体的三维氮化碳多孔材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108246328A CN108246328A (zh) 2018-07-06
CN108246328B true CN108246328B (zh) 2020-11-17

Family

ID=62723209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711350552.5A Active CN108246328B (zh) 2017-12-15 2017-12-15 一种同质异形体的三维氮化碳多孔材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108246328B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975917A (zh) * 2019-12-11 2020-04-10 中南林业科技大学 一种缺陷态氮化碳材料及其制备方法与用途
CN112742436B (zh) * 2021-01-19 2022-10-18 黄河科技学院 一种用于光催化产过氧化氢的氮化碳基同质结、其制备方法及应用
CN113735074B (zh) * 2021-08-31 2024-05-10 大韩道恩高分子材料(上海)有限公司 一种可生物降解材料用无机成核剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588063A (zh) * 2015-01-09 2015-05-06 常州大学 凹凸棒土/石墨相氮化碳复合材料及其制备方法
CN105350113A (zh) * 2015-12-10 2016-02-24 济南大学 一种氮化碳纳米纤维的制备方法及所得产品
CN105417507A (zh) * 2015-12-10 2016-03-23 济南大学 一种氮化碳纳米颗粒的制备方法及所得产品
CN106582461A (zh) * 2016-12-14 2017-04-26 南京理工大学 一种氮化碳水凝胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588063A (zh) * 2015-01-09 2015-05-06 常州大学 凹凸棒土/石墨相氮化碳复合材料及其制备方法
CN105350113A (zh) * 2015-12-10 2016-02-24 济南大学 一种氮化碳纳米纤维的制备方法及所得产品
CN105417507A (zh) * 2015-12-10 2016-03-23 济南大学 一种氮化碳纳米颗粒的制备方法及所得产品
CN106582461A (zh) * 2016-12-14 2017-04-26 南京理工大学 一种氮化碳水凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Reversible Assembly of Graphitic Carbon Nitride 3D Network for Highly Selective Dyes Absorption and Regeneration";Yuye Zhang et al.;《ACS Nano》;20160908(第10期);第17页第1段、图1c、第4页倒数第1段至第5页第1段、图1a、第7页倒数第1段、第15页第1段、第16页倒数第1段 *

Also Published As

Publication number Publication date
CN108246328A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
Guo et al. Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution
CN107362788B (zh) 一种氧化石墨烯/二氧化钛-活性炭三维复合材料及其制备方法
Su et al. C3N4 modified with single layer ZIF67 nanoparticles for efficient photocatalytic degradation of organic pollutants under visible light
CN108246328B (zh) 一种同质异形体的三维氮化碳多孔材料及其制备方法和应用
Chen et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light
CN107754785B (zh) 一种用于低温催化氧化甲醛的石墨烯-氧化锰复合催化剂及其制备方法
Chen et al. Cyano-rich mesoporous carbon nitride nanospheres for visible-light-driven photocatalytic degradation of pollutants
CN108579779A (zh) 一种三维复合材料、其制备方法及在水污染物可见光催化降解去除中的应用
Liu et al. Simultaneous efficient adsorption and accelerated photocatalytic degradation of chlortetracycline hydrochloride over novel Fe-based MOGs under visible light irradiation assisted by hydrogen peroxide
CN109759132A (zh) 复合光催化凝胶球的制备方法和复合光催化凝胶球
CN113926443B (zh) 用于可见光催化除醛的多元复合材料、制备方法及空气净化器
Fan et al. Iron oxide clusters on g-C3N4 promote the electron–hole separation in photo-Fenton reaction for efficient degradation of wastewater
CN111036265A (zh) 一种复合纳米光催化剂CDs-N-BiOCl及其制备方法与应用
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
Wang et al. Synergistic enhancement of the visible-light photocatalytic activity of hierarchical 3D BiOClxBr1-x/graphene oxide heterojunctions for formaldehyde degradation at room temperature
CN105944747A (zh) Ag2CrO4负载的g-C3N4复合光催化剂及其制备方法和应用
CN114505101A (zh) 一种基于非均相类芬顿反应的有机染料降解催化剂及其制备和应用
CN110523398B (zh) 一种碳纳米片层负载TiO2分子印迹材料及其制备方法和应用
Zhao et al. ZIF-8-derived hollow carbon polyhedra with highly accessible single Mn-N6 sites as peroxymonosulfate activators for efficient sulfamethoxazole degradation
Zhang et al. Porous pie-like nitrogen-doped biochar as a metal-free peroxymonosulfate activator for sulfamethoxazole degradation: Performance, DFT calculation and mechanism
Lee et al. PVA/Pt/N-TiO2/SrTiO3 porous films with adjustable pore size for hydrogen production under simulated sunlight
Huang et al. Z-scheme Bi4O5Br2/NH2-MIL-125 (Ti) heterojunctions enable exceptional visible photocatalytic degradation of organic pollutant
CN110116019B (zh) 一种纳米四氧化三钴/氧化铝@载体催化剂及其制备方法和应用
CN115025783B (zh) 一种多铌氧簇/zif-67衍生物复合材料的合成方法及应用
Jing et al. β-FeOOH/TiO 2/cellulose nanocomposite aerogel as a novel heterogeneous photocatalyst for highly efficient photo-Fenton degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant