CN108159038A - 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途 - Google Patents

一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途 Download PDF

Info

Publication number
CN108159038A
CN108159038A CN201810206147.4A CN201810206147A CN108159038A CN 108159038 A CN108159038 A CN 108159038A CN 201810206147 A CN201810206147 A CN 201810206147A CN 108159038 A CN108159038 A CN 108159038A
Authority
CN
China
Prior art keywords
acid
drug
chlorogenic acid
group
drug resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810206147.4A
Other languages
English (en)
Other versions
CN108159038B (zh
Inventor
张洁
陈晓光
杨华蓉
黄望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Jiuzhang Biotechnology Co Ltd
Original Assignee
Sichuan Jiuzhang Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Jiuzhang Biotechnology Co Ltd filed Critical Sichuan Jiuzhang Biotechnology Co Ltd
Priority to CN201810206147.4A priority Critical patent/CN108159038B/zh
Publication of CN108159038A publication Critical patent/CN108159038A/zh
Priority to US16/980,576 priority patent/US20210085630A1/en
Priority to PCT/CN2019/077826 priority patent/WO2019174571A1/zh
Application granted granted Critical
Publication of CN108159038B publication Critical patent/CN108159038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/655Azo (—N=N—), diazo (=N2), azoxy (>N—O—N< or N(=O)—N<), azido (—N3) or diazoamino (—N=N—N<) compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明公开了一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途,属于生物医药领域,该药物组合物含有绿原酸和香豆酰奎尼酸,可用于制备肿瘤多药耐药逆转剂以及PD‑1/PD‑L1抑制剂。绿原酸与香豆酰奎尼酸联合使用,可以发挥协同增效作用,其对化疗药物和免疫治疗类药物产生多药耐药性的肿瘤细胞株具有良好的逆转耐药性作用,能够有效抑制耐药性B16黑色素瘤和耐药性Lewis肺癌小鼠移植瘤组织中PD‑1/PD‑L1的表达,能够有效地对产生耐药性B16黑色素瘤小鼠和Lewis肺癌小鼠CD4+T和CD8+T细胞起到增殖作用。

Description

一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的 用途
技术领域
本发明属于生物医药领域,具体涉及一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途。
背景技术
癌症对于中国乃至世界各个地区都是一个主要的亟待解决的公共健康问题,平均每年被诊断为癌症的人数以百万计,包含超过200种的癌症类型,目前,癌症已是致人死亡的主要疾病之一。但是,由于抗恶性肿瘤药物的选择性差,单一药物治疗存在毒副作用大或者治疗效果不佳的缺陷,因此研究新一代的低毒、高效的药物已经成为恶性肿瘤治疗的当务之急。
达卡巴嗪的化学名称为:5-(3,3-二甲基-1-三氮烯基)-4-酰胺基咪唑枸橼酸盐。别名,氨烯咪胺。本品在体内分解能放出甲基正离子(CH3)+,发挥烷化作用;同时本品又能变成一种与嘌呤生物合成的中间产物相似的物质,可能干扰嘌呤的生物合成。
吉西他滨(Gemcitabine)为一种新的胞嘧啶核苷衍生物。和阿糖胞苷一样,进入人体内后由脱氧胞嘧啶激酶活化,由胞嘧啶核苷脱氨酶代谢。吉西他滨为嘧啶类抗肿瘤药物,作用机制和阿糖胞苷相同,其主要代谢物在细胞内掺入DNA,主要作用于G1/S期。在临床上,吉西他滨对多种实体肿瘤有效。
Opdivo是一个人程序死亡受体-1(PD-1)适用为阻断抗体治疗有以下患者:⑴有不能切除货转移黑色素瘤和易普利姆玛[ipilimumab]和,如BRAF V600突变阳性,一种BRAF抑制剂后疾病进展患者的治疗。⑵用基于铂化疗或后有进展的转移鳞状非小细胞肺癌。
达卡巴嗪、吉西他滨和Opdivo虽然能够用于治疗癌症,但随着用药时间的增加,耐药性也将随之出现,而耐药性一旦产生,药物的作用将明显下降,如今耐药性成了困扰医学界的一大难题,因此亟需开发新的药物来高效地逆转耐药性。
发明内容
为了解决上述问题,本发明提供了一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途。
本发明提供了一种药物组合物,它含有绿原酸和香豆酰奎尼酸。
进一步的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.5。
优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.1。
更优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.05。
本发明提供了一种制备所述药物组合物的方法,它是以绿原酸和香豆酰奎尼酸为有效成分,加入药学上可接受的辅料制备成药学上常用的药物制剂。
优选的,所述制剂为口服制剂或注射制剂。
本发明提供了所述的药物组合物在制备肿瘤多药耐药逆转剂中的用途。
其中,所述肿瘤为黑色素瘤、肺癌、肝癌、肾癌、胶质瘤、前列腺癌、胃癌、膀胱癌、结肠癌、乳腺癌、卵巢癌或宫颈癌。
优选的,所述肿瘤为黑色素瘤或肺癌。
其中,所述药物组合物与抗肿瘤药物联合用于制备肿瘤多药耐药逆转剂。
优选的,所述抗肿瘤药物为化疗药物或免疫治疗药物。
更优选的,
所述化疗药物为咪唑类抗肿瘤药物或嘧啶类抗肿瘤药物,优选为达卡巴嗪或吉西他滨。
所述免疫治疗药物为PD-1抑制剂,优选为Opdivo。
本发明提供了所述的药物组合物在制备PD-1/PD-L1抑制剂中的用途。
其中,所述PD-1/PD-L1抑制剂为抗肿瘤的药物。
优选的,所述抗肿瘤药物为抗耐药性肿瘤的药物。
更优选的,所述抗耐药性肿瘤的药物为抗肿瘤免疫抑制剂。
进一步更优选的,所述抗肿瘤免疫抑制剂为除本发明药物组合物外的PD-1抑制剂。
进一步的,所述除本发明药物组合物外的PD-1抑制剂为Opdivo。
本发明提供了一种联合用药物,它含有分别给药的药物组合物和抗肿瘤药物,以及药学上可接受的载体;所述药物组合物为绿原酸和香豆酰奎尼酸。
其中,所述抗肿瘤药物为化疗药物或免疫治疗药物。
优选的,
所述化疗药物为咪唑类抗肿瘤药物或嘧啶类抗肿瘤药物,优选为达卡巴嗪或吉西他滨。
所述免疫治疗药物为PD-1抑制剂,优选为Opdivo。
其中,所述肿瘤为黑色素瘤、肺癌、肝癌、肾癌、胶质瘤、前列腺癌、胃癌、膀胱癌、结肠癌、乳腺癌、卵巢癌或宫颈癌。
优选的,所述肿瘤为黑色素瘤或肺癌。
其中,所述药物组合物与抗肿瘤药物的质量比为1:1。
所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.5。
优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.1。
更优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.05。
本发明提供了一种药物组合物,其包含绿原酸与香豆酰奎尼酸,该药物组合物可用于制备肿瘤多药耐药逆转剂以及PD-1/PD-L1抑制剂。本发明实验结果表明,绿原酸与香豆酰奎尼酸联合使用,可以发挥协同增效作用,具体的,绿原酸与香豆酰奎尼酸联合用药对化疗药物和免疫治疗类药物产生多药耐药性的肿瘤细胞株具有良好的逆转耐药性作用,能够有效解决达卡巴嗪引起的黑色素瘤细胞株B16的耐药性和吉西他滨引起的Lewis肺癌的耐药性,能够有效抑制耐药性B16黑色素瘤和耐药性Lewis肺癌小鼠移植瘤组织中PD-1/PD-L1的表达,能够有效逆转Opdivo引起的的黑色素瘤细胞株B16的耐药性和肺癌细胞株Lewis的耐药性,能够有效地对产生耐药性B16黑色素瘤小鼠和Lewis肺癌小鼠CD4+T和CD8+T细胞起到增殖作用。
本发明药物组合物可用于制备PD-1/PD-L1抑制剂,二者可以发挥协同增效作用,逆转其耐药性,。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为各实验组对达卡巴嗪耐药性B16黑色素瘤小鼠移植瘤瘤重及抑瘤率的影响。
图2为各实验组对吉西他滨耐药性Lewis肺癌小鼠移植瘤瘤重及抑瘤率的影响。
图3为黑色素瘤细胞株B16小鼠对Opdivo耐药性模型组与空白组肿瘤体积曲线图。
图4为肺癌细胞株Lewis细胞小鼠对Opdivo耐药性模型组与空白组肿瘤体积曲线图。
图5为各实验组对Opdivo耐药性B16黑色素瘤小鼠抑瘤率的影响。
图6为各实验组对Opdivo耐药性Lewis肺癌小鼠抑瘤率的影响。
图7为各实验组对多药药性Lewis肺癌小鼠移植瘤瘤重及抑瘤率的影响。
具体实施方式
本发明具体实施方式中使用的原料、设备均为已知产品,通过购买市售产品获得。
实施例1本发明药物组合物口服制剂处方
1、处方一
绿原酸1000g、香豆酰奎尼酸1g。
制备方法:按处方无菌称取绿原酸和香豆酰奎尼酸,混合均匀后,无菌分装成散剂。
2、处方二
绿原酸1000g、香豆酰奎尼酸5g、填充剂500g、粘合剂5g。
制备方法:按照处方称取绿原酸、香豆酰奎尼酸、填充剂、粘合剂,制粒,整粒、分装成颗粒剂。
3、处方三
绿原酸1000g、香豆酰奎尼酸1g、填充剂500g、粘合剂5g、润滑剂3g。
制备方法:按照处方称取绿原酸、香豆酰奎尼酸、填充剂、粘合剂,制粒,整粒,加润滑剂,压片,得片剂。
上述填充剂为甘露醇、乳糖、淀粉、微晶纤维素、糊精当中的一种或几种;粘合剂为羧甲基纤维素钠、PVP;润滑剂为硬脂酸镁、滑石粉、微粉硅胶。
实施例2本发明药物组合物注射制剂处方
1、处方一
绿原酸1000g、香豆酰奎尼酸1g。
制备方法(1):按处方无菌称取绿原酸和香豆酰奎尼酸,混合均匀后,无菌分装成粉针剂。
制备方法(2):按照处方称取绿原酸和香豆酰奎尼酸,溶解于注射用水,过滤除菌,冷冻干燥,得冻干粉针剂。
2、处方二
绿原酸1000g、香豆酰奎尼酸1g、支架剂2667g、抗氧化剂67g。
制备方法:按照处方称取绿原酸、香豆酰奎尼酸、支架剂、抗氧化剂,溶解于注射用水,过滤除菌,冷冻干燥,得冻干粉针剂。
上述支架剂为甘露醇、乳糖、葡萄糖;抗氧化剂为亚硫酸氢钠、维生素、谷胱甘肽、叶酸。
以下用实验例的方式说明本发明的有益效果:
实验例1本发明组合物及其单体化合物体外逆转人黑色素瘤对化药达卡巴嗪的耐药性1.材料
1.1受试药物
受试药物1:绿原酸
受试药物2:香豆酰奎尼酸
受试药物3:绿原酸与香豆酰奎尼酸组合物(100:0.01)
受试药物4:绿原酸与香豆酰奎尼酸组合物(100:0.05)
受试药物5:绿原酸与香豆酰奎尼酸组合物(100:0.1)
受试药物6:绿原酸与香豆酰奎尼酸组合物(100:0.5)
阳性药物:达卡巴嗪(5-(3,3-二甲基-1-三氮烯基)-4-酰胺基咪唑枸橼酸盐)。
1.2细胞株
黑色素瘤细胞株A375为实验室常规培养细株,临用前传代,取生长状态良好,处于对数期生长的细胞备用。
2.试验方法
2.1耐药细胞株的培育
黑色素瘤细胞株A375暴露于达卡巴嗪400ug/ml 3个月,离心,培养出达卡巴嗪耐药的A375细胞,每天观察细胞,3天左右1传3传代,保证细胞活力。
2.2检测达卡巴嗪对细胞株与耐药株的IC50,计算耐药倍数
取对数生长期的上述的细胞株及耐药细胞株,调整细胞浓度为8×103个/孔接种于96孔板。实验分别分成3组:空白组、对照组及达卡巴嗪组。空白组只加入培养基,无需接种细胞;对照组加培养基并接种细胞;达卡巴嗪组加培养基并接种细胞,再加入不同浓度的达卡巴嗪,置于培养箱孵育48h后每孔加入5mg/ml MTT20μl,继续孵育4h,吸去上液,每孔加入DMSO150μl,静置30min,待结晶完全溶解。用酶标仪检测570nm处各孔吸光值OD值,计算肿瘤细胞生长抑制率。
抑制率=(1-OD值(达卡巴嗪组-空白组)/OD值(对照组-空白组))×100%。
耐药倍数=耐药细胞IC50值/敏感细胞IC50值。
2.3MTT法测定无细胞毒的组合物及其单体化合物浓度
细胞及耐药细胞培养及处理方法同上。
实验分别分成8组:空白组、对照组及受试药物组。空白组只加入培养基,无需接种细胞;对照组加培养基并接种细胞;受试药物组在上述基础上再加入相应不同浓度各受试药物工作液,使其最终浓度分别为1、2、4、8、16、32、64、128μg/mL,置于培养箱孵育48h后每孔加入5mg/ml MTT20μl,继续孵育4h,吸去上液,每孔加入DMSO150μl,静置30min,待结晶完全溶解。用酶标仪检测570nm处各孔吸光值OD值,计算肿瘤细胞生长抑制率。
抑制率=(1-OD值(受试药物组-空白组)/OD值(对照组-空白组))×100%,
取抑制率10%以下浓度的各受试药物浓度作为无毒剂量的逆转浓度。
2.4绿原酸逆转耐药细胞株的作用
细胞培养以及实验方法同上。
实验分组如下:耐药细胞阴性组、耐药细胞+受试药物1组(30ug/ml)、耐药细胞+受试药物2组(30ug/ml)、耐药细胞+受试药物3组(30ug/ml)、耐药细胞+受试药物4组(30ug/ml)、耐药细胞+受试药物5组(30ug/ml)、耐药细胞+受试药物6组(30ug/ml)。
各受试药物组分别加入不同浓度的达卡巴嗪,每个浓度3复孔,测定各孔的OD值,观察其有无细胞毒性,将各受试药物与达卡巴嗪分别先后作用于耐药细胞与达卡巴嗪单用于对耐药细胞的效果做比较,计算达卡巴嗪对耐药细胞株的IC50以及各受试药物逆转耐药细胞株后的IC50。
逆转倍数=逆转前IC50值/逆转后IC50值。
2.5试验结果
2.5.1对耐药性黑色素瘤细胞株A375达卡巴嗪的耐药倍数及各受试药物无的细胞毒浓度
表1耐药性黑色素瘤细胞株A375达卡巴嗪的耐药倍数及各受试药物无的细胞毒浓度表
注:“——”表示未进行统计。
由上表可知,达卡巴嗪对耐药性黑色素瘤细胞株A375的半抑制浓度(IC50)为560ug/ml,按公式计算出耐药倍数为6.22;各受试药物无显著细胞毒性浓度(制率均<10%)约为800ug/ml以下。
2.5.2各受试药物对黑色素瘤耐药性细胞株A375的逆转作用
表2各受试药物对黑色素瘤耐药性细胞株A375的逆转作用
各受试药物组无细胞毒浓度(30μg/ml)作用于耐药性黑色素瘤细胞株A375之后,达卡巴嗪对耐药细胞株A375的IC50差异悬殊。其中绿原酸及香豆酰奎尼酸单体化合物受试药物组对耐药性细胞株A375逆转作用不显著,而绿原酸与香豆酰奎尼酸组合物受试药物组对耐药性细胞株A375逆转作用显著;两者具有协同增效的效果,且在两种单体配比为100:0.01至100:0.5比例中,都具有协同增效的效果,随着组合物中香豆酰奎尼酸占有比例的升高,组合物对耐药性细胞株A375逆转作用先升高后呈下降趋势,并以100:0.01至100:0.1区间配比最好。
实施例2本发明组合物及其单体化合物体外逆转人肺癌细胞对化药吉西他滨的耐药性
1.材料
1.1受试药物
受试药物1:绿原酸
受试药物2:香豆酰奎尼酸
受试药物3:绿原酸与香豆酰奎尼酸组合物(100:0.01)
受试药物4:绿原酸与香豆酰奎尼酸组合物(100:0.05)
受试药物5:绿原酸与香豆酰奎尼酸组合物(100:0.1)
受试药物6:绿原酸与香豆酰奎尼酸组合物(100:0.5)
阳性药物:吉西他滨
1.2细胞株
肺癌细胞株A549为实验室常规培养细株,临用前传代,取生长状态良好,处于对数期生长的细胞备用。
2.试验方法
2.1耐药细胞株的培育
肺癌细胞株A549分别暴露于吉西他滨2000μg/ml 3个月,离心,培养出吉西他滨耐药A549细胞,每天观察细胞,3天左右1传3传代,保证细胞活力。
2.2检测吉西他滨对细胞株与耐药株的IC50,计算耐药倍数
取对数生长期的上述的细胞株及耐药细胞株,调整细胞浓度为8×103个/孔接种于96孔板。实验分别分成3组:空白组、对照组及吉西他滨组。空白组只加入培养基,无需接种细胞;对照组加培养基并接种细胞;吉西他滨组加培养基并接种细胞,再加入不同浓度的吉西他滨,置于培养箱孵育48h后每孔加入5mg/ml MTT20μl,继续孵育4h,吸去上液,每孔加入DMSO150μl,静置30min,待结晶完全溶解。用酶标仪检测570nm处各孔吸光值OD值,计算肿瘤细胞生长抑制率。抑制率=(1-OD值(吉西他滨组-空白组)/OD值(对照组-空白组))×100%。计算IC50。耐药倍数=耐药细胞IC50值/敏感细胞IC50值。
2.3 MTT法测定无细胞毒的组合物及其单体化合物浓度
细胞及耐药细胞培养及处理方法同上。实验分别分成8组:空白组、对照组及受试药物组。空白组只加入培养基,无需接种细胞;对照组加培养基并接种细胞;受试药物组在上述基础上再加入相应不同浓度各受试药物工作液,使其最终浓度分别为10、20、40、80、160、320、640、1280μg/mL,置于培养箱孵育48h后每孔加入5mg/ml MTT20μl,继续孵育4h,吸去上液,每孔加入DMSO150μl,静置30min,待结晶完全溶解。用酶标仪检测570nm处各孔吸光值OD值,计算肿瘤细胞生长抑制率。抑制率=(1-OD值(受试药物组-空白组)/OD值(对照组-空白组))×100%,取抑制率10%以下浓度的各受试药物浓度作为无毒剂量的逆转浓度。
2.4绿原酸逆转耐药细胞株的作用
细胞培养以及实验方法同上。实验分组如下:耐药细胞阴性组、耐药细胞+受试药物1组(30ug/ml)、耐药细胞+受试药物2组(30ug/ml)、耐药细胞+受试药物3组(30ug/ml)、耐药细胞+受试药物4组(30ug/ml)、耐药细胞+受试药物5组(30ug/ml)、耐药细胞+受试药物6组(30ug/ml),各受试药物组分别加入不同浓度的吉西他滨,每个浓度3复孔,测定各孔的OD值,观察其有无细胞毒性,各受试药物与吉西他滨分别先后作用于耐药细胞与吉西他滨单用于对耐药细胞的效果做比较,计算吉西他滨对耐药细胞株的IC50以及各受试药物逆转耐药细胞株后的IC50。逆转倍数=逆转前IC50值/逆转后IC50值。
2.5试验结果
2.5.1对耐药性肺癌细胞株A549吉西他滨的耐药倍数及各受试药物无的细胞毒浓度
表3耐药性肺癌细胞株A549吉西他滨的耐药倍数及各受试药物无的细胞毒浓度表
注:“——”表示未进行统计。
由上表,吉西他滨对耐药性肺癌细胞株A549的半抑制浓度(IC50)为3620ug/ml,按公式计算出耐药倍数为4.63;各受试药物无显著细胞毒性浓度(制率均<10%)约为1000ug/ml以下。
2.5.2各受试药物对肺癌耐药性细胞株A549的逆转作用
表4各受试药物对肺癌耐药性细胞株A549的逆转作用
各受试药物组无细胞毒浓度(30μg/ml)作用于耐药性肺癌细胞株A549之后,吉西他滨对耐药细胞株A549的IC50差异悬殊。其中绿原酸及香豆酰奎尼酸单体化合物受试药物组对耐药性细胞株A549逆转作用不显著,而绿原酸与香豆酰奎尼酸组合物受试药物组对耐药性细胞株A549逆转作用显著;且在两种单体配比为100:0.01至100:5比例中,两种药物达到了协同增效的效果,随着组合物中香豆酰奎尼酸占有比例的升高,组合物对耐药性细胞株A375逆转作用先升高后呈下降趋势,并以100:0.01至100:0.1区间配比最好。
小结:由上述实施例1及实施例2试验结果可见,绿原酸与香豆酰奎尼酸组合物在对化药产生耐药性的肿瘤细胞株具有良好的逆转耐药性作用,绿原酸与香豆酰奎尼酸协同增效,并以绿原酸:香豆酰奎尼酸为100:0.01至100:0.1的组合为最显著。
实施例3组合物及其单体化合物治疗耐药性的动物试验一(化疗药物)
1试验材料
1.1受试药物
受试药物1:绿原酸
受试药物2:香豆酰奎尼酸
受试药物3:绿原酸与香豆酰奎尼酸组合物(100:0.01)
受试药物4:绿原酸与香豆酰奎尼酸组合物(100:0.05)
受试药物5:绿原酸与香豆酰奎尼酸组合物(100:0.1)
受试药物6:绿原酸与香豆酰奎尼酸组合物(100:0.5)
阳性药物1:达卡巴嗪(5-(3,3-二甲基-1-三氮烯基)-4-酰胺基咪唑枸橼酸盐)。
阳性药物2:吉西他滨
1.2受试细胞株
黑色素瘤细胞株B16细胞,系采用达卡巴嗪浓度梯度递增法对B16细胞系诱导,并经克隆筛选建成,实验前脱药培养。
肺癌细胞株Lewis细胞,系采用吉西他滨浓度梯度递增法对株Lewis细胞系诱导,并经克隆筛选建成,实验前脱药培养。
1.3受试动物
BABL/C-nu小鼠,♀,体重18~22g;
2试验方法
2.1实验动物肿瘤模型的建立
将脱药后的耐药性细胞株,用培养液调整细胞浓度为1×107/m1,于小鼠右侧腋窝皮下注射1×107/m1的细胞,每只0.1ml。
2.2给药方法
待肿瘤平均直径达100mm3后开始随机分组,分别为受试药物1组、受试药物2组、受试药物3组、受试药物4组、受试药物5组、受试药物6组、阳性药物组、阴性组。
受试药物组:先腹腔注射受试药物组,一天一次,30mg/kg/次,连续给药5天;停止给药,次日开始腹腔注射阳性药物组;其中达卡巴嗪阳性药物为隔天给药一次,60mg/kg/次;其中吉西他滨阳性药物为隔天给药一次,300mg/kg/次。
阳性药物持续用药组:达卡巴嗪阳性药物为隔天给药一次,60mg/kg/次;吉西他滨阳性药物为隔天给药一次,300mg/kg/次。
阴性组:腹腔注射给生理盐水,一天一次,连续给药15天。
2.3抗肿瘤作用评价
在给药结束后停止实验,脱颈椎处死小鼠并称重,剥取肿瘤并称重,计算抑瘤率。
抑瘤率%=[1-(给药组平均瘤重/阴性组平均瘤重)]×100%。
2.4 PD-1/PD-L1的表达
采用免疫组化SP法检测肿瘤组织中PD-1/PD-L1阳性的表达率。
2.5 CD4+T和CD8+T淋巴细胞数量的测定
采用免疫荧光染色分析CD4+T和CD8+T淋巴细胞数量,统计6个高倍视野浸润的CD4+T和CD8+T细胞平均数。
3实验结果
3.1各实验组对耐药性移植瘤抑瘤率的影响
表5各实验组对达卡巴嗪耐药性B16黑色素瘤小鼠移植瘤瘤重及抑瘤率的影响
与阴性组比较*p<0.05,**p<0.01;与阳性药物达卡巴嗪组比较△p<0.05,△△p<0.01。
由表5和图1可知,阳性药物组对耐药性B16黑色素瘤小鼠移植瘤的抑瘤率较小,无明显抑瘤效果,而受试药物组香豆酰奎尼酸、绿原酸以及绿原酸与香豆酰奎尼酸组合物对产生耐药性B16黑色素瘤具有良好的抑瘤效果,其中绿原酸与香豆酰奎尼酸组合物的抑瘤率显著,说明了绿原酸与香豆酰奎尼酸组合物组能够有效解决达卡巴嗪引起的黑色素瘤细胞株B16的耐药性。此外,由受试药物组香豆酰奎尼酸、绿原酸单一药物抑瘤效果可见,其抑瘤率远低于绿原酸与香豆酰奎尼酸组合物,说明了绿原酸与香豆酰奎尼酸组合物能够对达卡巴嗪引起的黑色素瘤细胞株B16的耐药性起到良好的逆转作用,且绿原酸与香豆酰奎尼酸达到了协同增效的作用。
表6各实验组对吉西他滨耐药性Lewis肺癌小鼠移植瘤瘤重及抑瘤率的影响
与阴性组比较*p<0.05,**p<0.01;与阳性药物吉西他滨比较△p<0.05,△△p<0.01。
由表6和图2可知,阳性药物组对耐药性Lewis肺癌小鼠移植瘤的抑瘤率较小,无明显抑瘤效果,而受试药物组香豆酰奎尼酸、绿原酸以及绿原酸与香豆酰奎尼酸组合物对产生耐药性Lewis肺癌具有良好的抑瘤效果,其中受绿原酸与香豆酰奎尼酸组合物的抑瘤率显著,说明了绿原酸与香豆酰奎尼酸组合物组能够有效解决吉西他滨引起的Lewis肺癌的耐药性。此外,由受试药物组香豆酰奎尼酸、绿原酸单一药物抑瘤效果可见,其抑瘤率远低于绿原酸与香豆酰奎尼酸组合物,说明了绿原酸与香豆酰奎尼酸组合物能够对吉西他滨引起的Lewis肺癌的耐药性起到良好的逆转作用,且绿原酸与香豆酰奎尼酸达到了协同增效的作用。
3.2各实验组耐药性移植瘤中PD-1/PD-L1的表达
表7各实验组中耐药性B16黑色素瘤小鼠移植瘤组织PD-1/PD-L1的表达率(%)
组别 PD-L1阳性
香豆酰奎尼酸 73.39%
绿原酸 72.26%
绿原酸:香豆酰奎尼酸(100:0.01)组合物 36.34%
绿原酸:香豆酰奎尼酸(100:0.05)组合物 31.58%
绿原酸:香豆酰奎尼酸(100:0.1)组合物 40.71%
绿原酸:香豆酰奎尼酸(100:0.5)组合物 46.08%
阳性药物达卡巴嗪 72.51%
阴性组 76.24%
表8各实验组中耐药性Lewis肺癌小鼠移植瘤组织PD-1/PD-L1的表达率(%)
组别 PD-L1阳性
香豆酰奎尼酸 79.23%
绿原酸 81.83%
绿原酸:香豆酰奎尼酸(100:0.01)组合物 34.14%
绿原酸:香豆酰奎尼酸(100:0.05)组合物 32.27%
绿原酸:香豆酰奎尼酸(100:0.1)组合物 39.28%
绿原酸:香豆酰奎尼酸(100:0.5)组合物 43.66%
阳性药物吉西他滨 78.93%
阴性组 83.06%
实验结果显示,绿原酸与香豆酰奎尼酸组合物实验组能够有效地抑制耐药性B16黑色素瘤和耐药性Lewis肺癌小鼠移植瘤组织中PD-1/PD-L1的表达,两者具有协同增效的作用,其中以绿原酸:香豆酰奎尼酸为100:0.01至100:0.05比例的组合物为最佳。
3.3各实验组耐药性移植瘤中CD4+T和CD8+T细胞的数量
表9各实验组中耐药性B16黑色素瘤小鼠移植瘤中CD4+T和CD8+T细胞的数量
组别 CD4+T细胞 CD8+T细胞
香豆酰奎尼酸 62.83±7.51 91.53±3.54
绿原酸 69.43±4.72 88.62±5.38
绿原酸:香豆酰奎尼酸(100:0.01)组合物 90.26±2.27**△△ 186.68±2.99**△△
绿原酸:香豆酰奎尼酸(100:0.05)组合物 93.74±1.85**△△ 192.41±5.61**△△
绿原酸:香豆酰奎尼酸(100:0.1)组合物 86.81±6.38**△△ 170.45±1.25**△△
绿原酸:香豆酰奎尼酸(100:0.5)组合物 83.42±3.64**△△ 165.47±3.44**△△
阳性药物达卡巴嗪 63.67±5.83 91.23±3.84
阴性组 58.48±3.64 86.56±2.06
与阴性组比较*p<0.05,**p<0.01;与阳性药物达卡巴嗪比较△p<0.05,△△p<0.01。
表10各实验组中耐药性Lewis肺癌小鼠移植瘤中CD4+T和CD8+T淋巴细胞的数量
组别 CD4+T细胞 CD8+T细胞
香豆酰奎尼酸 78.75±6.39 98.53±4.98
绿原酸 80.63±5.08 106.62±6.88
绿原酸:香豆酰奎尼酸(100:0.01)组合物 125.42±5.23**△△ 215.67±7.36**△△
绿原酸:香豆酰奎尼酸(100:0.05)组合物 131.14±7.38**△△ 232.12±10.21**△△
绿原酸:香豆酰奎尼酸(100:0.1)组合物 118.65±4.02**△△ 196.34±7.05**△△
绿原酸:香豆酰奎尼酸(100:0.5)组合物 102.35±5.26**△△ 188.36±2.63**△△
阳性药物吉西他滨 82.16±1.42 112.53±4.28
阴性组 76.28±2.66 103.42±5.24
与阴性组比较*p<0.05,**p<0.01;与阳性药物吉西他滨比较△p<0.05,△△p<0.01
实验结果显示,绿原酸与香豆酰奎尼酸组合物实验组与阳性药物组(达卡巴嗪和吉西他滨)相比,CD4+T和CD8+T细胞数量显著增加,说明绿原酸与香豆酰奎尼酸组合物能够有效地对产生耐药性B16黑色素瘤小鼠和Lewis肺癌小鼠CD4+T和CD8+T细胞起到增殖作用,且绿原酸与香豆酰奎尼酸具有协同增效的作用。
实施例4组合物及其单体化合物治疗耐药性的动物试验二(免疫治疗药物)
1试验材料
1.1受试药物
受试药物1:绿原酸与香豆酰奎尼酸组合物(100:0.01)
受试药物2:绿原酸与香豆酰奎尼酸组合物(100:0.05)
受试药物3:绿原酸与香豆酰奎尼酸组合物(100:0.1)
受试药物4:绿原酸与香豆酰奎尼酸组合物(100:0.5)
阳性药物:Opdivo
单体药物1:绿原酸
单体药物2:香豆酰奎尼酸
1.2受试细胞株
黑色素瘤细胞株B16细胞、肺癌细胞株Lewis细胞。
1.3受试动物
BABL/C-nu小鼠,♀,体重18~22g;
2试验方法
2.1实验动物Opdivo耐药性肿瘤模型的建立
将细胞株用培养液调整细胞浓度为1×107/m1,于小鼠右侧腋窝皮下注射1×107/m1的细胞,每只0.1ml。模型组在接种后第二日开始腹腔注射Opdivo,30mg/kg,隔日注射一次;空白组在接种后第二日开始腹腔注射等量生理盐水,隔日注射一次;每次给药前测量肿瘤体积,待模型组肿瘤体积呈指数式增长且与空白组肿瘤体积无显著差异后,停止给药造模。2.2给药方法
将模型组随机分组,每组8只,分别为受试药物1组、受试药物2组、受试药物3组、受试药物4组、阳性药物Opdivo组、单体药物绿原酸组、受试药物1+Opdivo组、受试药物2+Opdivo组、受试药物3+Opdivo组、受试药物4+Opdivo组、阴性组。
受试药物组:模型组停止给药造模后第二天起腹腔注射给药,每天给药一次,30mg/kg。
单体药物组:模型组停止给药造模后第二天起腹腔注射给药,每天给药一次,30mg/kg。
受试药物+Opdivo组:模型组停止给药造模后第二天起腹腔注射给受试药物,每天给药一次,连续给药5天后停止给受试药物;次日开始腹腔注射Opdivo,隔天给药一次,给药剂量均为30mg/kg。
阳性药物持续用药组:隔天给药一次,30mg/kg。
阴性组:腹腔注射给生理盐水,隔天一次,等量生理盐水。
每次给药前,测量肿瘤体积,待阴性组平均瘤重大于1.5cm3时停止实验。
2.3抗肿瘤作用评价
在给药结束后停止实验,脱颈椎处死小鼠并称重,剥取肿瘤并称重,计算抑瘤率。
抑瘤率%=[1-(给药组平均瘤重/阴性组平均瘤重)]×100%。
2.4 PD-1/PD-L1的表达
采用免疫组化SP法检测肿瘤组织中PD-1/PD-L1阳性的表达率。
2.5 CD4+T和CD8+T淋巴细胞数量的测定
采用免疫荧光染色分析CD4+T和CD8+T淋巴细胞数量,统计6个高倍视野浸润的CD4+T和CD8+T细胞平均数。
3实验结果
3.1耐药性模型组与空白组的肿瘤体积
表11黑色素瘤细胞株B16小鼠耐药性模型组与空白组肿瘤体积
接种后时间 模型组(cm3) 空白组(cm3)
2d 0.00±0.000** 0.088±0.052
4d 0.084±0.047** 0.179±0.043
6d 0.106±0.043** 0.244±0.039
8d 0.128±0.062** 0.402±0.205
10d 0.179±0.147** 0.605±0.300
12d 0.286±0.116** 0.899±0.795
14d 0.881±0.204 1.036±0.532
与空白组比较*p<0.05,**p<0.01。
表12肺癌细胞株Lewis细胞小鼠耐药性模型组与空白组肿瘤体积
接种后时间 模型组(cm3) 空白组(cm3)
4d 0.00±0.000** 0.062±0.052
6d 0.073±0.052* 0.116±0.106
8d 0.098±0.075** 0.187±0.099
10d 0.121±0.101** 0.334±0.147
12d 0.164±0.084** 0.576±0.378
14d 0.226±0.113** 0.741±0.439
16d 0.464±0.154* 0.994±0.648
18d 0.984±0.236 1.147±0.522
与阴性组比较*p<0.05,**p<0.01
由表11、表12、图3、图4可知,黑色素瘤细胞株B16模型组小鼠在腹腔注射Opdivo第14天后,其瘤种体积与空白组基本相当,无显著性差异;肺癌细胞株Lewis细胞模型组小鼠在腹腔注射Opdivo第18天后,其瘤种体积与空白组基本相当,无显著性差异;说明小鼠在持续给药过程中已对Opdivo产生耐药性。
3.2各实验组对耐药性模型组肿瘤体积的影响
表13各实验组对黑色素瘤细胞株B16小鼠耐药性模型组肿瘤体积的影响
与阴性组比较*p<0.05,**p<0.01;与阳性药物Opdivo组比较△p<0.05,△△p<0.01。
实验结果显示,阳性药物Opdivo对已产生耐药性黑色素瘤细胞株B16小鼠持续治疗效果不明显,单体药物绿原酸对瘤体体积控制效果不明显;绿原酸与香豆酰奎尼酸组合物组的瘤体体积与阳性药物Opdivo组及阴性组有差异(p<0.05),说明对瘤体体积控制效果明显;绿原酸与香豆酰奎尼酸组合物联合Opdivo实验组对已产生耐药性的小鼠持续治疗效果十分显著,与阳性药物Opdivo组及阴性组对比具有极显著差异(p<0.01),说明绿原酸与香豆酰奎尼酸组合物能够有效扭转黑色素瘤B16小鼠对Opdivo产生的耐药性,从而使得Opdivo持续发挥抗肿瘤的药效作用。
表14各实验组对耐药性Lewis肺癌小鼠耐药性模型组肿瘤体积的影响
与阴性组比较*p<0.05,**p<0.01;与阳性药物Opdivo组比较△p<0.05,△△p<0.01
实验结果显示,阳性药物Opdivo对已产生耐药性的Lewis肺癌小鼠持续治疗效果不明显,单体药物绿原酸对瘤体体积控制效果不明显;绿原酸与香豆酰奎尼酸组合物组的瘤体体积与阳性药物Opdivo组及阴性组有差异(p<0.05),说明对瘤体体积控制效果明显;绿原酸与香豆酰奎尼酸组合物联合Opdivo实验组对已产生耐药性的小鼠持续治疗效果十分显著,与阳性药物Opdivo组及阴性组对比具有极显著差异(p<0.01),说明绿原酸与香豆酰奎尼酸组合物能够有效扭转Lewis肺癌小鼠对Opdivo产生的耐药性,从而使得Opdivo持续发挥抗肿瘤的药效作用。
3.3各实验组对耐药性模型组肿瘤抑瘤率的影响
表15各实验组对耐药性B16黑色素瘤小鼠瘤重及抑瘤率的影响
与阴性组比较*p<0.05,**p<0.01;与阳性药物Opdivo组比较△p<0.05,△△p<0.01
由表15和图5可知,阳性药物Opdivo对已产生耐药性的Lewis肺癌小鼠持续治疗效果不明显,单体药物绿原酸抑瘤率较小;绿原酸与香豆酰奎尼酸组合物组的抑瘤率与阳性药物Opdivo组及阴性组有差异(p<0.05);绿原酸与香豆酰奎尼酸组合物联合Opdivo实验组对已产生耐药性的小鼠持续治疗效果十分显著,与阳性药物Opdivo组及阴性组对比具有极显著差异(p<0.01),说明绿原酸与香豆酰奎尼酸组合物对黑色素瘤B16小鼠产生的Opdivo耐药性起到良好的逆转作用。
表16各实验组对耐药性Lewis肺癌小鼠瘤重及抑瘤率的影响
与阴性组比较*p<0.05,**p<0.01;与阳性药物Opdivo比较△p<0.05,△△p<0.01
由表16和图6可知,阳性药物Opdivo对已产生耐药性的Lewis肺癌小鼠持续治疗效果不明显,单体药物绿原酸抑瘤率较小;绿原酸与香豆酰奎尼酸组合物组的抑瘤率与阳性药物Opdivo组及阴性组有差异(p<0.05);绿原酸与香豆酰奎尼酸组合物联合Opdivo实验组对已产生耐药性的小鼠持续治疗效果十分显著,与阳性药物Opdivo组及阴性组对比具有极显著差异(p<0.01),说明绿原酸与香豆酰奎尼酸组合物对Lewis肺癌小鼠产生的Opdivo耐药性起到良好的逆转作用。
3.4各实验组耐药性留体中PD-1/PD-L1的表达
表17各实验组中耐药性B16黑色素瘤小鼠留体组织PD-1/PD-L1的表达率(%)
组别 PD-L1阳性
香豆酰奎尼酸 82.87%
绿原酸 83.41%
绿原酸:香豆酰奎尼酸(100:0.01)组合物 73.28%
绿原酸:香豆酰奎尼酸(100:0.05)组合物 72.83%
绿原酸:香豆酰奎尼酸(100:0.1)组合物 74.27%
绿原酸:香豆酰奎尼酸(100:0.5)组合物 76.99%
绿原酸:香豆酰奎尼酸(100:0.01)组合物+阳性药物Opdivo 52.72%
绿原酸:香豆酰奎尼酸(100:0.05)组合物+阳性药物Opdivo 46.78%
绿原酸:香豆酰奎尼酸(100:0.1)组合物+阳性药物Opdivo 58.14%
绿原酸:香豆酰奎尼酸(100:0.5)组合物+阳性药物Opdivo 62.59%
阳性药物Opdivo 85.87%
阴性组 86.32%
表18各实验组中耐药性Lewis肺癌小鼠瘤体组织PD-1/PD-L1的表达率(%)
组别 PD-L1阳性
香豆酰奎尼酸 71.89%
绿原酸 70.36%
绿原酸:香豆酰奎尼酸(100:0.01)组合物 64.57%
绿原酸:香豆酰奎尼酸(100:0.05)组合物 63.85%
绿原酸:香豆酰奎尼酸(100:0.1)组合物 65.03%
绿原酸:香豆酰奎尼酸(100:0.5)组合物 65.49%
绿原酸:香豆酰奎尼酸(100:0.01)组合物+阳性药物Opdivo 39.07%
绿原酸:香豆酰奎尼酸(100:0.05)组合物+阳性药物Opdivo 36.84%
绿原酸:香豆酰奎尼酸(100:0.1)组合物+阳性药物Opdivo 42.38%
绿原酸:香豆酰奎尼酸(100:0.5)组合物+阳性药物Opdivo 46.92%
阳性药物Opdivo 72.77%
阴性组 72.64%
实验结果显示,阳性药物Opdivo组及单体药物绿原酸组对耐药性B16黑色素瘤和耐药性Lewis肺癌小鼠瘤体组织中PD-1/PD-L1的表达无明显抑制作用,绿原酸与香豆酰奎尼酸组合物具有抑制作用,绿原酸与香豆酰奎尼酸组合物联合Opdivo的实验组抑制效果显著;说明绿原酸与香豆酰奎尼酸组合物能够有效地抑制Opdivo耐药性B16黑色素瘤和耐药性Lewis肺癌小鼠瘤体组织中PD-1/PD-L1的表达。
3.5各实验组耐药性移植瘤中CD4+T和CD8+T细胞的数量
表19各实验组中耐药性B16黑色素瘤小鼠CD4+T和CD8+T细胞的数量
与阴性组比较*p<0.05,**p<0.01;与阳性药物Opdivo比较△p<0.05,△△p<0.01
表20各实验组中耐药性Lewis肺癌小鼠CD4+T和CD8+T淋巴细胞的数量
组别 CD4+T细胞 CD8+T细胞
香豆酰奎尼酸 65.12±5.17 113.64±8.23
绿原酸 66.52±4.63 119.38±6.55
绿原酸:香豆酰奎尼酸(100:0.01)组合物 85.53±8.77*△ 161.33±3.55*△
绿原酸:香豆酰奎尼酸(100:0.05)组合物 89.14±10.63*△ 177.57±11.71*△
绿原酸:香豆酰奎尼酸(100:0.1)组合物 80.21±5.95*△ 154±9.52*△
绿原酸:香豆酰奎尼酸(100:0.5)组合物 78.53±8.357*△ 151±13.05*△
绿原酸:香豆酰奎尼酸(100:0.01)组合物+阳性药物Opdivo 127.84±9.53**△△ 247.84±9.03**△△
绿原酸:香豆酰奎尼酸(100:0.05)组合物+阳性药物Opdivo 131.08±4.98**△△ 254.66±7.72**△△
绿原酸:香豆酰奎尼酸(100:0.1)组合物+阳性药物Opdivo 118.52±9.26**△△ 224.38±12.96**△△
绿原酸:香豆酰奎尼酸(100:0.5)组合物+阳性药物Opdivo 111.63±4.36**△△ 204.6±5.63**△△
阳性药物Opdivo 64.22±7.74 117.81±7.99
阴性组 61.41±6.08 115.83±5.69
与阴性组比较*p<0.05,**p<0.01;与阳性药物Opdivo比较△p<0.05,△△p<0.01
实验结果显示,阳性药物Opdivo组和单体药物绿原酸组对耐药性B16黑色素瘤小鼠和Lewis肺癌小鼠CD4+T和CD8+T细胞增殖不明显;绿原酸与香豆酰奎尼酸组合物组有所增殖;绿原酸与香豆酰奎尼酸组合物联合Opdivo的实验组,对D4+T和CD8+T细胞数量的增加极为显著,说明绿原酸与香豆酰奎尼酸组合物能够有效地对Opdivo产生耐药性B16黑色素瘤小鼠和Lewis肺癌小鼠CD4+T和CD8+T细胞起到增殖作用。
实施例5组合物及其单体化合物治疗多药耐药性的动物试验
1试验材料
1.1受试药物
受试药物1:绿原酸
受试药物2:香豆酰奎尼酸
受试药物3:绿原酸与香豆酰奎尼酸组合物(100:0.01)
受试药物4:绿原酸与香豆酰奎尼酸组合物(100:0.05)
受试药物5:绿原酸与香豆酰奎尼酸组合物(100:0.1)
受试药物6:绿原酸与香豆酰奎尼酸组合物(100:0.5)
阳性药物1:达卡巴嗪(5-(3,3-二甲基-1-三氮烯基)-4-酰胺基咪唑枸橼酸盐)。
阳性药物2:吉西他滨
1.2受试细胞株
肺癌细胞株Lewis细胞,系先后采用达卡巴嗪和吉西他滨浓度梯度递增法对株Lewis细胞系诱导,并经克隆筛选建成,实验前脱药培养。
1.3受试动物
BABL/C-nu小鼠,♀,体重18~22g;
2试验方法
2.1实验动物肿瘤模型的建立
将脱药后的耐药性细胞株,用培养液调整细胞浓度为1×107/m1,于小鼠右侧腋窝皮下注射1×107/m1的细胞,每只0.1ml。
2.2给药方法
待肿瘤平均直径达100mm3后开始随机分组,分别为受试药物1组、受试药物2组、受试药物3组、受试药物4组、受试药物5组、受试药物6组、阳性药物组、阴性组。
受试药物组:先腹腔注射受试药物组,一天一次,30mg/kg/次,连续给药5天;停止给药,次日开始腹腔注射阳性药物组;其中达卡巴嗪阳性药物为隔天给药一次,60mg/kg/次;其中吉西他滨阳性药物为隔天给药一次,300mg/kg/次。
阳性药物持续用药组:达卡巴嗪阳性药物为隔天给药一次,60mg/kg/次;吉西他滨阳性药物为隔天给药一次,300mg/kg/次。
阴性组:腹腔注射给生理盐水,一天一次,连续给药15天。
2.3抗肿瘤作用评价
在给药结束后停止实验,脱颈椎处死小鼠并称重,剥取肿瘤并称重,计算抑瘤率。
抑瘤率%=[1-(给药组平均瘤重/阴性组平均瘤重)]×100%。
2.4 PD-1/PD-L1的表达
采用免疫组化SP法检测肿瘤组织中PD-1/PD-L1阳性的表达率。
2.5 CD4+T和CD8+T淋巴细胞数量的测定
采用免疫荧光染色分析CD4+T和CD8+T淋巴细胞数量,统计6个高倍视野浸润的CD4+T和CD8+T细胞平均数。
3实验结果
3.1各实验组对耐药性移植瘤抑瘤率的影响
表21各实验组对多药药性Lewis肺癌小鼠移植瘤瘤重及抑瘤率的影响
与阴性组比较*p<0.05,**p<0.01;与阳性药物吉西他滨比较△p<0.05,△△p<0.01;与阳性药物达卡巴嗪比较#p<0.05,##p<0.01。
由表21和图7可知,阳性药物组吉西他滨和达卡巴嗪对多药耐药性Lewis肺癌小鼠移植瘤的抑瘤率较小,无明显抑瘤效果,而受试药物组香豆酰奎尼酸、绿原酸以及绿原酸与香豆酰奎尼酸组合物对产生耐药性Lewis肺癌具有抑瘤效果,其中受绿原酸与香豆酰奎尼酸组合物的抑瘤率显著,说明了绿原酸与香豆酰奎尼酸组合物组能够有效解决吉西他滨和达卡巴嗪引起的Lewis肺癌的多药耐药性。此外,由受试药物组香豆酰奎尼酸、绿原酸单一药物抑瘤效果可见,其抑瘤率远低于绿原酸与香豆酰奎尼酸组合物,说明了绿原酸与香豆酰奎尼酸组合物能够对吉西他滨和达卡巴嗪引起的Lewis肺癌的多药耐药性起到良好的逆转作用,且绿原酸与香豆酰奎尼酸达到了协同增效的作用。
3.2各实验组耐药性移植瘤中PD-1/PD-L1的表达
表22各实验组中多药耐药性B16黑色素瘤小鼠移植瘤组织PD-1/PD-L1的表达率(%)
组别 PD-L1阳性
香豆酰奎尼酸 73.39%
绿原酸 72.26%
绿原酸:香豆酰奎尼酸(100:0.01)组合物+吉西他滨 36.34%
绿原酸:香豆酰奎尼酸(100:0.05)组合物+吉西他滨 31.58%
绿原酸:香豆酰奎尼酸(100:0.1)组合物+吉西他滨 40.71%
绿原酸:香豆酰奎尼酸(100:0.5)组合物+吉西他滨 46.08%
绿原酸:香豆酰奎尼酸(100:0.01)组合物+达卡巴嗪 34.91%
绿原酸:香豆酰奎尼酸(100:0.05)组合物+达卡巴嗪 32.28%
绿原酸:香豆酰奎尼酸(100:0.1)组合物+达卡巴嗪 40.21%
绿原酸:香豆酰奎尼酸(100:0.5)组合物+达卡巴嗪 42.36%
阳性药物吉西他滨 74.35%
阳性药物达卡巴嗪 72.51%
阴性组 76.24%
实验结果显示,绿原酸与香豆酰奎尼酸组合物实验组能够有效地抑制多药耐药性Lewis肺癌小鼠移植瘤组织中PD-1/PD-L1的表达,两者具有协同增效的作用,其中以绿原酸:香豆酰奎尼酸为100:0.01至100:0.05比例的组合物为最佳。
3.3各实验组多药耐药性移植瘤中CD4+T和CD8+T细胞的数量
表23各实验组中多药耐药性Lewis肺癌小鼠移植瘤中CD4+T和CD8+T淋巴细胞的数量
与阴性组比较*p<0.05,**p<0.01;与阳性药物吉西他滨比较△p<0.05,△△p<0.01;与阳性药物达卡巴嗪比较#p<0.05,##p<0.01。
实验结果显示,绿原酸与香豆酰奎尼酸组合物实验组与阳性药物组(达卡巴嗪和吉西他滨)相比,CD4+T和CD8+T细胞数量显著增加,说明绿原酸与香豆酰奎尼酸组合物能够有效地对产生多药耐药性Lewis肺癌小鼠CD4+T和CD8+T细胞起到增殖作用,且绿原酸与香豆酰奎尼酸具有协同增效的作用。
综上,本发明提供了一种药物组合物,其包含绿原酸与香豆酰奎尼酸,该药物组合物可用于制备肿瘤多药耐药逆转剂以及PD-1/PD-L1抑制剂。本发明实验结果表明,绿原酸与香豆酰奎尼酸联合使用,可以发挥协同增效作用,具体的,绿原酸与香豆酰奎尼酸联合用药对化疗药物和免疫治疗类药物产生多药耐药性的肿瘤细胞株具有良好的逆转耐药性作用,能够有效解决达卡巴嗪引起的黑色素瘤细胞株B16的耐药性和吉西他滨引起的Lewis肺癌的耐药性,能够有效抑制耐药性B16黑色素瘤和耐药性Lewis肺癌小鼠移植瘤组织中PD-1/PD-L1的表达,能够有效逆转Opdivo引起的的黑色素瘤细胞株B16的耐药性和肺癌细胞株Lewis的耐药性,能够有效地对产生耐药性B16黑色素瘤小鼠和Lewis肺癌小鼠CD4+T和CD8+T细胞起到增殖作用。

Claims (11)

1.一种药物组合物,其特征在于:它含有绿原酸和香豆酰奎尼酸。
2.根据权利要求1所述的药物组合物,其特征在于:所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.5;优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.1;更优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.05。
3.一种制备权利要求1或2所述药物组合物的方法,其特征在于:它是以绿原酸和香豆酰奎尼酸为有效成分,加入药学上可接受的辅料制备成药学上常用的药物制剂;优选的,所述制剂为口服制剂或注射制剂。
4.权利要求1或2所述的药物组合物在制备肿瘤多药耐药逆转剂中的用途。
5.根据权利要求4所述的用途,其特征在于:所述肿瘤为黑色素瘤、肺癌、肝癌、肾癌、胶质瘤、前列腺癌、胃癌、膀胱癌、结肠癌、乳腺癌、卵巢癌或宫颈癌;优选的,所述肿瘤为黑色素瘤或肺癌。
6.根据权利要求4所述的用途,其特征在于:所述药物组合物与抗肿瘤药物联合用于制备肿瘤多药耐药逆转剂;优选的,所述抗肿瘤药物为化疗药物或免疫治疗药物;更优选的,所述化疗药物为咪唑类抗肿瘤药物或嘧啶类抗肿瘤药物,优选为达卡巴嗪或吉西他滨;所述免疫治疗药物为PD-1抑制剂,优选为Opdivo。
7.权利要求1或2所述的药物组合物在制备PD-1/PD-L1抑制剂中的用途。
8.根据权利要求7所述的用途,其特征在于:所述PD-1/PD-L1抑制剂为抗肿瘤的药物;优选的,所述抗肿瘤药物为抗耐药性肿瘤的药物;更优选的,所述抗耐药性肿瘤的药物为抗肿瘤免疫抑制剂;进一步更优选的,所述抗肿瘤免疫抑制剂为除本发明药物组合物外的PD-1抑制剂;进一步的,所述除本发明药物组合物外的PD-1抑制剂为Opdivo。
9.一种联合用药物,它含有分别给药的药物组合物和抗肿瘤药物,以及药学上可接受的载体;所述药物组合物为绿原酸和香豆酰奎尼酸。
10.根据权利要求9所述的联合用药物,其特征在于:所述抗肿瘤药物为化疗药物或免疫治疗药物;优选的,所述化疗药物为咪唑类抗肿瘤药物或嘧啶类抗肿瘤药物,优选为达卡巴嗪或吉西他滨;所述免疫治疗药物为PD-1抑制剂,优选为Opdivo;和/或,所述肿瘤为黑色素瘤、肺癌、肝癌、肾癌、胶质瘤、前列腺癌、胃癌、膀胱癌、结肠癌、乳腺癌、卵巢癌或宫颈癌;优选的,所述肿瘤为黑色素瘤或肺癌。
11.根据权利要求9所述的联合用药物,其特征在于:所述药物组合物与抗肿瘤药物的质量比为1:1;和/或,所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.5;优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.01~0.1;更优选的,所述绿原酸与香豆酰奎尼酸的质量比为100:0.05。
CN201810206147.4A 2018-03-13 2018-03-13 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途 Active CN108159038B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810206147.4A CN108159038B (zh) 2018-03-13 2018-03-13 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途
US16/980,576 US20210085630A1 (en) 2018-03-13 2019-03-12 Pharmaceutical composition and use thereof in preparing drug for treating tumor multi-drug resistance
PCT/CN2019/077826 WO2019174571A1 (zh) 2018-03-13 2019-03-12 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810206147.4A CN108159038B (zh) 2018-03-13 2018-03-13 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途

Publications (2)

Publication Number Publication Date
CN108159038A true CN108159038A (zh) 2018-06-15
CN108159038B CN108159038B (zh) 2020-06-12

Family

ID=62511082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810206147.4A Active CN108159038B (zh) 2018-03-13 2018-03-13 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途

Country Status (3)

Country Link
US (1) US20210085630A1 (zh)
CN (1) CN108159038B (zh)
WO (1) WO2019174571A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108498497A (zh) * 2018-06-01 2018-09-07 四川九章生物科技有限公司 用于治疗肾癌的药物组合物及其应用
CN108653263A (zh) * 2018-04-24 2018-10-16 四川九章生物科技有限公司 绿原酸及其组合物在制备治疗肉瘤的药物中的用途
CN108685892A (zh) * 2018-05-11 2018-10-23 四川九章生物科技有限公司 绿原酸及其组合物在制备治疗鳞状细胞癌的药物中的用途
CN109420167A (zh) * 2017-08-28 2019-03-05 四川九章生物科技有限公司 一种治疗肿瘤的联合用药物
WO2019174571A1 (zh) * 2018-03-13 2019-09-19 四川九章生物科技有限公司 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途
CN111961648A (zh) * 2019-05-20 2020-11-20 河南省肿瘤医院 一种肿瘤特异性t细胞的分离培养方法及由其获得的产品
CN113413378A (zh) * 2021-07-07 2021-09-21 四川九章生物科技有限公司 一种包含绿原酸的药物组合物在制备治疗早期阿尔茨海默病的药物中的用途
CN114469921A (zh) * 2021-10-11 2022-05-13 湖南农业大学 一种用于减少肝癌细胞耐药性的药物组合物及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055179A1 (zh) * 2022-09-14 2024-03-21 同济大学苏州研究院 Pd-1抗体药物继发耐药免疫抑制靶点及应用
CN116121194B (zh) * 2023-02-27 2023-10-24 山东第一医科大学附属肿瘤医院(山东省肿瘤防治研究院、山东省肿瘤医院) 一种肺癌免疫治疗耐药细胞系及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646112A (zh) * 2002-05-31 2005-07-27 科学及工业研究委员会 能作为抗白血病药物的草药分子
WO2009045053A2 (en) * 2007-10-01 2009-04-09 National Cancer Center A cancer sensitizer comprising chlorogenic acid
CN104758277A (zh) * 2015-03-06 2015-07-08 刘晓梅 绿原酸在制备治疗癌症的多药耐药性的药物中的用途
CN106890169A (zh) * 2016-10-11 2017-06-27 四川九章生物科技有限公司 绿原酸及其衍生物在制备肿瘤免疫治疗药物的增敏剂中的用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108159038B (zh) * 2018-03-13 2020-06-12 四川九章生物科技有限公司 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途
CN108498497B (zh) * 2018-06-01 2020-05-01 四川九章生物科技有限公司 用于治疗肾癌的药物组合物及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646112A (zh) * 2002-05-31 2005-07-27 科学及工业研究委员会 能作为抗白血病药物的草药分子
WO2009045053A2 (en) * 2007-10-01 2009-04-09 National Cancer Center A cancer sensitizer comprising chlorogenic acid
CN104758277A (zh) * 2015-03-06 2015-07-08 刘晓梅 绿原酸在制备治疗癌症的多药耐药性的药物中的用途
CN106890169A (zh) * 2016-10-11 2017-06-27 四川九章生物科技有限公司 绿原酸及其衍生物在制备肿瘤免疫治疗药物的增敏剂中的用途

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420167B (zh) * 2017-08-28 2022-02-11 四川九章生物科技有限公司 一种治疗肿瘤的联合用药物
CN109420167A (zh) * 2017-08-28 2019-03-05 四川九章生物科技有限公司 一种治疗肿瘤的联合用药物
WO2019174571A1 (zh) * 2018-03-13 2019-09-19 四川九章生物科技有限公司 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途
WO2019206159A1 (zh) * 2018-04-24 2019-10-31 四川九章生物科技有限公司 绿原酸及其组合物在制备治疗肉瘤的药物中的用途
CN108653263A (zh) * 2018-04-24 2018-10-16 四川九章生物科技有限公司 绿原酸及其组合物在制备治疗肉瘤的药物中的用途
WO2019214723A1 (zh) * 2018-05-11 2019-11-14 四川九章生物科技有限公司 绿原酸及其组合物在制备治疗鳞状细胞癌的药物中的用途
CN108685892B (zh) * 2018-05-11 2020-06-12 四川九章生物科技有限公司 绿原酸及其组合物在制备治疗鳞状细胞癌的药物中的用途
CN108685892A (zh) * 2018-05-11 2018-10-23 四川九章生物科技有限公司 绿原酸及其组合物在制备治疗鳞状细胞癌的药物中的用途
CN108498497A (zh) * 2018-06-01 2018-09-07 四川九章生物科技有限公司 用于治疗肾癌的药物组合物及其应用
WO2019228524A1 (zh) * 2018-06-01 2019-12-05 四川九章生物科技有限公司 用于治疗肾癌的药物组合物及其应用
CN111961648A (zh) * 2019-05-20 2020-11-20 河南省肿瘤医院 一种肿瘤特异性t细胞的分离培养方法及由其获得的产品
CN111961648B (zh) * 2019-05-20 2022-03-29 河南省肿瘤医院 一种肿瘤特异性t细胞的分离培养方法及由其获得的产品
CN113413378A (zh) * 2021-07-07 2021-09-21 四川九章生物科技有限公司 一种包含绿原酸的药物组合物在制备治疗早期阿尔茨海默病的药物中的用途
CN114469921A (zh) * 2021-10-11 2022-05-13 湖南农业大学 一种用于减少肝癌细胞耐药性的药物组合物及其应用

Also Published As

Publication number Publication date
WO2019174571A1 (zh) 2019-09-19
CN108159038B (zh) 2020-06-12
US20210085630A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN108159038A (zh) 一种药物组合物及其在制备治疗肿瘤多药耐药性的药物中的用途
JP5057987B2 (ja) 薬草組成物phy906及びその化学療法における使用
CN106822905A (zh) 含Survivin抑制剂和IRE1抑制剂的药物及用途
CN108498497A (zh) 用于治疗肾癌的药物组合物及其应用
CN109464460A (zh) 一种提高抗肿瘤药物敏感性的药物组合物及其在制备抗肿瘤药物中的应用
CN101647796A (zh) 蛇床子素在制备抑制血管新生药物中的应用
CN109320570A (zh) 一种淫羊藿次苷ⅰ类化合物、衍生物、可药用盐及应用
CN104586873B (zh) 木蝴蝶苷a在制备治疗癌症药物中的应用
CN102048727B (zh) 芒柄花黄素在制备抑制血管生成药物中的应用
CN103263433A (zh) 6-姜烯酚增强胰腺癌对吉西他滨化疗敏感性及其复方药物
CN107412777A (zh) 一种抗肿瘤联合用药物及其在制备抗癌药物中的用途
CN104257656B (zh) 一种协同增强抑制肿瘤生长的药物组合物
CN109793727A (zh) 一种有效抗恶性肿瘤的药物组合物及其应用
CN105535003A (zh) 金盏花苷e在制备治疗抗肿瘤药物中的用途
CN105916517A (zh) 用于治疗或缓解高龄或晚期癌症患者的药物组合物
CN111249274B (zh) 银杏内酯b在制备胶质瘤细胞活性抑制剂中的应用
CN102440987B (zh) 含有芹菜素及芹菜素类衍生物和青蒿素及青蒿素类衍生物的药物组合物及其应用
CN108853506A (zh) 一种治疗白血病的联用药物及其用途
CN110354121A (zh) 环吡酮胺在制备治疗肿瘤药物中的应用和包含环吡酮胺的组合药物及用途
CN101278925A (zh) 信筒子醌在制备抑制血管新生药物中的应用
CN102688240A (zh) 一种治疗结直肠癌的药物组合物
CN107412736A (zh) 一种抗肿瘤联合用药物及其在制备抗癌药物中的用途
CN108836975A (zh) 野蔷薇苷的新应用
CN108096239A (zh) 一种治疗脑胶质瘤和肝癌的药物组合物
RU2463053C1 (ru) Фармацевтическая композиция для лечения онкологических заболеваний

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant