CN108219184A - 环糊精气凝胶、其制备方法及应用 - Google Patents

环糊精气凝胶、其制备方法及应用 Download PDF

Info

Publication number
CN108219184A
CN108219184A CN201611126777.8A CN201611126777A CN108219184A CN 108219184 A CN108219184 A CN 108219184A CN 201611126777 A CN201611126777 A CN 201611126777A CN 108219184 A CN108219184 A CN 108219184A
Authority
CN
China
Prior art keywords
cyclodextrin
aeroge
diisocyanate
solvent
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611126777.8A
Other languages
English (en)
Other versions
CN108219184B (zh
Inventor
张学同
王锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201611126777.8A priority Critical patent/CN108219184B/zh
Publication of CN108219184A publication Critical patent/CN108219184A/zh
Application granted granted Critical
Publication of CN108219184B publication Critical patent/CN108219184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/301Detergents, surfactants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种环糊精气凝胶、其制备方法及应用。所述环糊精气凝胶包含主要由环糊精组成的骨架,并具有分子空腔和介孔结构,同时还具有大比表面积、高孔隙率和低密度等特点,并且还具有优异力学性能。所述环糊精气凝胶的制备方法包括:将环糊精溶于第一溶剂形成环糊精溶液,并加入交联剂、催化剂,经静置反应形成湿凝胶;以第二溶剂进行溶剂置换,获得溶剂置换后的凝胶,之后干燥,获得所述环糊精气凝胶。本发明的环糊精气凝胶可以在环保领域广谱应用,例如其在有机染料、高分子表面活性剂、金属离子、挥发性有机化合物、以及CO2等气体吸附应用中表现出优异性能,且经简单处理还可重复利用。

Description

环糊精气凝胶、其制备方法及应用
技术领域
本发明涉及一种气凝胶材料,尤其涉及一种环糊精气凝胶、其制备方法及应用,属于纳米多孔材料及环境保护技术领域。
背景技术
气凝胶是一种高度多孔性的纳米材料,是目前世界上质量最轻、隔热性能最好的固体材料。由于气凝胶具有高比表面积(400~1500m2/g)、高孔隙率(80~99.8%)、低密度(0.003~0.6g/cm3)和低热导率(0.013~0.038W/mk)等特点,使得气凝胶在隔热保温、声阻抗耦合、气体吸附和过滤、催化剂载体、药物载体等领域具有非常广阔的应用前景。
迄今为止,业界研发人员已经通过化学交联法制备了各种类型的气凝胶,包括二氧化硅气凝胶、甲壳素和壳聚糖气凝胶、碳气凝胶、竹碳气凝胶、金属氧化物及其复合气凝胶、多元素复合气凝胶、石墨烯和碳纳米管气凝胶、氧化钛气凝胶、酚醛树脂气凝胶等。以上提及的气凝胶多为介孔或大孔结构(孔径大于50nm),因此通常只表现出溶液中某种成分的吸附,如有机小分子、金属离子等,但不能同时吸收。而对于气体和挥发性有机化合物则束手无策,原因在于气体吸附通常需要大量微孔,或者骨架结构中具有与气体分子相互作用的基团。然而目前报道的各类气凝胶都不具有以上提及的特性。
另一方面,环糊精(Cyclodextrin,简称CD)是一类由葡萄糖单元通过糖苷键连接起来的天然大环分子,通常由6、7、8个葡萄糖单元构成,分别称为α-环糊精,β-环糊精和γ-环糊精。环糊精具有空心圆台状三维立体结构,孔直径为0.4-0.8纳米不等,孔深为0.8纳米左右,其所有羟基都分布于圆台外围,因此具有相对疏水的内部空腔和亲水的外壁。正因为环糊精拥有如此独特的立体结构和亲疏水特性,能够与多种有机小分子、气体分子、高分子聚合物、金属离子等形成包结物,因此被广泛用于超分子化学、化妆品、药物、手性分离以及环境处理等领域。其中,环糊精应用于环境领域,如污水处理中具有众多优势,首先,环糊精的吸附量大,其次,其吸附污染物的种类多,包括有机小分子、有机大分子、以及无机和金属离子等,此外可重复利用。
然而,由于环糊精在水中溶解性好,因此纯环糊精应用于水处理时难以分离和回收,为此业界研发人员的众多工作集中在制备环糊精聚合物中,即合成不溶性环糊精交联聚合物以实现污染物的吸附和分离,例如文献Progress in Polymer Science,2013,38,344-368报道了一系列环氧氯丙烷交联的环糊精聚合物及其在水处理中的应用,这类环糊精聚合物能够有效地吸附各种有机小分子,并且能够排除水体酸碱度对吸附性能的影响,因此具有巨大的应用前景。然而,这种环糊精交联聚合物通常为粉末状态,其材料本身没有比表面积,也无连续的孔道结构,在液体扩散和吸附效率上还有待进一步提高。
发明内容
本发明的主要目的在于提供一种环糊精气凝胶及其制备方法,以克服现有技术中的不足。
本发明的又一目的在于提供前述环糊精气凝胶的用途。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种环糊精气凝胶,其包含主要由环糊精组成的、具有多级孔结构的骨架,所述多级孔结构包括复数个分子空腔和复数个介孔,所述介孔的孔径为2~50nm,并且所述环糊精气凝胶的比表面积为50~300m2/g,孔隙率大于90%,密度为30~500mg/cm3,杨氏模量0.1~170MPa,热降解温度为350~400℃。
本发明实施例还提供了前述环糊精气凝胶的制备方法,其特征在于包括:
(1)将环糊精溶于第一溶剂形成环糊精溶液,并加入交联剂、催化剂,经静置反应形成湿凝胶;
(2)将步骤(1)所获湿凝胶以第二溶剂进行溶剂置换,获得溶剂置换后的凝胶;
(3)将步骤(1)所获溶剂置换后的凝胶干燥,获得所述环糊精气凝胶。
本发明实施例还提供了所述环糊精气凝胶于水体净化或气体净化领域的用途。
本发明实施例还提供了一种污水或空气净化方法,其特包括:将前述环糊精气凝胶置于污水或空气中,使所述环糊精气凝胶吸附污水或空气中的污染物。
与现有技术相比,本发明的优点包括:
1.本发明所获的环糊精气凝胶以环糊精为构建单元,通过化学交联凝胶化,再通过超临界干燥等方式将凝胶中的液体置换成气体,具有环糊精赋予的天然分子空腔,能够包覆多种有机小分子、高分子、气体分子、金属离子等;特别是经超临界流体干燥的环糊精气凝胶维持了凝胶的原有结构,因此所得的环糊精气凝胶具有优异的力学强度,最高可达166MPa,可压缩70%以上而无任何裂痕。
2.本发明的环糊精气凝胶制备工艺简单,反应条件温和,低能耗,绿色无污染,适于大规模生产。
3.本发明提供的环糊精气凝胶在有机染料、高分子表面活性剂、金属离子、挥发性有机化合物、以及CO2等气体吸附应用中表现出优异性能,去除率高达99%,饱和吸附量从20-250mg/g不等,经醇洗涤后可实现重复利用,实现了其在环保中的广谱应用。
附图说明
图1为本发明实施例1所获环糊精气凝胶的氮气等温吸脱附曲线图;
图2为本发明实施例1所获环糊精气凝胶的扫描电镜图;
图3为本发明实施例1所获环糊精气凝胶的X-射线衍射图;
图4为本发明实施例2所获环糊精气凝胶的氮气等温吸脱附曲线图;
图5为本发明实施例2所获环糊精气凝胶的扫描电镜图;
图6为本发明实施例2所获环糊精气凝胶的X-射线衍射图;
图7为本发明实施列2所获环糊精气凝胶的透射电镜图;
图8为本发明实施例3所获环糊精气凝胶的氮气等温吸脱附曲线图;
图9为本发明实施例3所获环糊精气凝胶的扫描电镜图;
图10为本发明实施例3所获环糊精气凝胶的X-射线衍射图;
图11为本发明实施例4所获环糊精气凝胶的氮气等温吸脱附曲线图;
图12为本发明实施例4所获环糊精气凝胶的扫描电镜图;
图13为本发明实施例4所获环糊精气凝胶的X-射线衍射图;
图14为本发明实施例5所获环糊精气凝胶的氮气等温吸脱附曲线图;
图15为本发明实施例5所获环糊精气凝胶的扫描电镜图;
图16为本发明实施例6所获环糊精气凝胶的氮气等温吸脱附曲线图;
图17为本发明实施例6所获环糊精气凝胶的扫描电镜图。
具体实施方式
鉴于现有技术的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,其主要是利用环糊精为构建单元,通过化学交联法制备凝胶,然后所述凝胶经洗涤和溶剂置换,最后经超临界干燥或冷冻干燥等方式得到环糊精气凝胶。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本发明实施例的一个方面提供的一种环糊精气凝胶包含主要由环糊精组成的、具有多级孔结构的骨架,所述多级孔结构包括复数个分子空腔和复数个介孔,所述介孔的孔径为2~50nm,并且所述环糊精气凝胶的比表面积为50~300m2/g,孔隙率大于90%,密度为30~500mg/cm3,杨氏模量0.1~170MPa,热降解温度为350~400℃。
在一些较为具体的实施方案中,所述多级孔结构还包括复数个微孔,所述微孔的孔径大于0而小于或等于2nm。
本发明实施例的另一个方面提供的一种制备前述环糊精气凝胶的制备方法包括:
(1)将环糊精溶于第一溶剂形成环糊精溶液,并加入交联剂、催化剂,经静置反应形成湿凝胶;
(2)将步骤(1)所获湿凝胶以第二溶剂进行溶剂置换,获得溶剂置换后的凝胶;
(3)将步骤(1)所获溶剂置换后的凝胶干燥,获得所述环糊精气凝胶。
在一些较为具体的实施方案中,所述环糊精包括α-环糊精、β-环糊精、γ-环糊精中的一种或两种以上的组合,且不限于此。
在一些较为优选的实施方案中,步骤(1)中所述环糊精溶液的浓度为0.05~0.5g/ml。
在一些较为优选的实施方案中,步骤(1)中所述交联剂的用量为环糊精的摩尔用量的1%~60%。
在一些较为优选的实施方案中,步骤(1)中所述催化剂的用量为交联剂的摩尔用量的0%~1%。
在一些较为具体的实施方案中,步骤(1)中所述静置反应的时间为2~10小时,优选为2~4小时。
在一些较为具体的实施方案中,所述静置反应的温度为-40~180℃,优选为60~100℃。
进一步的,所述溶剂包括水、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮中的任意一种或两种以上的组合,且不限于此。
进一步的,所述交联剂包括环氧丙烷、环氧氯丙烷、六亚甲基二异氰酸酯、1,4-环己烷二异氰酸酯、三甲基六亚甲基二异氰酸酯、对苯二异氰酸酯、甲苯二异氰酸酯、1,5-二异氰酸萘、4,4’-亚甲基双(异氰酸苯酯)、1,5-奈二异氰酸酯、亚甲基二异氰酸酯、甲基-2,4-二异氰酸酯、二苯基甲烷二异氰酸酯、间苯二甲基二异氰酸酯、3,3-二甲基-4,4’-二苯基二异氰酸酯、异佛尔酮二异氰酸酯、二异氰酸酯基聚乙二醇、乙(基)苯(基)二异氰酸酯、L-赖氨酸二异氰酸酯、3,3’-二氯联苯-4,4’-二异氰酸酯、4-氯-6-甲基间亚苯基二异氰酸酯、1-氯甲基-2,4-二异氰基苯、2,4-异氰酸-1-甲苯的均聚物、甲苯2,6-二异氰酸酯、间苯二异氰酸酯、间苯二甲基异氰酸酯、3,3’-二甲氧基-4,4’-联苯二异氰酸酯、1,3-双(1-异氰酸根-1-甲基乙基)苯、1,1’,1”-次甲基三(4-异氰酸)苯、L-赖氨酸三异氰酸酯中的任意一种或两种以上的组合,且不限于此。
进一步的,通过选用不同种类的交联剂,例如刚性交联剂三异氰酸苯等,可获得同时具有微孔和介孔的环糊精气凝胶。
进一步的,所述催化剂包括氢氧化钠、氢氧化钾、纳米锡、硫化亚锡、硫化锡、苯乙锡酮,三氯一丁基锡、二酸二丁基锡、1,4-二氯丁烷锡、马来酸甲基锡、二异辛酸亚锡、辛酸亚锡、四氯化锡乙醇中的任意一种或两种以上的组合,且不限于此。
在一些较为具体的实施方案中,步骤(2)包括:将步骤(1)所获湿凝胶先以洗涤剂洗涤,之后再以第二溶剂进行溶剂置换。
进一步的,步骤(2)包括:以洗涤剂洗涤所述湿凝胶2次以上,每次洗涤时间在2小时以上,之后进行溶剂置换。
优选的,所述洗涤剂可选自前述第一溶剂。
优选的,步骤(2)包括:所述溶剂置换的次数在2次以上,每次置换的时间在2小时以上。
进一步的,所述第二溶剂包括甲醇、乙醇、丙酮或去离子水,且不限于此。
在一些较为具体的实施方案中,步骤(3)中采用的干燥方式包括超临界流体干燥或冷冻干燥。一般来说,超临界流体干燥适用于环糊精醇凝胶或者环糊精酮凝胶,而冷冻干燥则适用于环糊精水凝胶。
优选的,所述超临界流体干燥包括超临界二氧化碳干燥或超临界乙醇干燥等,且不限于此。其中,经超临界流体干燥的环糊精气凝胶维持了凝胶的原有结构,具有优异的力学强度。
在一些较为具体的实施方案中,所述超临界二氧化碳干燥的温度优选为35~45℃,压力优选为7~12MPa。
在一些较为具体的实施方案中,所述超临界乙醇干燥的温度优选为200~330℃,压力优选为5~10MPa。
在一些较为具体的实施方案中,所述冷冻干燥的真空度优选小于500Pa,冷阱温度优选为-45~-60℃。
进一步的,前述步骤(3)中采用的干燥时间优选为3~24小时。
本发明实施例还提供了所述环糊精气凝胶于水体净化或气体净化领域的用途。
优选的,所述用途包括:以所述的环糊精气凝胶直接吸附污水或空气中的污染物,实现对污水或空气的净化处理。
进一步的,所述污染物包括有机染料、表面活性剂、金属离子、二氧化碳、氯气、挥发性有机化合物中的任意一种或两种以上的组合,且不限于此。
本发明实施例还提供了一种污水或空气净化方法,包括:将所述环糊精气凝胶置于污水或空气中,使所述环糊精气凝胶吸附污水或空气中的污染物。
其中,所述污水中的污染物包括有机染料、表面活性剂、金属离子中的任意一种或两种以上的组合,且不限于此。
其中,所述空气中的污染物包括二氧化碳、氯气、挥发性有机化合物(VOC)中的任意一种或两种以上的组合,且不限于此。
以下通过若干实施例并结合附图进一步详细说明本发明的技术方案。然而,所选的实施例仅用于说明本发明,而不限制本发明的范围。
实施例1
(1)湿凝胶的合成:取10克α-CD,充分溶解在100ml无水DMF中,之后于搅拌状态下缓慢滴加10ml六亚甲基二异氰酸酯,混合均匀后加入10mg辛酸亚锡,于100℃静置形成湿凝胶。
(2)湿凝胶的溶剂置换:将形成的湿凝胶置于5倍体积的DMF中,每12小时换一次DMF,置换3次后,再用5倍体积的乙醇进行溶剂置换,每5小时换一次乙醇,2天后得到环糊精醇凝胶。
(3)湿凝胶的干燥:将置换后的环糊精醇凝胶通过超临界乙醇干燥,获得环糊精气凝胶,经BET等温吸附、SEM、XRD等表征,可以发现,该环糊精气凝胶粉体具有纳米多孔结构,且为非晶结构,此环糊精气凝胶的等温吸脱附曲线请参阅图1,扫描电子显微照片请参阅图2,XRD请参阅图3,其他物理参数如比表面积、密度、力学强度、有机分子吸附量等见于表1。
实施例2
(1)湿凝胶的合成:取10克β-CD,充分溶解在50ml、1mol/L的氢氧化钠水溶液中,之后于40℃搅拌状态下缓慢滴加10ml环氧氯丙烷,混合均匀后于40℃静置形成湿凝胶。
(2)湿凝胶的溶剂置换:将形成的湿凝胶置于10倍体积的去离子水中,每12小时换一次水,置换4次后,再用5倍体积的丙酮进行溶剂置换,每10小时换一次丙酮,3天后得到环糊精酮凝胶。
(3)湿凝胶的干燥:将置换后的环糊精酮凝胶通过超临界乙醇干燥,获得环糊精气凝胶,经BET等温吸附、SEM、XRD等表征,可以发现,该环糊精气凝胶粉体具有纳米多孔结构,且为非晶结构,此环糊精气凝胶的等温吸脱附曲线请参阅图4,扫描电子显微照片请参阅图5,XRD请参阅图6,透射电子显微照片请参阅图7,其他物理参数如比表面积、密度、力学强度、有机分子吸附量等见于表1。
实施例3
(1)湿凝胶的合成:取15克γ-CD,充分溶解在80ml、1mol/L的氢氧化钾水溶液中,之后于45℃搅拌状态下缓慢滴加20ml环氧氯丙烷,混合均匀后于45℃静置形成湿凝胶。
(2)湿凝胶的溶剂置换:将形成的湿凝胶置于10倍体积的去离子水中,每6小时换一次水,置换4次后,再用5倍体积的乙醇进行溶剂置换,每6小时换一次丙酮,2天后得到环糊精醇凝胶。
(3)湿凝胶的干燥:将置换后的环糊精醇凝胶通过超临界二氧化碳干燥,获得环糊精气凝胶,经BET等温吸附、SEM、XRD等表征,可以发现,该环糊精气凝胶粉体具有纳米多孔结构,且为非晶结构,此环糊精气凝胶的等温吸脱附曲线请参阅图8,扫描电子显微照片请参阅图9,XRD请参阅图10,其他物理参数如比表面积、密度、力学强度、有机分子吸附量等见于表1。
实施例4
(1)湿凝胶的合成:取5克β-CD,充分溶解在50ml无水DMSO中,之后于室温中缓慢滴加5ml的1,1’,1"-次甲基三(4-异氰酸)苯,混合均匀后于80℃静置形成湿凝胶。
(2)湿凝胶的溶剂置换:将形成的湿凝胶置于15倍体积的DMSO中,每12小时换一次纯净的DMSO,置换2次后,再用15倍体积的丙酮进行溶剂置换,每12小时换一次丙酮,2天后得到环糊精酮凝胶。
(3)湿凝胶的干燥:将置换后的环糊精酮凝胶通过超临界乙醇干燥,获得环糊精气凝胶,经BET等温吸附、SEM、XRD等表征,可以发现,该环糊精气凝胶粉体具有纳米多孔结构,且为非晶结构,此环糊精气凝胶的等温吸脱附曲线请参阅图11,扫描电子显微照片请参阅图12,XRD请参阅图13,其他物理参数如比表面积、密度、力学强度、有机分子吸附量等见于表1。
实施例5
(1)湿凝胶的合成:取5克β-CD,充分溶解在50ml无水MDF中,之后于室温中缓慢滴加6ml的1,5-奈二异氰酸酯,混合均匀后于100℃静置形成湿凝胶。
(2)湿凝胶的溶剂置换:将形成的湿凝胶置于15倍体积的DMF中,每12小时换一次纯净的DMF,置换2次后,再用15倍体积的丙酮进行溶剂置换,每12小时换一次丙酮,2天后得到环糊精酮凝胶。
(3)湿凝胶的干燥:将置换后的环糊精酮凝胶通过超临界乙醇干燥,获得环糊精气凝胶,经BET等温吸附、SEM、XRD等表征,可以发现,该环糊精气凝胶粉体具有纳米多孔结构,且为非晶结构,此环糊精气凝胶的等温吸脱附曲线请参阅图14,扫描电子显微照片请参阅图15,其他物理参数如比表面积、密度、力学强度、有机分子吸附量等见于表1。
实施例6
(1)湿凝胶的合成:取5克β-CD,充分溶解在50ml无水MDF中,之后于室温中缓慢滴加9ml的二苯基甲烷二异氰酸酯,30mg辛酸亚锡,混合均匀后于60℃静置形成湿凝胶。
(2)湿凝胶的溶剂置换:将形成的湿凝胶置于15倍体积的DMF中,每12小时换一次纯净的DMF,置换2次后,再用15倍体积的去离子水进行溶剂置换,每12小时换一次,2天后得到环糊精水凝胶。
(3)湿凝胶的干燥:将置换后的环糊精水凝胶于-170-0℃冷冻成冰,再经减压升华(冷冻干燥),获得环糊精气凝胶,经BET等温吸附、SEM、XRD等表征,可以发现,该环糊精气凝胶粉体具有纳米多孔结构,且为非晶结构,此环糊精气凝胶的等温吸脱附曲线请参阅图16,扫描电子显微照片请参阅图17,其他物理参数如比表面积、密度、力学强度、有机分子吸附量等见于表1。
综上所述,藉由本发明的上述技术方案获得的环糊精气凝胶不仅具有传统气凝胶的介孔结构(2-50nm),而且具有环糊精赋予的天然分子空腔结构。此外,采用刚性交联剂获得的气凝胶还具有微孔结构(小于2nm)。与此同时,环糊精具有优异的力学强度,最高可达166MPa,可压缩70%以上而无任何裂痕;比表面积达230m3/g,微孔面积达50m2/g,加之大量的环糊精空腔、微孔、和介孔的多级孔洞,使其在有机染料、高分子表面活性剂、金属离子、挥发性有机化合物、以及CO2等气体吸附应用中表现出优异性能,去除率高达99%,饱和吸附量从20-250mg/g不等,从而可实现污水及污染空气中多种污染物的广谱吸附。同时经乙醇洗涤后,可实现重复利用。
应当理解,以上所述的仅是本发明的一些实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明的创造构思的前提下,还可以做出其它变形和改进,这些都属于本发明的保护范围。
表1实施例1-6中所获环糊精气凝胶的结构及性能参数

Claims (10)

1.一种环糊精气凝胶,其特征在于:所述环糊精气凝胶包含主要由环糊精组成的、具有多级孔结构的骨架,所述多级孔结构包括复数个分子空腔和复数个介孔,所述介孔的孔径为2~50nm,并且所述环糊精气凝胶的比表面积为50~300m2/g,孔隙率大于90%,密度为30~500mg/cm3,杨氏模量0.1~170MPa,热降解温度为350~400℃。
2.根据权利要求1所述的环糊精气凝胶,其特征在于:所述多级孔结构还包括复数个微孔,所述微孔的孔径大于0而小于或等于2nm。
3.一种环糊精气凝胶的制备方法,其特征在于包括:
(1)将环糊精溶于第一溶剂形成环糊精溶液,并加入交联剂、催化剂,经静置反应形成湿凝胶;
(2)将步骤(1)所获湿凝胶以第二溶剂进行溶剂置换,获得溶剂置换后的凝胶;
(3)将步骤(1)所获溶剂置换后的凝胶干燥,获得所述环糊精气凝胶。
4.根据权利要求3所述的环糊精气凝胶的制备方法,其特征在于:所述环糊精包括α-环糊精、β-环糊精、γ-环糊精中的任意一种或两种以上的组合;和/或,步骤(1)中所述环糊精溶液的浓度为0.05~0.5g/ml;
和/或,步骤(1)中所述交联剂的用量为环糊精的摩尔用量的1%~60%;和/或,步骤(1)中所述催化剂的用量为交联剂的摩尔用量的0%~1%;
和/或,步骤(1)中所述静置反应的时间为2~10小时,优选为2~4小时;和/或,步骤(1)中所述静置反应的温度为-40~180℃,优选为60~100℃。
5.根据权利要求3-4中任一项所述的环糊精气凝胶的制备方法,其特征在于:
所述第一溶剂包括水、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮中的任意一种或两种以上的组合;
和/或,所述交联剂包括环氧丙烷、环氧氯丙烷、六亚甲基二异氰酸酯、1,4-环己烷二异氰酸酯、三甲基六亚甲基二异氰酸酯、对苯二异氰酸酯、甲苯二异氰酸酯、1,5-二异氰酸萘、4,4’-亚甲基双(异氰酸苯酯)、1,5-奈二异氰酸酯、亚甲基二异氰酸酯、甲基-2,4-二异氰酸酯、二苯基甲烷二异氰酸酯、间苯二甲基二异氰酸酯、3,3-二甲基-4,4’-二苯基二异氰酸酯、异佛尔酮二异氰酸酯、二异氰酸酯基聚乙二醇、乙(基)苯(基)二异氰酸酯、L-赖氨酸二异氰酸酯、3,3’-二氯联苯-4,4’-二异氰酸酯、4-氯-6-甲基间亚苯基二异氰酸酯、1-氯甲基-2,4-二异氰基苯、2,4-异氰酸-1-甲苯的均聚物、甲苯2,6-二异氰酸酯、间苯二异氰酸酯、间苯二甲基异氰酸酯、3,3’-二甲氧基-4,4’-联苯二异氰酸酯、1,3-双(1-异氰酸根-1-甲基乙基)苯、1,1’,1”-次甲基三(4-异氰酸)苯、L-赖氨酸三异氰酸酯中的任意一种或两种以上的组合;优选的,所述交联剂为刚性交联剂;优选的,所述刚性交联剂包括三异氰酸苯;
和/或,所述催化剂包括氢氧化钠、氢氧化钾、纳米锡、硫化亚锡、硫化锡、苯乙锡酮,三氯一丁基锡、二酸二丁基锡、1,4-二氯丁烷锡、马来酸甲基锡、二异辛酸亚锡、辛酸亚锡、四氯化锡乙醇中的任意一种或两种以上的组合。
6.根据权利要求3所述的环糊精气凝胶的制备方法,其特征在于,步骤(2)包括:将步骤(1)所获湿凝胶先以洗涤剂洗涤,之后再以第二溶剂进行溶剂置换;
优选的,步骤(2)包括:以洗涤剂洗涤所述湿凝胶2次以上,每次洗涤时间在2小时以上,之后进行溶剂置换;优选的,所述洗涤剂为第一溶剂;
优选的,步骤(2)包括:所述溶剂置换的次数在2次以上,每次置换的时间在2小时以上;和/或,所述第二溶剂包括甲醇、乙醇、丙酮或去离子水。
7.根据权利要求3所述的环糊精气凝胶的制备方法,其特征在于,步骤(3)中采用的干燥方式包括超临界流体干燥或冷冻干燥;优选的,所述超临界流体干燥包括超临界二氧化碳干燥或超临界乙醇干燥;优选的,所述超临界二氧化碳干燥的温度为35~45℃,压力为7~12MPa;优选的,所述超临界乙醇干燥的温度为200~330℃,压力为5~10MPa;优选的,所述干燥的时间为3~24小时;优选的,所述冷冻干燥的真空度小于500Pa,冷阱温度为-45~-60℃。
8.如权利要求1或2所述的环糊精气凝胶于水体净化或气体净化领域的用途,其包括:以所述的环糊精气凝胶直接吸附污水或空气中的污染物,实现对污水或空气的净化处理。
9.一种污水或空气净化方法,其特征在于包括:将权利要求1或2所述的环糊精气凝胶置于污水或空气中,使所述环糊精气凝胶吸附污水或空气中的污染物。
10.根据权利要求9所述的污水或空气净化方法,其特征在于:所述污水中的污染物包括有机染料、表面活性剂、金属离子中的任意一种或两种以上的组合;和/或,所述空气中的污染物包括二氧化碳、氯气、挥发性有机化合物中的任意一种或两种以上的组合。
CN201611126777.8A 2016-12-09 2016-12-09 环糊精气凝胶、其制备方法及应用 Active CN108219184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611126777.8A CN108219184B (zh) 2016-12-09 2016-12-09 环糊精气凝胶、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611126777.8A CN108219184B (zh) 2016-12-09 2016-12-09 环糊精气凝胶、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN108219184A true CN108219184A (zh) 2018-06-29
CN108219184B CN108219184B (zh) 2023-04-07

Family

ID=62638602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611126777.8A Active CN108219184B (zh) 2016-12-09 2016-12-09 环糊精气凝胶、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN108219184B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041889A (zh) * 2019-05-31 2019-07-23 中科盛联(北京)新材料有限公司 环保结壳型抑尘剂及其制备方法和使用方法
WO2020011197A1 (en) * 2018-07-11 2020-01-16 Nano And Advanced Materials Institute Limited Cross-linked nanoporous saccharide-based material and methods for fabrication thereof
CN110871212A (zh) * 2018-08-30 2020-03-10 中国石油化工股份有限公司 去除挥发性有机化合物的制剂及其应用和挥发性有机化合物的去除方法
CN112898584A (zh) * 2021-01-21 2021-06-04 中国科学院苏州纳米技术与纳米仿生研究所 一种固-固超分子相变材料及其制备方法与应用
CN114618266A (zh) * 2020-12-10 2022-06-14 中国石油天然气股份有限公司 一种增溶吸收剂及其制备方法、有机废气的处理方法
CN116041950A (zh) * 2022-12-15 2023-05-02 武汉纺织大学 一种纳米泡沫材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192579A1 (en) * 2010-07-27 2015-07-09 Lawrence Livermore National Security, Llc Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (sers)
CN105582864A (zh) * 2016-03-03 2016-05-18 福建农林大学 一种植物蛋白气凝胶及其制备方法
CN105837861A (zh) * 2016-04-03 2016-08-10 苏鑫 一种复合天然高分子凝胶类材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192579A1 (en) * 2010-07-27 2015-07-09 Lawrence Livermore National Security, Llc Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (sers)
CN105582864A (zh) * 2016-03-03 2016-05-18 福建农林大学 一种植物蛋白气凝胶及其制备方法
CN105837861A (zh) * 2016-04-03 2016-08-10 苏鑫 一种复合天然高分子凝胶类材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
余志军等: "环糊精-聚合物超分子材料的研究进展", 《高分子通报》 *
叶霖等: "《环糊精自组装-一种新型超分子材料的制备与应用》", 30 November 2013, 北京理工大学出版社 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020011197A1 (en) * 2018-07-11 2020-01-16 Nano And Advanced Materials Institute Limited Cross-linked nanoporous saccharide-based material and methods for fabrication thereof
CN112469775A (zh) * 2018-07-11 2021-03-09 纳米及先进材料研发院有限公司 交联纳米多孔糖类基材料及其制造方法
CN110871212A (zh) * 2018-08-30 2020-03-10 中国石油化工股份有限公司 去除挥发性有机化合物的制剂及其应用和挥发性有机化合物的去除方法
CN110041889A (zh) * 2019-05-31 2019-07-23 中科盛联(北京)新材料有限公司 环保结壳型抑尘剂及其制备方法和使用方法
CN110041889B (zh) * 2019-05-31 2019-12-31 中科盛联(北京)新材料有限公司 环保结壳型抑尘剂及其制备方法和使用方法
CN114618266A (zh) * 2020-12-10 2022-06-14 中国石油天然气股份有限公司 一种增溶吸收剂及其制备方法、有机废气的处理方法
CN114618266B (zh) * 2020-12-10 2023-07-25 中国石油天然气股份有限公司 一种增溶吸收剂及其制备方法、有机废气的处理方法
CN112898584A (zh) * 2021-01-21 2021-06-04 中国科学院苏州纳米技术与纳米仿生研究所 一种固-固超分子相变材料及其制备方法与应用
CN112898584B (zh) * 2021-01-21 2022-03-08 中国科学院苏州纳米技术与纳米仿生研究所 一种固-固超分子相变材料及其制备方法与应用
CN116041950A (zh) * 2022-12-15 2023-05-02 武汉纺织大学 一种纳米泡沫材料及其制备方法和应用
CN116041950B (zh) * 2022-12-15 2024-05-24 武汉纺织大学 一种纳米泡沫材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108219184B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN108219184A (zh) 环糊精气凝胶、其制备方法及应用
Jiang et al. Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate
De France et al. Review of hydrogels and aerogels containing nanocellulose
Zaman et al. Preparation, properties, and applications of natural cellulosic aerogels: a review
Jiang et al. Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods
Zhu et al. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties
Liu et al. Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption
Dutta et al. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications
Mi et al. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process
Sehaqui et al. Functional cellulose nanofiber filters with enhanced flux for the removal of humic acid by adsorption
Peng et al. Advanced MOFs@ aerogel composites: construction and application towards environmental remediation
CN107108946B (zh) 具有阴离子表面活性剂的cnf多孔固体材料
JP6150263B2 (ja) ミクロポーラス炭素材料を調製するための方法および吸着物としてのその使用
Tseng et al. Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water
Fan et al. Water-induced self-assembly and in situ mineralization within plant phenolic glycol-gel toward ultrastrong and multifunctional thermal insulating aerogels
JP4905814B2 (ja) 複合多孔材料及びその製造方法
CN106832388B (zh) 一种气凝胶的制备方法
Pettignano et al. Sodium and acidic alginate foams with hierarchical porosity: preparation, characterization and efficiency as a dye adsorbent
Wang et al. Polyethylenimine-impregnated mesoporous delignified wood with high mechanical strength for CO2/N2 selective adsorption
Sengel et al. Halloysite-carboxymethyl cellulose cryogel composite from natural sources
Ding et al. Robust, sustainable, hierarchical multi-porous cellulose beads via pre-crosslinking strategy for efficient dye adsorption
Feng et al. Recent advances of porous materials based on cyclodextrin
Duong et al. Nanocellulose aerogels as thermal insulation materials
Christy et al. Chitin and chitosan-based aerogels
CN105883803A (zh) 一种基于木质素黑液的中大孔径炭材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant