CN108203116A - 一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法 - Google Patents

一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法 Download PDF

Info

Publication number
CN108203116A
CN108203116A CN201810053487.8A CN201810053487A CN108203116A CN 108203116 A CN108203116 A CN 108203116A CN 201810053487 A CN201810053487 A CN 201810053487A CN 108203116 A CN108203116 A CN 108203116A
Authority
CN
China
Prior art keywords
titanium dioxide
nano
micro
particle
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810053487.8A
Other languages
English (en)
Other versions
CN108203116B (zh
Inventor
张盈
郑诗礼
朱小芳
房志刚
李庆
张洋
李平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201810053487.8A priority Critical patent/CN108203116B/zh
Publication of CN108203116A publication Critical patent/CN108203116A/zh
Application granted granted Critical
Publication of CN108203116B publication Critical patent/CN108203116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提出一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,具体地说是运用金属铝粉、镁粉、钙颗粒等金属还原剂热化学还原纳米二氧化钛,实现纳米二氧化钛的化学改性,使纳米二氧化钛中难溶的四价钛还原成易被稀酸溶解的低价钛,低价钛溶解至酸性溶液中后水解,通过控制钛离子在酸性溶液中的水解行为而制得微米级二氧化钛。采用本发明的方法可成功稳定制得颗粒粗达20‑60微米的、流动性极好的微米级二氧化钛。

Description

一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法
技术领域
本发明属于化工冶金技术领域,涉及一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,具体地说是涉及一种运用金属热还原实现纳米二氧化钛的化学改性,使纳米二氧化钛中难溶的四价钛还原成易被稀酸溶解的低价钛,低价钛溶解至酸性溶液中后水解,通过控制钛离子在酸性溶液中的水解行为而制得微米级二氧化钛。
背景技术
钛及钛合金具有密度小、比强度高、生物相容性好和抗腐蚀性能好等一系列优点,被广泛应用于航空航天、国防军事、石油工业、海洋、能源、交通、化工等诸多领域。钛虽然是地壳中含量最丰富的元素之一,但是全球金属钛的产量占钛资源消耗量的份额却很小,这主要是由于金属钛的现行提取方法能耗高、成本高,极大限制了金属钛相关产品的应用,特别是民用行业,目前仅在高尖端的行业得到青睐。
现行金属钛的主流提取方法为Kroll法,即采用高纯TiCl4为原料,经镁热还原、蒸馏提纯、镁电解循环等步骤而制得;其中高纯TiCl4的制备是采用富含TiO2的钛渣、高钛渣等为原料,经氯化/精馏提纯而制得。虽然TiCl4极易挥发、且具有强腐蚀性,其制备/存储/输送等对设备/系统要求极高,但它却是目前金属钛生产过程中无法逾越的中间体,这是因为:钛与氧具有极强的化学亲和力,致使钛氧化合物(包括二氧化钛及各种低价钛的氧化物)及钛氧固溶体(具备钛金属结构,但是氧在钛中具有高溶解度)中氧的充分脱除异常困难,除非使用非常昂贵的化学还原剂金属钙等,这便使得“通过化学还原大宗的TiO2原料来经济制备金属钛”成为不可能,迫不得已而转向钛渣先氯化脱氧除杂获得高纯TiCl4的前驱体。
最近,本申请的发明人经不懈努力,建立了氢气协同镁热还原TiO2制备低氧金属钛(HAMR)的新方法,该法在脱除金属钛中的晶格氧具有非常大的潜力,可从根本上避免各种强腐蚀性含氯介质的循环。该法对前驱体TiO2的要求包括高纯度和合适的粒度。现行大宗TiO2商品容易满足纯度的要求,但粒度却集中在纳米范围(主要为迎合颜料用途,200-300nm)。若采用纳米TiO2颗粒为前驱体,那么还原过程中还原中间体不便与还原副产物分离,过程操作困难,且细颗粒的中间体容易引入更多的表面氧。因此,本发明提出一种由纳米级二氧化钛制备微米级二氧化钛的方法,二氧化钛的颗粒尺寸可增加到20-60μm,流动性极好,有利于化学还原前的物料混合等各种操作,并极大增加了还原中间体的颗粒尺寸。虽然本发明采用的原料是纳米二氧化钛,但本发明的技术思路可完全推广至各种富含TiO2的原料,包括钛铁矿、钛渣、高钛渣、人造晶红石等,进而建立新的TiO2制备方法。
发明内容
本发明的目的是提供一种技术可行的由纳米二氧化钛制备微米级二氧化钛颗粒的方法。
本发明的目的是通过以下技术方案实现的。
一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,是运用金属铝粉、镁粉、钙颗粒等金属还原剂热化学还原纳米二氧化钛,实现纳米二氧化钛的化学改性,使纳米二氧化钛中难溶的四价钛还原成易被稀酸溶解的低价钛,低价钛溶解至酸性溶液中后水解,通过控制钛离子在酸性溶液中的水解行为而制得微米级二氧化钛。其特征在于该方法的操作过程包括:
(a)将纳米二氧化钛和还原剂金属粉按照一定的质量比混合均匀;
(b)步骤(a)结束后,将混合物质置于金属或陶瓷坩埚中,松装或压块装料,然后将盛有反应物原料的坩埚置于气氛炉的高温区中;
(c)步骤(b)结束后,用惰性气体对炉体进行气体交换,保证炉体升温前空气已被惰性气体充分置换,而后切换气流至特定的反应气体,并启动升温程序,使混合料在一定温度和特定气氛中保温反应一定时间;
(d)步骤(c)结束后,待炉体降温至60℃以下时,若反应气体同为惰性气体,则直接关闭气流,取出物料;若反应气体为易燃易爆气体,则先将气流切换至惰性气体,待炉体内反应气体被惰性气体充分置换后,关闭气流,取出物料;
(e)步骤(d)结束后,将物料用稀酸液在一定体积质量比(配比单位为mL/g)及一定温度下酸浸一定时间,浸出结束后液固分离,固相残渣舍弃,液相为含Ti3+的酸性溶液;
(f)步骤(e)结束后,测定获得的含Ti3+的酸性溶液中的钛离子浓度及游离酸浓度,然后基于测定的浓度调整钛离子浓度及游离酸浓度至设定范围;
(g)步骤(f)结束后,用氧化剂将浓度调整后的酸性溶液中的三价钛氧化成四价钛,氧化温度即为料液自身的温度,不需升高或降低,氧化时间及氧化剂的用量根据料液的颜色变化决定,待料液颜色从紫色变成无色即为氧化终点;
(h)步骤(g)结束后,将无色料液倒入结晶器中,在一定温度下搅拌一段时间,然后液固分离,固相为微米级钛酸颗粒,液相为酸性水解后液;
(i)步骤(h)结束后,将酸性水解后液返回至步骤(e),用于浸出下一批的反应物料;水解获得的钛酸颗粒经稀酸洗涤及水洗后,烘干游离水,煅烧脱除结晶水,获得微米级二氧化钛颗粒。
本发明的方法,其特征在于:步骤(a)中纳米二氧化钛为纳米颗粒的金红石型二氧化钛、纳米颗粒的锐钛型二氧化钛中的一种或两种混合物。
本发明的方法,其特征在于:步骤(a)中还原剂金属粉为Al粉、Mg粉、Ca颗粒、Mg-Al合金粉、Mg-Ca合金粉、Al-Ca合金粉中的一种或多种,优选为Al粉。
本发明的方法,其特征在于:步骤(a)中纳米二氧化钛与还原剂金属粉二者混合的质量比为1:0.05~1:5,优选为1:0.1~1:1。
本发明的方法,其特征在于:在步骤(a)混料时,可进一步混入辅助物质盐,该盐可以为AlCl3、MgCl2、CaCl2、NaCl、KCl、LiCl、AlCl3-MgCl2共熔盐、AlCl3-CaCl2共熔盐、AlCl3-NaCl共熔盐、AlCl3-KCl共熔盐、AlCl3-LiCl共熔盐、MgCl2-CaCl2共熔盐、MgCl2-NaCl共熔盐、MgCl2-KCl共熔盐、MgCl2-LiCl共熔盐、CaCl2-NaCl共熔盐、CaCl2-KCl共熔盐、CaCl2-LiCl共熔盐、NaCl-KCl共熔盐、NaCl-LiCl共熔盐、KCl-LiCl共熔盐、NaCl-KCl-LiCl共熔盐中的一种或多种,辅助物质盐的混入量为纳米二氧化钛重量的0.005倍~20倍,优选为1:0.2~1:2。
本发明的方法,其特征在于:步骤(a)中原料的混合方式为干混或湿混中的一种,湿混具体为用汽油、酒精、甲烷、乙烷、丙烷、丁烷、戊烷、己烷、更烷、辛烷中的一种或多种溶剂将混合料浆化,并搅拌混合均匀或超声分散,然后在室温下将分散剂挥发,待混合料干透即完成湿混。
本发明的方法,其特征在于:步骤(a)中三种原料的混合方法优选为湿混。
本发明的方法,其特征在于:步骤(c)中惰性气体为氩气、氮气、氦气中的一种或多种。
本发明的方法,其特征在于:步骤(c)中反应气体为氩气、氢气、氦气、氮气中的一种或多种。
本发明的方法,其特征在于:步骤(c)中反应温度为250℃~1400℃,保温反应时间为0.1h~24h。
本发明的方法,其特征在于:步骤(e)中稀酸液为稀盐酸、稀硫酸、稀硝酸中的一种或多种,稀酸液的H+浓度不高于8mol/L,优选为稀盐酸。
本发明的方法,其特征在于:步骤(e)中稀酸液与反应物料的体积质量比(配比单位为mL/g)为0.5:1~200:1,浸出温度为常温~105℃,浸出时间为0.5~24h。
本发明的方法,其特征在于:步骤(f)中钛离子浓度的设定范围为40~150g/L(以TiO2计),游离酸浓度的设定范围为0.5~5mol/L(以H+计)。
本发明的方法,其特征在于:步骤(f)中钛离子及游离酸浓度的调整方法为稀释、蒸发、补酸、加碱中的一种或多种。
本发明的方法,其特征在于:步骤(g)中氧化剂为双氧水、空气、氧气、臭氧中的一种或多种,优选为双氧水。
本发明的方法,其特征在于:步骤(h)中钛酸水解的温度为80~110℃,钛酸水解的时间为2~48h。
本发明的方法,其特征在于:步骤(i)中钛酸颗粒煅烧的温度为200~1300℃,优选为300~900℃。
附图说明
图1为本发明可适用的工艺流程图,图2为实施例1中气氛还原转型后产物的XRD衍射图。
具体实施方案
下面通过结合附图和实施例进一步阐述本发明的实施过程与步骤。应该理解的是这些实施例仅仅用于进一步说明本发明的实验方案,而不是用于限定本发明。本发明实施例中所用的原料为分析纯纳米二氧化钛。
实施例1
称取一定质量的纳米二氧化钛、金属铝粉及辅助物质NaCl-KCl盐,其中纳米二氧化钛与铝粉的质量比为13.3:1,纳米二氧化钛与辅助物质盐的质量比为1:1,辅助物质盐中NaCl与KCl的摩尔比为1:1;原料称好以后,将原料用酒精浆化并超声混合均匀;待酒精挥发、原料干燥后,将混合物料倒入钼坩埚中,然后将含料的钼坩埚放置于管式气氛炉的高温区中;升温前,先用氮气将炉管中的空气排净,然后将气流切换至氩气,并在氩气气氛中升温至800℃保温8h;程序结束并待炉体降至50℃以后,取出物料;用H+浓度为1mol/L的盐酸酸浸反应后物料,酸浸时稀盐酸与物料的体积质量比为100:1(mL/g),酸浸温度为90℃,酸浸时间为4小时;酸浸结束后液固分离,固相残渣舍弃,液相为含三价钛的紫色酸性溶液;蒸发浓缩紫色的酸性溶液,使得钛离子浓度(以TiO2计)达到50g/L;然后用适量双氧水将酸性溶液中的三价钛氧化成四价钛,当酸性溶液由紫色变为无色时即为氧化终点;将无色溶液转移置结晶器中,并在100℃下持续搅拌水解12h,得到含钛酸颗粒的固液混合物;过滤固液混合物得到水解后的酸性溶液及钛酸颗粒,将钛酸颗粒分别进行酸洗、水洗和干燥,并在600℃下煅烧,得到颗粒平均尺寸为28μm的微米级二氧化钛颗粒。
实施例2
称取一定质量的纳米二氧化钛、金属铝粉及辅助物质AlCl3-KCl盐,其中纳米二氧化钛与铝粉的质量比为9:1,纳米二氧化钛与辅助物质盐的质量比为1:0.3,辅助物质盐中AlCl3与KCl的摩尔比为1:1;原料称好以后,将原料用庚烷浆化并搅拌混合均匀;待庚烷挥发、原料干燥后,将混合物料倒入氧化铝坩埚中,然后将含料的氧化铝坩埚放置于管式气氛炉的高温区中;升温前,先用氩气将炉管中的空气排净,然后在氩气气氛中升温至500℃保温3h;程序结束并待炉体降至50℃以后,取出物料;用H+浓度为5mol/L的盐酸酸浸反应后物料,酸浸时稀盐酸与物料的体积质量比为11:1(mL/g),酸浸温度为60℃,酸浸时间为3小时;酸浸结束后液固分离,固相残渣舍弃,液相为含三价钛的紫色酸性溶液;用适量双氧水将酸性溶液中的三价钛氧化成四价钛,当酸性溶液由紫色变为无色时即为氧化终点;将无色溶液转移置结晶器中,并在90℃下持续搅拌水解24h,得到含钛酸颗粒的固液混合物;过滤固液混合物得到水解后的酸性溶液及钛酸颗粒,将钛酸颗粒分别进行酸洗、水洗和干燥,并在900℃下煅烧,得到颗粒平均尺寸为40μm的微米级二氧化钛颗粒。
实施例3
称取一定质量的纳米二氧化钛和金属镁粉,其中纳米二氧化钛与镁粉的质量比为3.5:1,不添加辅助物质盐;原料称好以后,将原料用汽油浆化并超声混合均匀;待汽油挥发、原料干燥后,将混合物料倒入不锈钢坩埚中,然后将含料的不锈钢坩埚放置于管式气氛炉的高温区中;升温前,先用氩气将炉管中的空气排净,然后切换氢气,并在氢气气氛中升温至900℃保温0.5h;程序结束并待炉体降至50℃以后,切换至氩气将炉管中的氢气排净,然后取出物料;用H+浓度为8mol/L的盐酸酸浸还原料,酸浸时稀盐酸与还原料的体积质量比为8:1(mL/g),酸浸温度为100℃,酸浸时间为2小时;酸浸结束后液固分离,固相残渣舍弃,液相为含三价钛的紫色酸性溶液;稀释紫色的酸性溶液,使得钛离子浓度(以TiO2计)为65g/L;往紫色溶液中持续通氧气,使得三价钛氧化成四价钛,当酸性溶液由紫色变为无色时即为氧化终点;将无色溶液转移置结晶器中,并在105℃下持续搅拌水解8h,得到含钛酸颗粒的固液混合物;过滤固液混合物得到水解后的酸性溶液及钛酸颗粒,将钛酸颗粒分别进行酸洗、水洗和干燥,并在300℃下煅烧,得到颗粒平均尺寸为35μm的微米级二氧化钛颗粒。

Claims (17)

1.一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于该方法的操作过程包括:
(a)将纳米二氧化钛和还原剂金属粉按照一定的质量比混合均匀;
(b)步骤(a)结束后,将混合物质置于金属或陶瓷坩埚中,松装或压块装料,然后将盛有反应物原料的坩埚置于气氛炉的高温区中;
(c)步骤(b)结束后,用惰性气体对炉体进行气体交换,保证炉体升温前空气已被惰性气体充分置换,而后切换气流至特定的反应气体,并启动升温程序,使混合料在一定温度和特定气氛中保温反应一定时间;
(d)步骤(c)结束后,待炉体降温至60℃以下时,若反应气体同为惰性气体,则直接关闭气流,取出物料;若反应气体为易燃易爆气体,则先将气流切换至惰性气体,待炉体内反应气体被惰性气体充分置换后,关闭气流,取出物料;
(e)步骤(d)结束后,将物料用稀酸液在一定体积质量比(配比单位为mL/g)及一定温度下酸浸一定时间,浸出结束后液固分离,固相残渣舍弃,液相为含Ti3+的酸性溶液;
(f)步骤(e)结束后,测定获得的含Ti3+的酸性溶液中的钛离子浓度及游离酸浓度,然后基于测定的浓度调整钛离子浓度及游离酸浓度至设定范围;
(g)步骤(f)结束后,用氧化剂将浓度调整后的酸性溶液中的三价钛氧化成四价钛,氧化温度即为料液自身的温度,不需升高或降低,氧化时间及氧化剂的用量根据料液的颜色变化决定,待料液颜色从紫色变成无色即为氧化终点;
(h)步骤(g)结束后,将无色料液倒入结晶器中,在一定温度下搅拌一段时间,然后液固分离,固相为微米级钛酸颗粒,液相为酸性水解后液;
(i)步骤(h)结束后,将酸性水解后液返回至步骤(e),用于浸出下一批的反应物料;水解获得的钛酸颗粒经稀酸洗涤及水洗后,烘干游离水,煅烧脱除结晶水,获得微米级二氧化钛颗粒。
2.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(a)中纳米二氧化钛为纳米颗粒的金红石型二氧化钛、纳米颗粒的锐钛型二氧化钛中的一种或两种混合物。
3.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(a)中还原剂金属粉为Al粉、Mg粉、Ca颗粒、Mg-Al合金粉、Mg-Ca合金粉、Al-Ca合金粉中的一种或多种,优选为Al粉。
4.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(a)中纳米二氧化钛与还原剂金属粉二者混合的质量比为1:0.05~1:5,优选为1:0.1~1:1。
5.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:在步骤(a)混料时,可进一步混入辅助物质盐,该盐可以为AlCl3、MgCl2、CaCl2、NaCl、KCl、LiCl、AlCl3-MgCl2共熔盐、AlCl3-CaCl2共熔盐、AlCl3-NaCl共熔盐、AlCl3-KCl共熔盐、AlCl3-LiCl共熔盐、MgCl2-CaCl2共熔盐、MgCl2-NaCl共熔盐、MgCl2-KCl共熔盐、MgCl2-LiCl共熔盐、CaCl2-NaCl共熔盐、CaCl2-KCl共熔盐、CaCl2-LiCl共熔盐、NaCl-KCl共熔盐、NaCl-LiCl共熔盐、KCl-LiCl共熔盐、NaCl-KCl-LiCl共熔盐中的一种或多种,辅助物质盐的混入量为纳米二氧化钛重量的0.005倍~20倍,优选为1:0.2~1:2。
6.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(a)中原料的混合方式为干混或湿混中的一种,湿混具体为用汽油、酒精、甲烷、乙烷、丙烷、丁烷、戊烷、己烷、更烷、辛烷中的一种或多种溶剂将混合料浆化,并搅拌混合均匀或超声分散,然后在室温下将分散剂挥发,待混合料干透即完成湿混。
7.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(a)中三种原料的混合方法优选为湿混。
8.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(c)中惰性气体为氩气、氮气、氦气中的一种或多种。
9.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(c)中反应气体为氩气、氢气、氦气、氮气中的一种或多种。
10.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(c)中反应温度为250℃~1400℃,保温反应时间为0.1h~24h。
11.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(e)中稀酸液为稀盐酸、稀硫酸、稀硝酸中的一种或多种,稀酸液的H+浓度不高于8mol/L,优选为稀盐酸。
12.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(e)中稀酸液与反应物料的体积质量比(配比单位为mL/g)为0.5:1~200:1,浸出温度为常温~105℃,浸出时间为0.5~24h。
13.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(f)中钛离子浓度的设定范围为40~150g/L(以TiO2计),游离酸浓度的设定范围为0.5~5mol/L(以H+计)。
14.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(f)中钛离子及游离酸浓度的调整方法为稀释、蒸发、补酸、加碱中的一种或多种。
15.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(g)中氧化剂为双氧水、空气、氧气、臭氧中的一种或多种,优选为双氧水。
16.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(h)中钛酸水解的温度为80~110℃,钛酸水解的时间为2~48h。
17.根据权利要求1所述的一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法,其特征在于:步骤(i)中钛酸颗粒煅烧的温度为200~1300℃,优选为300~900℃。
CN201810053487.8A 2018-01-19 2018-01-19 一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法 Active CN108203116B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810053487.8A CN108203116B (zh) 2018-01-19 2018-01-19 一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810053487.8A CN108203116B (zh) 2018-01-19 2018-01-19 一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法

Publications (2)

Publication Number Publication Date
CN108203116A true CN108203116A (zh) 2018-06-26
CN108203116B CN108203116B (zh) 2019-11-05

Family

ID=62605606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810053487.8A Active CN108203116B (zh) 2018-01-19 2018-01-19 一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法

Country Status (1)

Country Link
CN (1) CN108203116B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821338A (zh) * 2018-07-11 2018-11-16 无锡睿龙新材料科技有限公司 一种稳定态二氧化钛微粒的制备及表面改性方法
CN113145094A (zh) * 2020-12-24 2021-07-23 创新环科环境数据科技(北京)有限公司 一种用于溶液中的voc清除材料及其制备方法
CN117088404A (zh) * 2022-05-12 2023-11-21 中国科学院过程工程研究所 一种氧含量可控的低价钛氧化合物TiOx的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447738B1 (en) * 2000-08-24 2002-09-10 Solv-Ex Corporation Coproducing alumina, iron oxide, and titanium-dioxide from aluminum ore bodies and feedstocks
CN102557127A (zh) * 2010-12-07 2012-07-11 河南佰利联化学股份有限公司 利用三价钛还原浸取钛液的方法
CN103043715A (zh) * 2012-12-19 2013-04-17 攀枝花鼎星钛业有限公司 钛白粉的生产方法
CN107236869A (zh) * 2017-05-23 2017-10-10 东北大学 一种多级深度还原制备还原钛粉的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447738B1 (en) * 2000-08-24 2002-09-10 Solv-Ex Corporation Coproducing alumina, iron oxide, and titanium-dioxide from aluminum ore bodies and feedstocks
CN102557127A (zh) * 2010-12-07 2012-07-11 河南佰利联化学股份有限公司 利用三价钛还原浸取钛液的方法
CN103043715A (zh) * 2012-12-19 2013-04-17 攀枝花鼎星钛业有限公司 钛白粉的生产方法
CN107236869A (zh) * 2017-05-23 2017-10-10 东北大学 一种多级深度还原制备还原钛粉的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YING ZHANG ET AL.: "Hydrogen assisted magnesiothermic reduction of TiO2", 《CHEMICAL ENGINEERING JOURNAL》 *
YING ZHANG ET AL.: "Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt", 《CHEMICAL ENGINEERING JOURNAL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821338A (zh) * 2018-07-11 2018-11-16 无锡睿龙新材料科技有限公司 一种稳定态二氧化钛微粒的制备及表面改性方法
CN113145094A (zh) * 2020-12-24 2021-07-23 创新环科环境数据科技(北京)有限公司 一种用于溶液中的voc清除材料及其制备方法
CN117088404A (zh) * 2022-05-12 2023-11-21 中国科学院过程工程研究所 一种氧含量可控的低价钛氧化合物TiOx的制备方法

Also Published As

Publication number Publication date
CN108203116B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2015035954A1 (zh) 一种含钛可溶阳极熔盐电解提取金属钛的方法
CN102154531B (zh) 一种用含钛高炉渣生产人造金红石的方法
CN106348251B (zh) 一种制备单分散纳米氧化物颗粒的方法
CN108203116B (zh) 一种由纳米二氧化钛制备微米级二氧化钛颗粒的方法
CN102787194B (zh) 利用钒钛铁精矿直接还原熔分渣制备富钛料的方法
CN106795580B (zh) 一种熔盐化学法回收废硬质合金的方法
CN107963657A (zh) 一种富钛料中钛提取的新方法
WO2020098176A1 (zh) 一种碳/硫化的钛铁复合矿阳极-电解制备金属钛的方法
CN102491328A (zh) 一种碳化钛粉体及其制备方法
CN111115681B (zh) 惰性气氛下一步法制备高纯相Ti4O7纳米材料的方法
WO2019137544A1 (zh) 一种富氧选择性浸出提取钒钛磁铁矿中有价组元的方法
CN109338116A (zh) 一种短流程处理钛渣提取制备钛及其合金纳米粉末的方法
CN101187042A (zh) 一种以钛复合矿为原料制备TiC·mTiO固溶体的方法
CN106566906B (zh) 一种钒钛磁铁矿铁精矿的碳热钠化还原熔分综合回收方法
Kang et al. An environmentally friendly hydrothermal method of vanadium precipitation with the application of oxalic acid
CN101817551B (zh) 一种利用钛铁矿制备钛酸锂前驱体的方法
CN108300875B (zh) 一种富氧选择性浸出钛精矿制备高纯度TiO2的方法
CN105036739A (zh) 用钇稳定氧化锆固体废料制备锆钇和锆铝复合粉体的方法
CN104911635B (zh) 一种难熔金属含氧酸盐熔盐电解过程碱回收与熔盐循环的方法
CN109811370A (zh) 一种电解-钛碳硫阳极-制备金属钛的方法
CN108529672A (zh) 化学共沉淀法生产热喷涂用钇稳定氧化锆球形粉生产工艺
CN102534232A (zh) 一种氢氧化钠溶液添加含碳物质常压分解钒渣的方法
Zou et al. TiO2 as a source of titanium
CN108085505A (zh) 一种含钛高炉渣中有价组分钛高效提取的方法
Luidold et al. Production of niobium powder by magnesiothermic reduction of niobium oxides in a cyclone reactor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant