CN108198694B - 柔性导电聚合物能量存储装置 - Google Patents

柔性导电聚合物能量存储装置 Download PDF

Info

Publication number
CN108198694B
CN108198694B CN201810141235.0A CN201810141235A CN108198694B CN 108198694 B CN108198694 B CN 108198694B CN 201810141235 A CN201810141235 A CN 201810141235A CN 108198694 B CN108198694 B CN 108198694B
Authority
CN
China
Prior art keywords
stack
conductive polymer
supercapacitor
electrolyte
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810141235.0A
Other languages
English (en)
Other versions
CN108198694A (zh
Inventor
I·W·亨特
E·T·帕斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of CN108198694A publication Critical patent/CN108198694A/zh
Application granted granted Critical
Publication of CN108198694B publication Critical patent/CN108198694B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/22Devices using combined reduction and oxidation, e.g. redox arrangement or solion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种电化学氧化还原超级电容器(10)。超级电容器(10)包括由离子渗透膜(12)隔开的两个导电聚合物(14、16)薄膜,并包括布置在两个薄膜之间的电解质。电触点布置在两个薄膜的外表面上。超级电容器(10)具有柔性,且可被卷绕,自身折叠,或被保持为基本平整。合适的导电聚合物为聚吡咯。另一方面,本发明包括用于制造氧化还原超级电容器(10)的方法。

Description

柔性导电聚合物能量存储装置
分案申请
本申请为申请号201180043834.5、申请日2011年7月27日、题为“柔性导电聚合物能量存储装置”的分案申请。
优先权信息
本发明要求于2010年8月12日提交的美国临时申请US 61/372,998的优先权,且其全部内容通过引用结合到本文中。
赞助信息
本发明是在由内政部颁发的合同号为D11PC75421的政府支持下完成的。政府对本发明具有一定的权利。
技术领域
本发明涉及电化学超级电容器(electrochemical supercapacitor),更具体地说,涉及具有柔性的能够呈现所需几何形状的氧化还原超级电容器。
背景技术
本发明通常归入电化学超级电容器的学科类。电化学超级电容器在电动车推进、备用计算机电池系统、消费电子产品等中通常用作中间电源,且还可用于较小的低功率装置。
电化学超级电容器通常被分类成两种能量存储装置的其中之一:双层超级电容器或氧化还原超级电容器。双层电容器通过双电层存储能量,由于在由电解质分开的两个电极之间施加势差而被充电时,双电层在电极表面上形成。碳材料(电感应性弱的纤维矩阵、纳米管薄片、糊剂/树脂组合物等)是这种超级电容器最常用的电极材料。由于双层电容器中的电荷存储是与表面积有关的量,因此增加表面积是获得高能量密度的首要目标。
氧化还原超级电容器与电化学双层电容器有几点不同之处。第一,电荷存储的机理并非是静电的(储存于双电层中)。而是,在氧化或还原过程中,通过在氧化还原超级电容器内掺杂导电聚合物薄片的过程来存储电荷。氧化还原超级电容器的优点在于能量存储的量是质量而非表面积的函数。增加导电聚合物材料的质量将增加能量存储的量。在容积尺寸不如表面积尺寸重要的系统中,氧化还原超级电容器可能是更有利的。
本发明的目的是提供一种氧化还原超级电容器以便能量可储存于保形(conformal)、非刚性结构中。因此,本发明的氧化还原超级电容器可具有任何所需的几何形状。这里公开的能量存储介质可嵌入形状规则变化的材料中,比如服装、附件、机器人装置等。
发明内容
第一方面,本发明是电化学超级电容器,其包括由离子渗透膜隔开的两层导电聚合物薄膜,并包括布置在两层薄膜之间的电解质。电触点布置在两个薄膜的外表面上。在优选实施例中,公开的超级电容器还包括包覆导电聚合物、离子渗透膜和电解质以形成堆叠(stack)的非导电材料。所述堆叠可以进行卷绕、折叠,或保持基本平整。在优选实施例中,堆叠可装入保形材料(conformal material)中。在一个实施例中,导电聚合物为聚吡咯。所述聚吡咯包括掺杂剂。优选地,离子渗透膜的厚度在1微米至几百微米的范围内。
另一方面,本发明包括制作氧化还原超级电容器的方法,该方法包括通过电化学淀积在导电衬底上沉积导电聚合物薄膜,干燥薄膜并将该薄膜从导电衬底上移除。各部分薄膜放置在离子渗透膜的相反侧面上以形成堆叠,且在一选定时间段内将该堆叠浸没在电解质中。电触点放置在薄膜部分的外表面上。然后,导电聚合物薄膜/离子渗透膜堆叠被放置在两个非导电材料层之间。在优选实施例中,然后卷绕、折叠堆叠或使其保持平坦的平面几何形状,并将其装入保形材料中。适当的保形材料为聚酯薄膜或迈拉膜(Mylar film)。对薄膜的外边缘进行热封以使电解质保存在其内。优选地将堆叠浸没在电解质中约10秒至10个小时。更优选地是,密封堆叠前对其施加压力以除去过量的空气。密封后,可用惰性气体比如氮气、氩气、氦气等清理堆叠。
附图说明
图1是本发明实施例的示意图;
图2是根据本发明的密封堆叠的照片。
具体实施方式
本发明是由导电聚合物、离子渗透膜、塑料外壳和电解质制成的柔性的能量存储装置。不同类型的这种能量存储装置通常称为氧化还原超级电容器。在导电聚合物氧化还原过程中,通过感应电荷转移发生超级电容器电荷转移,在感应电荷转移过程中当聚合物受到两个电极之间的电势差时(在电解质存在的情况下),发生聚合物掺杂和去掺杂。电化学充电和放电的动力学过程是可逆的,因此超级电容器可存储、释放能量,然后可被再次充电以存储能量。与取决于表面积相反,材料内存储的能量的量很大程度上取决于材料的质量。
现在将结合图1讨论这里公开的本发明的实施例。如图1所示,由五个层制成的氧化还原超级电容器10形成堆叠。离子渗透膜12的两侧为导电聚合物薄膜14和16。一些离子渗透膜包括聚氟乙烯(PVDF)膜、滤纸、纤维素纤维纸、棉纤维素纤维纸、棉纸等。优选地,非导电薄膜层18和20由纸或塑料薄膜制成。
下面将讨论图1中所示的本发明的实施例的制作过程。通过电化学淀积在导电衬底(substrate)比如玻璃碳、镍、金、钢等上制造导电聚合物,比如聚吡咯。其它合适的导电聚合物包括聚苯胺、聚(3,4-乙烯二氧噻吩)、聚乙炔、聚(噻吩)等。在电化学淀积过程中,掺杂剂存在于电解质(比如四丁基六氟磷酸铵、四乙基六氟磷酸铵、四甲基六氟磷酸铵等)中,这样合成的聚合物可以导电。电化学沉积的导电聚合物薄膜的厚度可在纳米至毫米之间变化。合适的掺杂剂包括(但是不局限于)四乙基六氟磷酸铵、四丁基六氟磷酸铵、氯化钠、三氟甲烷磺酰亚胺锂、六氟硼酸四乙基铵等。
在电化学淀积后,对薄膜进行干燥并将其从导电衬底上移除。然后,将薄膜切割至所需尺寸,这样两片尺寸相似的导电聚合物薄膜可放置在离子渗透膜12的两相反侧面上,如图1所示。离子渗透膜12的厚度可在1微米至几百微米的范围内变化。
然后,将导电聚合物薄膜14和16以及离子渗透膜12浸没在电解质中,且浸泡大约10秒至10个小时的时间段。此后,将导电聚合物薄膜和离子渗透膜从电解质中移除并将其放置在两片非导电材料18和20(比如纸或塑料薄膜)之间。如上所述,合适的电解质包含溶解在溶剂(比如,水、碳酸丙烯酯、乙腈等)中的掺杂剂。
通过放置与导电聚合物薄膜14和16的外表面物理接触的导电材料,在两个导电聚合物薄膜14和16的外表面上形成了电触点(未显示)。电触点(electrical contact)可由薄金属材料、其它导电聚合物材料或用金属涂覆的塑料制成。
完成堆叠10后,对五层堆叠施加压力,然后可以根据需要对所述五层堆叠进行卷绕、自身折叠或保持为所需的平坦平面的几何形状。进行卷绕,折叠或保持平整之后,堆叠10被装入保形材料比如聚酯薄膜或迈拉膜中。然后,对薄膜的外边缘进行热封,这样堆叠内的任何电解质或其它液体便不会泄漏。在密封过程中,可施加很小的真空以除去任何可能存在的空气。在密封过程中或密封后,可用惰性气体清理堆叠以除去外壳内的任何过量空气。
然后,可通过跨接两个电触点施加电压来为密封的系统充电。在施加电压的过程中,聚合物薄膜的其中之一将还原,而另一个将氧化。如上所述,能量将被存储在密封的堆叠中。充电之后,密封的堆叠通过连接两个电触点将其存储的能量释放至电负载。这里公开的密封堆叠即便被弯曲或处于弯曲状态也可保持存储在其内的能量。即便被弯曲或处于弯曲状态时,密封的堆叠也可释放能量。在释放存储的一些能量后,系统可在任何时间点再次被充电。图2示出了根据本发明的本实施例的密封堆叠。
无论电容器的几何形状是否变化,甚至在其已开始存储能量之后,本发明的超级电容器均可以保存能量。因此,本发明的能量存储介质可嵌入形状规则变化的材料中,比如服装、附件、机器人装置等。
本领域的普通技术人员将意识到此处公开的氧化还原超级电容器可用于柔性显示器技术比如电子墨水(electronic ink)、电致变色显示器和低功率LCD显示器中。目前,电源通常是刚性且庞大的,然而此处公开的柔性电源可集成到柔性显示器的背面从而排除所有刚性组件。
这里公开的本发明还可用于价格低廉的消费者广告产品比如商务名片、小册子、海报中,其中柔性电源为集成到上述广告产品中的柔性或刚性显示器、灯光和嵌入的电子元件提供电源。本发明还可用于保形健康监视装置(conformal health monitoringdevice),比如脉搏率监视器、体温监视器等,其中本发明的柔性电源超级电容器保形于与其所连接的物体的部分。
本发明还可用于保形药物输送系统,其中由一些机械、电动或化学机构控制的药物输送需要保形的电源来启动或控制药物输送的全部或部分过程。
本发明还可应用于服装中(民用和军用),服装中的一些感觉系统需要电能来监控热量、水分、应力或张力等。合适的服装可包括帽子、衬衫、外套、裤子、裙子、鞋子、袜子、毛衣、内衣、手套、围巾和其它服装制品。保形的电子式电源还可用于调节、启动或控制织物的上述的一些成分,比如热量、水分、应力或张力。
本发明也可与光学附件共同使用,比如在太阳镜或光学透镜上主动、自适应电致变色着色。本发明还将应用于便携式能量收集设备,比如用于柔性太阳能电池系统的中间能量存储器。本发明还将随时用于玩具、手表、珠宝、纸张和贺卡中。
应意识到本发明的修改和变化对本领域的那些普通技术人员而言将很明显,且其目的在于所有这种修改和变化均包括在附加权利要求书的范围内。

Claims (7)

1.一种用于制造氧化还原超级电容器的方法,包括:
通过电化学淀积在导电衬底上沉积导电聚合物薄膜;
对所述薄膜进行干燥并将其从所述导电衬底上移除;
将所述薄膜放置在离子渗透膜的相反侧面上形成第一堆叠;
将所述第一堆叠沉浸在电解质中;
在所述第一堆叠已经在电解质中沉浸一选定的时间段后,将所述第一堆叠从所述电解质中移除;
在所述薄膜部分的外表面上设置电触点;以及
将所述第一堆叠放置在两层非导电材料层之间以形成第二堆叠;
密封所述第二堆叠;以及
通过跨电触点施加电压,所述电压导致其中一层导电聚合物薄膜还原,而另一层导电聚合物薄膜则氧化。
2.根据权利要求1所述的方法,其中所述第一堆叠和第二堆叠是卷绕的、折叠的或保持为一平面几何形状,并且所述堆叠被装入保形材料中。
3.根据权利要求2所述的方法,其中所述保形材料为聚酯薄膜或迈拉膜。
4.根据权利要求3所述的方法,其中所述薄膜外边缘采用热封。
5.根据权利要求1所述的方法,其中所述选定时间段大约在10秒至10个小时之间。
6.根据权利要求1所述的方法,其中所述第二堆叠上施加了压力。
7.由根据权利要求1-6中任一项所述的方法制备的电化学超级电容器。
CN201810141235.0A 2010-08-12 2011-07-27 柔性导电聚合物能量存储装置 Expired - Fee Related CN108198694B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37299810P 2010-08-12 2010-08-12
US61/372,998 2010-08-12
CN2011800438345A CN103098159A (zh) 2010-08-12 2011-07-27 柔性导电聚合物能量存储装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2011800438345A Division CN103098159A (zh) 2010-08-12 2011-07-27 柔性导电聚合物能量存储装置

Publications (2)

Publication Number Publication Date
CN108198694A CN108198694A (zh) 2018-06-22
CN108198694B true CN108198694B (zh) 2020-06-12

Family

ID=44773130

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011800438345A Pending CN103098159A (zh) 2010-08-12 2011-07-27 柔性导电聚合物能量存储装置
CN201810141235.0A Expired - Fee Related CN108198694B (zh) 2010-08-12 2011-07-27 柔性导电聚合物能量存储装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2011800438345A Pending CN103098159A (zh) 2010-08-12 2011-07-27 柔性导电聚合物能量存储装置

Country Status (4)

Country Link
US (1) US9048029B2 (zh)
EP (1) EP2603921A1 (zh)
CN (2) CN103098159A (zh)
WO (1) WO2012021289A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837009B1 (en) 2012-04-13 2024-06-19 Polyjoule, Inc. Devices and methods including polyacetylenes
CN103000379B (zh) * 2012-10-18 2016-04-20 中国科学院化学研究所 一种提高全固态电储能器件充电效率的方法
CN102903524A (zh) * 2012-10-18 2013-01-30 中国科学院化学研究所 一种用于全固态电储能器件的电子存储材料
CN103066314B (zh) * 2012-12-25 2015-01-07 武汉纺织大学 一种织物形态的聚合物电池及其制备方法
US10115533B2 (en) 2014-09-29 2018-10-30 Universiti Putra Malaysia Rechargeable power source comprising flexible supercapacitor
CN106398207B (zh) * 2016-10-28 2018-11-30 齐鲁工业大学 一种聚吡咯膜的制备方法及其超级电容性能
CN106340397B (zh) * 2016-10-28 2018-09-07 齐鲁工业大学 一种聚吡咯膜基柔性电极及其制备方法和用途
CN106340402B (zh) * 2016-10-28 2018-09-07 齐鲁工业大学 一种聚吡咯膜基柔性超级电容器及其制备方法和用途
WO2018148266A1 (en) * 2017-02-07 2018-08-16 Massachusetts Institute Of Technology Monolithic flexibel supercapacitors, methods of making and uses thereof
WO2019070814A1 (en) * 2017-10-03 2019-04-11 University Of South Florida SOLID SUPERCAPACITOR WITH HIGH SPECIFIC CAPABILITY AND METHOD OF MANUFACTURE
CN109293889A (zh) * 2018-08-29 2019-02-01 浙江工业大学 一种聚3,4-乙烯二氧噻吩纳米网状薄膜pedot-td及其制备方法与应用
CN109243835A (zh) * 2018-08-29 2019-01-18 浙江工业大学 一种聚3,4-乙烯二氧噻吩纳米网状薄膜pedot-pd及其制备方法与应用
CN109786131A (zh) * 2018-12-20 2019-05-21 浙江工业大学 一种De(POT-EDOT)s电极材料及其制备方法
KR102680000B1 (ko) * 2019-11-20 2024-07-02 삼성전기주식회사 고체 전해 커패시터 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356433B1 (en) * 2000-03-03 2002-03-12 The Regents Of The University Of California Conducting polymer ultracapacitor
CN101162650A (zh) * 2007-05-29 2008-04-16 中南大学 柔性薄膜型固态超级电容器及其制造方法
US7508650B1 (en) * 2003-06-03 2009-03-24 More Energy Ltd. Electrode for electrochemical capacitor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325991A (ja) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc 電気部品及びその製造方法
KR100358107B1 (ko) * 2000-12-18 2002-10-25 한국전자통신연구원 산화환원형 초고용량 커페시터 및 그 제조방법
US7256529B2 (en) * 2001-06-13 2007-08-14 Massachusetts Institute Of Technology High power-to-mass ratio actuator
US6535373B1 (en) * 2002-06-12 2003-03-18 Lithdyne International Non-aqueous electrolyte
WO2005036573A1 (ja) * 2003-10-09 2005-04-21 Kaneka Corporation 電極複合体および電解質、ならびにレドックスキャパシター
JP2007119386A (ja) * 2005-10-27 2007-05-17 Nec Tokin Corp インドール誘導体三量体の精製方法、該生成された三量体を含む電極活物質及び該電極活物質の製造方法並びにそれを用いた電気化学セル
US7903390B2 (en) * 2008-06-19 2011-03-08 Gas Technology Institute Bipolar membrane for electrochemical supercapacitors and other capacitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356433B1 (en) * 2000-03-03 2002-03-12 The Regents Of The University Of California Conducting polymer ultracapacitor
US7508650B1 (en) * 2003-06-03 2009-03-24 More Energy Ltd. Electrode for electrochemical capacitor
CN101162650A (zh) * 2007-05-29 2008-04-16 中南大学 柔性薄膜型固态超级电容器及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor;H.R. Ghenaatian等;《Synthetic Metals》;20090607;第159卷;第1717-1722页 *

Also Published As

Publication number Publication date
EP2603921A1 (en) 2013-06-19
CN103098159A (zh) 2013-05-08
US9048029B2 (en) 2015-06-02
WO2012021289A1 (en) 2012-02-16
US20130155579A1 (en) 2013-06-20
CN108198694A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN108198694B (zh) 柔性导电聚合物能量存储装置
JP6832827B2 (ja) イオン性ゲル電解質、エネルギー貯蔵デバイス、およびそれらの製造方法
Fu et al. Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries
US9362565B2 (en) Apparatus and associated methods
Lee et al. Wearable textile battery rechargeable by solar energy
Zhang et al. A zinc‐ion battery‐type self‐powered pressure sensor with long service life
EP3079187B1 (en) Battery cell
US20130224551A1 (en) Apparatus and Associated Methods
US9324508B2 (en) Substrate for electrode capable of undergoing reversible deformation
US10153519B2 (en) Deformable origami batteries
CN105914053B (zh) 可拉伸的超级电容器及其制造方法
US20200388444A1 (en) Energy storage device
CN103855421B (zh) 自充电薄膜锂离子电池
CN103943369A (zh) 一种柔性超级电容器及其制备方法
WO2018055385A1 (en) Flexible supercapacitors and manufacture thereof
US20230402235A1 (en) Flexible supercapacitor with graphene electrodes embedded in hydrogel electrolyte
US11643525B2 (en) Electronic device with self-healing properties
CN220873421U (zh) 一种柔性电致变色电容器
Zopf et al. Wearable Energy Storage Based on Ionic Liquid Gels
Wang et al. Improved Performance of All-Solid-State Flexible Supercapacitor Based on the Stress-Compensation Effect
Ho et al. Printing Energy Storage On-Chip
PL226058B1 (pl) Struktura superkondensatora oraz sposob wytwarzania okladek struktury superkondensatora
Landrock High Temperature Capable Ionic Polymer-Metal Composite Capacitors and Power Storage Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200612