CN108102940A - 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法 - Google Patents

一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法 Download PDF

Info

Publication number
CN108102940A
CN108102940A CN201710948677.1A CN201710948677A CN108102940A CN 108102940 A CN108102940 A CN 108102940A CN 201710948677 A CN201710948677 A CN 201710948677A CN 108102940 A CN108102940 A CN 108102940A
Authority
CN
China
Prior art keywords
xks1
strain
wine brewing
kanmx
xylitol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710948677.1A
Other languages
English (en)
Other versions
CN108102940B (zh
Inventor
汤岳琴
杨白雪
陈栋
缪晡
丁伟军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Sinopec Engineering Group Co Ltd
Sinopec Shanghai Engineering Co Ltd
Original Assignee
Sichuan University
Sinopec Engineering Group Co Ltd
Sinopec Shanghai Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University, Sinopec Engineering Group Co Ltd, Sinopec Shanghai Engineering Co Ltd filed Critical Sichuan University
Priority to CN201710948677.1A priority Critical patent/CN108102940B/zh
Publication of CN108102940A publication Critical patent/CN108102940A/zh
Application granted granted Critical
Publication of CN108102940B publication Critical patent/CN108102940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一株敲除XKS1基因以高效产木糖醇的工业酿酒酵母菌株,其命名为SEB9,保藏编号为CGMCC No.14272;本发明还涉及一株上述酿酒酵母菌株的构建方法,其包括如下步骤:敲除出发菌株的KanMX基因构建KanMX菌株,并筛选高木糖醇产量的KanMX菌株;敲除所筛选的KanMX菌株的XKS1基因构建ΔXKS1菌株,并筛选高木糖醇产率的ΔXKS1菌株。本发明通过CRISPR/Cas9基因编辑技术,可以通过一次性酵母转化迅速而快捷地敲除XKS1基因,阻断木酮糖进一步向5‑磷酸木酮糖代谢从而获得高产木糖醇的菌株;通过本发明所述构建方法制备的酿酒酵母菌株SEB9,与出发菌株相比,其木糖发酵生产木糖醇的性能优越,收率可接近理论值1.0,能有效提高木糖醇的收率和木糖醇产量,其具有良好的应用前景。

Description

一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌 株及构建方法
技术领域
本发明涉及微生物基因工程技术领域,尤其涉及一株利用CRISPR/Cas9系统敲除XKS1基因以高效产木糖醇的工业酿酒酵母菌株及构建方法。
背景技术
秸秆、皮壳、芯等农业废弃物是地球上最为丰富的可再生有机物质,在中国每年约有9亿吨秸秆产生,但由于这些农业废弃物的处理成本过高,虽然引起了广泛重视,但在转化处理方式上仍多为废弃或直接田间焚烧,造成极大的资源浪费及环境污染,还对生态平衡产生了破坏。而木糖醇可由半纤维素的水解产物(以木糖为主)还原制得。木糖醇作为21世纪新兴最有前途的生物平台化合物之一,利用农业废弃物变废为宝生产木糖醇,不仅经济价值可观,同时作为环保处理农业废弃物的有效途径,一举两得。
近些年来基因编辑技术大热,Cre-LoxP系统是源于P1噬菌体的一个DNA重组体系,由Cre酶和相应的LoxP位点组成,它能导致重组发生在特定的DNA序列处(LoxP位点),该系统可以将外源基因定点整合到染色体上或将特定DNA片段删除。而CRISPR-Cas9基因编辑技术是继转录激活样效应因子核酸酶(transcription activator-like effectornuclease,TALEN)技术与锌指核酸酶(Zinc-finger nuclease,ZFN)技术之后迅速发展起来的第3代基因组编辑技术。CRISPR/Cas9独特之处是既可以作为双链的内切酶也可被改造成为切口酶,并在特定位点对DNA进行切割,形成双链断裂(Double strand break,DSB),通过非同源末端连接(Non-homologous end joining,NHEJ)修复机制或在同源重组(Homologous recombination,HR)修复机制以及修复模板(Donor template)DNA存在的条件下,实现定点单碱基突变、长片段的插入、敲除以及突变。Cas9蛋白目前常用的是源于产脓链球菌(Streptococcus pyogenes)和嗜热链球菌(Streptococcus thermophiles)中的Cas9蛋白。CRISPR/Cas系统最早是在细菌的天然免疫系统内发现的,其主要功能是对抗入侵的病毒及外源DNA。该系统是一个由核酸和蛋白质组成的核糖核蛋白复合物,通过一段短的引导RNA(Guide RNA,gRNA)识别特定的DNA序列,通过改变gRNA序列即可使蛋白定位到新的DNA序列。设计打靶位点时,只需在原有含gRNA载体的基础上替换20bp的gRNA核苷酸序列,另外靶点的唯一限制是3'端必须有原间隔相关基序(PAM)序列(NGG),所以它的靶点在基因中出现的频率远高于TALEN和ZFN。而且Cas9可与多个不同靶位点的gRNA同时导入细胞中,可高效实现多基因同时敲除,极大的提高了基因编辑的效率。该基因编辑技术相比于传统的基因编辑技术,无需标记基因,流程少、时间短、成本低,在各领域必将有越来越有广阔的应用前景,并且产生深远的影响。
生产木糖醇的方法主要有化学加氢法和生物转化法。化学法对设备要求极高,副产物成分复杂、提纯难、成本高,且该过程所需的镍催化剂对环境污染严重,木糖醇的收益低。生物法则反应条件温和、工艺简单可行,操作性可控性强。且后者污染少,分离成本低,具有良好的应用前景,是实现废物资源化、无害化,替代化学加氢法生产的有效途径。
可生产木糖醇的微生物总体可分三类:细菌、丝状真菌以及酵母菌,酵母的产率明显高于其他。2013年酵母产品的全球市场已达到58亿美元,预计2019年将达到92亿美元。酿酒酵母(Saccharomyces cerevisiae)是经由GRAS(Generally Recognized As Safe)认证的安全菌株。而工业酿酒酵母具有耐热性能好,耐受抑制物性能佳等优点,用其作为基因编辑改造的出发菌株,可获得高效表达木糖还原酶,高产木糖醇的工程菌。将木糖还原酶(XR,由XYL1编码)基因导入酿酒酵母可使还原木糖木糖醇。但是,酿酒酵母内源基因,如木糖醇脱氢酶基因ScXYL2和山梨糖醇脱氢酶基因SOR1/SOR2的产物能够将木糖醇进一步氧化生成木酮糖,尽管氧化活性可能相当弱。木酮糖进一步被木酮糖激酶(XK,由XKS1编码)转化为5-磷酸木酮糖进入戊糖磷酸途径(PPP)被利用。这些内源代谢途径会导致木糖醇消耗,使木糖醇产率低于理论产率1.0。
工业酿酒酵母表达系统较为复杂,目前采用的来源于热带假丝酵母CtXYL1(编码木糖还原酶)基因在酿酒酵母中异源表达后,其构建的重组菌在低浓度葡萄糖作为碳源供给时,仍存在木糖醇收率低、不能满足发酵需求的问题。
发明内容
本发明的目的在于克服现有技术中的缺陷,通过人为改造工业酿酒酵母以提高其高产木糖醇性能,通过新型基因编辑技术,阻断代谢支路的一些目标基因的表达来解决上述问题。本发明提供一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株,其能有效提高木糖醇的收率。
本发明首次使用具有木糖代谢背景的絮凝性工业酵母SEB6(CGMCC11326)作为出发菌株,构建一株高产木糖醇菌株。为了确保重组菌株在工业生产中的安全性,需要对G418抗性筛选标记KanMX基因进行敲除,即通过将已含热带假丝酵母(Candida tropicalis)的木糖还原酶(xylose reductase,XR)基因CtXYL1、含有KanMX的絮凝性工业酿酒酵母SEB6的抗性基因KanMX利用Cre-LoxP系统,通过识别LoxP位点将其切除,然后利用CRISPR/Cas9基因编辑技术来敲除XKS1基因,阻断木酮糖进一步向5-磷酸木酮糖代谢从而获得高产木糖醇的菌株。
为实现上述目的,本发明采用如下技术方案:
本发明的第一个目的是提供一株表达木糖还原酶的酿酒酵母菌株,其命名为SEB9,其分类命名为酿酒酵母(Saccharomyces cerevisiae),其保藏编号为CGMCCNo.14272,保藏日期为2017年6月26日,保藏单位为中国微生物菌种保藏管理委员会普通微生物中心,保藏单位地址为北京市朝阳区北辰西路1号院3号。
进一步地,所述酿酒酵母菌株为敲除XKS1基因和KanMX基因的酿酒酵母菌株。
本发明的第二个目的是提供一株上述表达木糖还原酶的酿酒酵母菌株的构建方法,其包括以下步骤:
a)选取出发菌株;
b)敲除出发菌株的KanMX基因构建KanMX菌株,并筛选高木糖醇产量的KanMX菌株;
c)利用CRISPR/Cas9系统敲除KanMX菌株的XKS1基因构建ΔXKS1菌株,并筛选高木糖醇产率的ΔXKS1菌株。
为了进一步优化上述酿酒酵母菌株的构建方法,本发明所采取的技术措施还包括:
进一步地,在步骤c)之后,还包括步骤d)筛选最优ΔXKS1菌株。
进一步地,步骤a)中的出发菌株为絮凝性工业酵母SEB6,其保藏编号为CGMCCNo.11326,所述SEB6菌株含有热带假丝酵母(Candida tropicalis)的木糖还原酶(xylosereductase,XR)基因CtXYL1。
进一步地,步骤b)中敲除KanMX基因的步骤包括:将诱导型质粒pSH47/ZEO转化到出发菌株中,在预定浓度的博莱霉素中筛选阳性转化子,采用Cre-LoxP系统将KanMX基因敲除。
更进一步地,步骤b)还包括出发菌株的Zeocin(博莱霉素)最佳耐受浓度筛选步骤。
更进一步地,步骤b)中Zeocin的预定浓度为50μg/ml~250μg/ml,该预定浓度更优选为出发菌株的Zeocin最佳耐受浓度。
更进一步地,步骤b)中筛选高木糖醇产量的KanMX菌株采用试管发酵筛选。
进一步地,步骤c)中敲除XKS1基因的步骤包括:
1)以pMEL13质粒为模板,PCR扩增并切胶纯化回收PCR扩增产物,制得含gRNA的质粒线性骨架;
2)设计识别XKS1基因的gRNA片段和重组修复XKS1基因的DNA片段;
3)将质粒Cas9-NAT、步骤1)制备的质粒线性骨架、步骤2)设计的识别XKS1基因的gRNA片段和重组修复XKS1基因的DNA片段均转化到步骤b)所筛选的KanMX菌株中,并筛选出可能的已敲除XKS1基因的阳性转化子;
4)对步骤3)所筛选的阳性转化子进行处理粗提酿酒酵母转化子基因组DNA,以提取的转化子基因组DNA为模板,进行PCR扩增,筛选已敲除XKS1基因的ΔXKS1菌株;
其中,步骤1)和步骤2)的操作顺序可进行互换。
进一步地,所述pMEL13质粒的序列如SEQ ID NO:1所示,其引物序列如SEQ ID NO:2~SEQ ID NO:3所示;所述识别XKS1基因的gRNA片段的序列如SEQ ID NO:4所示,所述重组修复XKS1基因的DNA片段的序列如SEQ ID NO:5所示;所述质粒Cas9-NAT的序列如SEQ IDNO:6所示;所述转化子基因组DNA的引物序列如SEQ ID NO:7~SEQ ID NO:8所示。
进一步地,所述步骤1)中pMEL13质粒的PCR扩增程序为:98.0℃,预变性30s;98.0℃,变性10s;67℃,退火15s;72℃,延伸6min 10s;上述过程进行35个循环后,于4℃保存。
进一步地,所述步骤4)中转化子基因组DNA的PCR扩增程序为:95.0℃,预变性4min;95.0℃,变性30s;52℃,退火30s;72℃,延伸2min 30s;上述过程进行30个循环后,于4℃保存。
进一步地,步骤c)中筛选高木糖醇产率的ΔXKS1菌株包括:脱除Cas9-NAT质粒以及pMEL13-XKS1-gRNA质粒以获得不含上述质粒的菌株,采用所得的不含上述质粒的菌株进行试管发酵以筛选高木糖醇产率ΔXKS1菌株。
进一步地,步骤d)筛选最优ΔXKS1菌株包括:分别对步骤a)的出发菌株与步骤c)筛选出的高木糖醇产率的ΔXKS1菌株进行接种、发酵、采样,并对发酵参数进行测定,计算木糖醇收率,其中,筛选木糖醇收率最接近于理论值1.0的菌株作为最优ΔXKS1菌株;其中,发酵参数包括吸光度值OD600、乙醇含量、葡萄糖、木糖以及木糖醇的含量等。
进一步地,在上述酿酒酵母菌株的构建方法中使用的培养基包括液体培养基(如2%YPD培养基、YPDX培养基、YPDX发酵罐用培养基等)、固体培养基(如LB/Amp培养基、2%YPD/G418/NAT固体培养基等)等,也可使用其他任一合适的培养基。
与现有技术相比,本发明采用上述技术方案具有以下有益效果:
1、本发明通过CRISPR/Cas9基因编辑技术,可以通过一次性酵母转化迅速而快捷地敲除XKS1基因,阻断木酮糖进一步向5-磷酸木酮糖代谢从而获得高产木糖醇的菌株;
2、通过本发明所述构建方法制备的酿酒酵母菌株SEB9木糖发酵生产木糖醇的性能优越,木糖醇的收率接近理论值1.0。
附图说明
图1是gRNA的线性骨架的PCR制备图;
图2是本发明中出发菌株0号菌发酵罐的发酵示意图;
图3是本发明所制备的菌株ΔXKS1d号菌发酵罐的发酵示意图。
具体实施方式
本发明使用的酿酒酵母菌株SEB9为敲除XKS1基因和敲除KanMX基因的酿酒酵母菌株,其已进行保藏,其保藏编号为CGMCC No.14272,保藏日期为2017年6月26日,保藏单位为中国微生物菌种保藏管理委员会普通微生物中心,保藏单位地址为北京市朝阳区北辰西路1号院3号。
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
以下实施例中所采用的培养基配方如下:
本发明的培养基配方如下:
1、液体培养基;
2%YPD培养基(10g/L Yeast Extract酵母浸出粉、20g/L Peptone蛋白胨、20g/Lglucose葡萄糖),121℃,灭菌15min,冷却至60℃,可根据情况添加100μg/mLG418或80μg/mL诺尔斯菌素G418。用于酵母发酵前的预培养。
YPDX培养基(10g/L Yeast Extract酵母浸出粉、20g/L Peptone蛋白胨、50g/LD-Xylose木糖,20g/L glucose葡萄糖),121℃灭菌15min,冷却至60℃,可根据情况添加100μg/mLG418或80μg/mL诺尔斯菌素G418。用于木糖的试管发酵。
YPDX发酵罐用培养基(10g/LYeast Extract酵母浸出粉、20g/LPeptone蛋白胨、45g/L D-Xylose木糖,5g/L glucose葡萄糖),121℃灭菌15min,冷却至60℃,可根据情况添加100μg/mLG418或80μg/mL诺尔斯菌素G418。用于木糖的试管发酵。
2、固体培养基;
LB/Amp培养基(10g/LPeptone蛋白胨、5g/LYeast Extract酵母浸出粉、10g/LNaCl),121℃,冷却至60℃,加入100μg/mL氨苄霉素。用于培养大肠杆菌。
2%YPD/G418/NAT固体培养基(10g/LYeast Extract酵母浸出粉、20g/LPeptone蛋白胨、20g/Lglucose葡萄糖、15g/L Agar琼脂),121℃,冷却至60℃,加入100μg/mLG418,80μg/mL诺尔斯菌素。用于培养酵母,根据试验情况添加两种抗生素筛选酵母转化子。
实施例1
本实施例为酿酒酵母菌株SEB9的构建方法,其包括如下步骤:
(1)出发酿酒酵母菌株的Zeocin(博莱霉素)最佳耐受浓度筛选:出发菌株为絮凝性工业酵母SEB6(CGMCC11326),将出发菌株涂布于Zeocin浓度梯度为0μg/ml、50μg/ml、80μg/ml、100μg/ml、150μg/ml、200μg/ml、250μg/ml的pH为7.22的%YPD平板上,30℃避光静置培养2天,筛选确定出发菌株载体酿酒酵母菌株的Zeocin最佳耐受浓度;
(2)构建KanMX菌株:采用醋酸锂转化法将含Cre酶酵母表达的诱导型质粒pSH47/ZEO(1μg)转化到出发酿酒酵母菌株中,在含有Zeocin最佳耐受浓度的pH7.2的2%YPD平板中筛选菌落形态完好的阳性转化子。质粒pSH47/ZEO为现有质粒,公开在2013年Tomitaka等人报道的一篇文献中,该文献名称为:分离及鉴定一株经突变和重组的能高效利用木糖的酿酒酵母;作者有:Tomitaka M、Taguchi H、Fukuda K、Akamatsu T、Kida K;公开的刊物为:生物科学与生物工程杂志.2013,116(6):706-715。上述利用同源重组的方式,利用Cre-LoxP系统,通过识别LoxP位点将KanMX基因切除,该敲除筛选标记G418的KanMX基因的方法采用本领域的常规技术手段;
(3)试管发酵筛选高木糖醇收率KanMX菌株:活化敲除KanMX基因的转化子,将得到的阳性转化子菌株接种于2%YPD平板,30℃恒温箱内培养1d;预培养:将活化后的菌株接种于含10ml 2%YPD液体培养基的试管(规格20×200)中,30℃160rpm过夜培养16h;按照1%接种于含10ml YPDX(10g/LYeast Extract酵母浸出粉、20g/L Peptone蛋白胨、45g/LD-Xylose木糖,20g/Lglucose葡萄糖)液体培养基的试管(规格20×200)中,35℃,160rpm恒温回转式摇床发酵培养;0h,48h取样2ml。根据发酵结果筛选高木糖醇产量KanMX菌株,其筛选结果如表1所示:
表1试管发酵筛选高木糖醇产率KanMX—菌株
根据表1的结果可知:酿酒酵母KanMX菌株9号菌的木糖发酵生产木糖醇的性能最优越,木糖醇产率最高,因而用其作为敲除XKS1基因的出发菌。
(4)含gRNA的线性骨架的制备:如图1所示,gRNA的线性骨架的制备以pMEL13质粒(SEQ ID NO.1)为模板,6006-Fv(SEQ ID NO.2)、6005-Rw(SEQ ID NO.3)为引物,PCR扩增并切胶纯化回收PCR扩增得到的质粒线性化骨架。PCR反应体系50μl组成如下:5×PrimeSTARBuffer(Mg2+plus)10μl;dNTP Mixture(各2.5mM)4μl;引物6006-Fv、6005-Rw各10μM,0.5μl;PrimeSTAR HS DNA polymerase(5U/μl)0.5μl;质粒pK-XR-Ct 50ng;以灭菌双蒸水补加至50μl。μM是浓度单位,是μmol/l的意思。gRNA的线性骨架的PCR扩增程序为:将含有pMEL13质粒、引物6006-Fv、6005-Rw的反应体系在98.0℃预变性30s,98.0℃变性10s,67℃退火15s,72℃延伸6min 10s,上述过程进行35个循环后,于4℃保存。PCR完成后,用Quick CutTMDpn I快切酶(TAKARA公司)在37℃处理2h以消化质粒模板。最后在1%琼脂糖凝胶上上样,在50V电压条件下进行凝胶电泳,用胶纯化回收试剂盒(Omega公司)切胶回收获得线型骨架,骨架长度为6110b,命名为pMEL13-backbone;
(5)设计识别XKS1基因的gRNA片段以及重组修复DNA片段并合成双链:在网站http://yeastriction.tnw.tudelft.nl上,以模式酵母S288c为基准,输入需要识别的基因XKS1,可以在线设计识别XKS1基因的gRNA片段,该片段命名为XKS1-gRNA(SEQ ID NO.4)。重组修复XKS1基因的DNA片段设计为XKS1编码区上游60bp及下游60bp的组合,该片段命名为XKS1-repair(SEQ ID NO.5),并在生工生物工程(上海)股份有限公司订购合成双链;
(6)利用CRISPR/Cas9系统敲除XKS1基因:将现有质粒Cas9-NAT(2μg)(SEQ IDNO.6)、线型骨架pMEL13-backbone(100ng)、XKS1-gRNA(300ng)以及重组修复片段XKS1-repair(1.6μg)通过醋酸锂转化法转化到酿酒酵母KanMX菌株中,在含有G418以及诺尔斯菌素的2%YPD平板中筛选菌落形态完好的阳性转化子;
(7)粗提酿酒酵母转化子基因组DNA:将可能的阳性转化子用牙签挑取至95μl 1%SDS(十二烷基磺酸钠)中,并加入4μl 4M醋酸锂溶液,之后操作步骤按照公开在2015年Robert Mans等人报道的一篇文献中,该文献名称为:CRISPR/Cas9:在酿酒酵母中同时引入多基因修饰的一种分子瑞士军刀;作者有:Harmen M.van Rossum#,Melanie Wijsman,Antoon Backx,Niels G.A.Kuijpers,Marcel van den Broek,Pascale Daran-Lapujade,Jack T.Pronk,Antonius J.A.van Maris and Jean-Marc G.Daran;公开的刊物为:FEMSYeast Research(欧洲微生物学联合会酵母研究杂志)2015,15(2):1-15。
(8)菌落PCR筛选XKS1敲除菌株(用ΔXKS1标记):以上述步骤中提取的转化子基因组DNA为模板,XKS1-dg-Fv(SEQ ID NO.7)、XKS1-dg-Rw(SEQ ID NO.8)为引物,进行PCR扩增。PCR反应体系25μl组成如下:10×PCR Buffer(Mg2+plus)10μl;dNTP Mixture(各2.5mM)4μl;引物XKS1-dg-Fv、XKS1-dg-Rw各10μM,0.5μl;TaKaRa Taq DNA聚合酶(5U/μl)0.5μl;转化子DNA 30-50ng;以灭菌双蒸水补加至25μl。PCR扩增程序为:将含有转化子基因组DNA、引物XKS1-dg-Fv、XKS1-dg-Rw的反应体系在95.0℃预变性4min,95.0℃变性30s,52℃退火30s,72℃延伸2min 30s,上述过程进行30个循环后,于4℃保存。PCR产物长度为673bp的则为阳性转化子,PCR产物长度为2494bp的则为假阳性转化子;
(8)脱除Cas9-NAT质粒以及pMEL13-XKS1-gRNA质粒:针对上述步骤(7)中的阳性转化子,在营养丰富的YPD培养基中30℃,160rpm进行试管过夜培养,稀释一定倍数后,涂布于YPD平板上。之后挑取单菌落分别于YPD平板,YPD/G418平板,YPD/NAT平板上,于30℃静置培养2-3天,选取在YPD上生长,而不在含有抗性平板上生长的菌落再次重复这样的筛选,最终得到的菌株即为不含Cas9-NAT质粒以及pMEL13-XKS1-gRNA质粒的菌株;
(9)试管发酵筛选高木糖醇产率ΔXKS1菌株:从上述步骤中得到的不含Cas9-NAT质粒以及pMEL13-XKS1-gRNA质粒的菌株于35℃,140rpm条件下,利用YPDX(10g/L YeastExtract酵母浸出粉、20g/L Peptone蛋白胨、50g/LD-Xylose木糖,20g/L glucose葡萄糖)进行试管发酵,根据发酵结果筛选出一株高产木糖醇菌株,其筛选结果如表2所示;
表2试管发酵筛选高木糖醇产率ΔXKS1菌株
根据表2的结果可知:酿酒酵母ΔXKS1菌株编号为d的木糖发酵生产木糖醇的性能优越,收率可达到理论值1.0,与出发菌株0号菌相比,在敲除XKS1基因后,木糖醇的产率并未下降。
(10)发酵罐评价:用上述步骤中筛选出的一株高产木糖醇菌株与出发菌株作比较,将这两株接种于2%YPD平板,30℃恒温箱内培养1d;预培养:将活化后的菌株接种于含100ml 2%YPD液体培养基的锥形瓶(规格500mL)中,30℃160rpm过夜培养16h。发酵:按照干重为0.5g/L接种于1L发酵罐中在35℃,300rpm,曝气率0.13vvm条件下,利用工作体积为600mL的YPDX(10g/LYeast Extract酵母浸出粉、20g/LPeptone蛋白胨、45g/L D-Xylose木糖,5g/L glucose葡萄糖)进行发酵,3h后,补加600g/L的葡萄糖溶液,补加速率为1mL/h。采样时间分别为0h,3h,6h,9h,20h,24h,28h,32h以及48h,每个采样点采样5ml;
(11)发酵参数的测定:评价菌株生长情况是在紫外分光光度计600nm处测600nm的吸光度值记为OD600,通过OD600与载体酿酒酵母菌株干重的关系,计算出重组酵母干重;通过气象色谱仪GC(353B)(GL Science Inc.公司)测出乙醇含量,通过HPLC(SHIMADZU)液相色谱仪测出葡萄糖、木糖以及木糖醇的含量。
(12)计算木糖醇收率:通过计算消耗的木糖以及产生的木糖醇的数据,计算木糖醇的产率;筛选出收率最接近于理论值1.0的菌株作为最优菌株。
高产木糖醇菌株与出发菌株所测定的发酵参数结果如图2~图3及表3所示:
表3发酵罐发酵木糖醇产率比较
根据图2、图3以及表3的结果可知:在以初始低浓度葡萄糖与木糖的混合发酵中,出发菌株0号菌相比,酿酒酵母ΔXKS1菌株编号为d的木糖发酵生产木糖醇的性能优越,收率可接近理论值1.0,是出发菌株的1.3倍,提高了约30.5%,而木糖醇产量也相应提高10.6%。
由上述实施例可知,本发明利用CRISPR/Cas9系统敲除XKS1基因构建了能高效产木糖醇的工业酿酒酵母菌株,其与出发菌株相比,能有效提高木糖醇的收率和木糖醇产量,该菌株具有良好的应用前景。
以上对本发明的具体实施例进行了详细描述,但其只作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。
SEQUENCE LISTING
<110> 中石化上海工程有限公司
<120> 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法
<160> 8
<170> PatentIn version 3.5
<210> 1
<211> 6130
<212> DNA
<213> Artificial Sequence
<220>
<223> pMEL13质粒
<400> 1
acaggcaaca cgcagatata ggtgcgacgt gaacagtgag ctgtatgtgc gcagctcgcg 60
ttgcattttc ggaagcgctc gttttcggaa acgctttgaa gttcctattc cgaagttcct 120
attctctaga aagtatagga acttcagagc gcttttgaaa accaaaagcg ctctgaagac 180
gcactttcaa aaaaccaaaa acgcaccgga ctgtaacgag ctactaaaat attgcgaata 240
ccgcttccac aaacattgct caaaagtatc tctttgctat atatctctgt gctatatccc 300
tatataacct acccatccac ctttcgctcc ttgaacttgc atctaaactc gacctctaca 360
ttttttatgt ttatctctag tattactctt tagacaaaaa aattgtagta agaactattc 420
atagagtgaa tcgaaaacaa tacgaaaatg taaacatttc ctatacgtag tatatagaga 480
caaaatagaa gaaaccgttc ataattttct gaccaatgaa gaatcatcaa cgctatcact 540
ttctgttcac aaagtatgcg caatccacat cggtatagaa tataatcggg gatgccttta 600
tcttgaaaaa atgcacccgc agcttcgcta gtaatcagta aacgcgggaa gtggagtcag 660
gcttttttta tggaagagaa aatagacacc aaagtagcct tcttctaacc ttaacggacc 720
tacagtgcaa aaagttatca agagactgca ttatagagcg cacaaaggag aaaaaaagta 780
atctaagatg ctttgttaga aaaatagcgc tctcgggatg catttttgta gaacaaaaaa 840
gaagtataga ttctttgttg gtaaaatagc gctctcgcgt tgcatttctg ttctgtaaaa 900
atgcagctca gattctttgt ttgaaaaatt agcgctctcg cgttgcattt ttgttttaca 960
aaaatgaagc acagattctt cgttggtaaa atagcgcttt cgcgttgcat ttctgttctg 1020
taaaaatgca gctcagattc tttgtttgaa aaattagcgc tctcgcgttg catttttgtt 1080
ctacaaaatg aagcacagat gcttcgttca ggtggcactt ttcggggaaa tgtgcgcgga 1140
acccctattt gtttattttt ctaaatacat tcaaatatgt atccgctcat gagacaataa 1200
ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca acatttccgt 1260
gtcgccctta ttcccttttt tgcggcattt tgccttcctg tttttgctca cccagaaacg 1320
ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta catcgaactg 1380
gatctcaaca gcggtaagat ccttgagagt tttcgccccg aagaacgttt tccaatgatg 1440
agcactttta aagttctgct atgtggcgcg gtattatccc gtattgacgc cgggcaagag 1500
caactcggtc gccgcataca ctattctcag aatgacttgg ttgagtactc accagtcaca 1560
gaaaagcatc ttacggatgg catgacagta agagaattat gcagtgctgc cataaccatg 1620
agtgataaca ctgcggccaa cttacttctg acaacgatcg gaggaccgaa ggagctaacc 1680
gcttttttgc acaacatggg ggatcatgta actcgccttg atcgttggga accggagctg 1740
aatgaagcca taccaaacga cgagcgtgac accacgatgc ctgtagcaat ggcaacaacg 1800
ttgcgcaaac tattaactgg cgaactactt actctagctt cccggcaaca attaatagac 1860
tggatggagg cggataaagt tgcaggacca cttctgcgct cggcccttcc ggctggctgg 1920
tttattgctg ataaatctgg agccggtgag cgtgggtctc gcggtatcat tgcagcactg 1980
gggccagatg gtaagccctc ccgtatcgta gttatctaca cgacggggag tcaggcaact 2040
atggatgaac gaaatagaca gatcgctgag ataggtgcct cactgattaa gcattggtaa 2100
ctgtcagacc aagtttactc atatatactt tagattgatt taaaacttca tttttaattt 2160
aaaaggatct aggtgaagat cctttttgat aatctcatga ccaaaatccc ttaacgtgag 2220
ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc ttgagatcct 2280
ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc agcggtggtt 2340
tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt cagcagagcg 2400
cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt caagaactct 2460
gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc 2520
gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg 2580
tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac ctacaccgaa 2640
ctgagatacc tacagcgtga gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg 2700
gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga gcttccaggg 2760
ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact tgagcgtcga 2820
tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcggccttt 2880
ttacggttcc tggccttttg ctggcctttt gctcacatgt tctttcctgc gttatcccct 2940
gattctgtgg ataaccgtat taccgccttt gagtgagctg ataccgctcg ccgcagccga 3000
acgaccgagc gcagcgagtc agtgagcgag gaagcggaag agcgcccaat acgcaaaccg 3060
cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt tcccgactgg 3120
aaagcgggca gtgagcgcaa cgcaattaat gtgagttacc tcactcatta ggcaccccag 3180
gctttacact ttatgcttcc ggctcctatg ttgtgtggaa ttgtgagcgg ataacaattt 3240
cacacaggaa acagctatga ccatgattac gccaagcgcg caattaaccc tcactaaagg 3300
gaacaaaagc tggagcttct ttgaaaagat aatgtatgat tatgctttca ctcatattta 3360
tacagaaact tgatgttttc tttcgagtat atacaaggtg attacatgta cgtttgaagt 3420
acaactctag attttgtagt gccctcttgg gctagcggta aaggtgcgca ttttttcaca 3480
ccctacaatg ttctgttcaa aagattttgg tcaaacgctg tagaagtgaa agttggtgcg 3540
catgtttcgg cgttcgaaac ttctccgcag tgaaagataa atgatcgata cgttctctat 3600
ggaggagttt tagagctaga aatagcaagt taaaataagg ctagtccgtt atcaacttga 3660
aaaagtggca ccgagtcggt ggtgcttttt ttgtttttta tgtcttcgag tcatgtaatt 3720
agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg aaaaggaagg 3780
agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt tagtattaag 3840
aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt acgcatgtaa 3900
cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt taatttgcgg 3960
ccggtaccca attcgcccta tagtgagtcg tattacgcgc gctcactggc cgtcgtttta 4020
caacgtcgtg actgggaaaa ccctggcgtt acccaactta atcgccttgc agcacatccc 4080
cctttcgcca gctggcgtaa tagcgaagag gcccgcaccg atcgcccttc ccaacagttg 4140
cgcagcctga atggcgaatg gcgcgacgcg ccctgtagcg gcgcattaag cgcggcgggt 4200
gtggtggtta cgcgcagcgt gaccgctaca cttgccagcg ccctagcgcc cgctcctttc 4260
gctttcttcc cttcctttct cgccacgttc gccggctttc cccgtcaagc tctaaatcgg 4320
gggctccctt tagggttccg atttagtgct ttacggcacc tcgaccccaa aaaacttgat 4380
tagggtgatg gttcacgtag tgggccgttg aacattctta ggctggtcga atcatttaga 4440
cacgggcatc gtcctctcga aaggtggcat aggccactag tggatctgat atcacctaat 4500
aacttcgtat agcatacatt atacgaagtt atattaaggg ttctcgagag ctcgttttcg 4560
acactggatg gcggcgttag tatcgaatcg acagcagtat agcgaccagc attcacatac 4620
gattgacgca tgatattact ttctgcgcac ttaacttcgc atctgggcag atgatgtcga 4680
ggcgaaaaaa aatataaatc acgctaacat ttgattaaaa tagaacaact acaatataaa 4740
aaaactatac aaatgacaag ttcttgaaaa caagaatctt tttattgtca gtactgatta 4800
gaaaaactca tcgagcatca aatgaaactg caatttattc atatcaggat tatcaatacc 4860
atatttttga aaaagccgtt tctgtaatga aggagaaaac tcaccgaggc agttccatag 4920
gatggcaaga tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa tacaacctat 4980
taatttcccc tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag tgacgactga 5040
atccggtgag aatggcaaaa gcttatgcat ttctttccag acttgttcaa caggccagcc 5100
attacgctcg tcatcaaaat cactcgcatc aaccaaaccg ttattcattc gtgattgcgc 5160
ctgagcgaga cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag gaatcgaatg 5220
caaccggcgc aggaacactg ccagcgcatc aacaatattt tcacctgaat caggatattc 5280
ttctaatacc tggaatgctg ttttgccggg gatcgcagtg gtgagtaacc atgcatcatc 5340
aggagtacgg ataaaatgct tgatggtcgg aagaggcata aattccgtca gccagtttag 5400
tctgaccatc tcatctgtaa catcattggc aacgctacct ttgccatgtt tcagaaacaa 5460
ctctggcgca tcgggcttcc catacaatcg atagattgtc gcacctgatt gcccgacatt 5520
atcgcgagcc catttatacc catataaatc agcatccatg ttggaattta atcgcggcct 5580
cgaaacgtga gtcttttcct tacccatggt tgtttatgtt cggatgtgat gtgagaactg 5640
tatcctagca agattttaaa aggaagtata tgaaagaaga acctcagtgg caaatcctaa 5700
ccttttatat ttctctacag gggcgcggcg tggggacaat tcaacgcgtc tgtgagggga 5760
gcgtttccct gctcgcaggt ctgcagcgag gagccgtaat ttttgcttcg cgccgtgcgg 5820
ccatcaaaat gtatggatgc aaatgattat acatggggat gtatgggcta aatgtacggg 5880
cgacagtcac atcatgcccc tgagctgcgc acgtcaagac tgtcaaggag ggtattctgg 5940
gcctccatgt cgctggccgg gtgacccggc ggggacgagg caagctaaac agatctctag 6000
acctaataac ttcgtatagc atacattata cgaagttata ttaagggttg tcgacctgca 6060
gcgtacgaag gtgcctattg atgatctggc ggaatgtctg ccgtgccata gccatgcctt 6120
cacatatagt 6130
<210> 2
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> pMEL13质粒的正向引物 6006-Fv
<400> 2
gttttagagc tagaaatagc aagttaaaat aaggctagtc 40
<210> 3
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> pMEL13质粒的反向引物 6005-Rw
<400> 3
gatcatttat ctttcactgc ggagaag 27
<210> 4
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> 识别XKS1基因的gRNA片段 XKS1-gRNA
<400> 4
tgcgcatgtt tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc agagcccatt 60
ttagatttac gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac 120
<210> 5
<211> 120
<212> DNA
<213> Artificial Sequence
<220>
<223> 重组修复XKS1基因的DNA片段 XKS1-repair
<400> 5
ggcggacgaa taagggggcc ctctcgagaa aaacaaaagg aggatgagat tagtacttta 60
aatatgtttg aataatttat catgccctga caagtacaca caaacacaga cacataatat 120
<210> 6
<211> 10447
<212> DNA
<213> Artificial Sequence
<220>
<223> 质粒Cas9-NAT
<400> 6
gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60
cttagacgga tcgcttgcct gtaacttaca cgcgcctcgt atcttttaat gatggaataa 120
tttgggaatt tactctgtgt ttatttattt ttatgttttg tatttggatt ttagaaagta 180
aataaagaag gtagaagagt tacggaatga agaaaaaaaa ataaacaaag gtttaaaaaa 240
tttcaacaaa aagcgtactt tacatatata tttattagac aagaaaagca gattaaatag 300
atatacattc gattaacgat aagtaaaatg taaaatcaca ggattttcgt gtgtggtctt 360
ctacacagac aagatgaaac aattcggcat taatacctga gagcaggaag agcaagataa 420
aaggtagtat ttgttggcga tccccctaga gtcttttaca tcttcggaaa acaaaaacta 480
ttttttcttt aatttctttt tttactttct atttttaatt tatatattta tattaaaaaa 540
tttaaattat aattattttt atagcacgtg atgaaaagga cccaggtggc acttttcggg 600
gaaatgtgcg cggaacccct atttgtttat ttttctaaat acattcaaat atgtatccgc 660
tcatgagaca ataaccctga taaatgcttc aataatattg aaaaaggaag agtatgagta 720
ttcaacattt ccgtgtcgcc cttattccct tttttgcggc attttgcctt cctgtttttg 780
ctcacccaga aacgctggtg aaagtaaaag atgctgaaga tcagttgggt gcacgagtgg 840
gttacatcga actggatctc aacagcggta agatccttga gagttttcgc cccgaagaac 900
gttttccaat gatgagcact tttaaagttc tgctatgtgg cgcggtatta tcccgtattg 960
acgccgggca agagcaactc ggtcgccgca tacactattc tcagaatgac ttggttgagt 1020
actcaccagt cacagaaaag catcttacgg atggcatgac agtaagagaa ttatgcagtg 1080
ctgccataac catgagtgat aacactgcgg ccaacttact tctgacaacg atcggaggac 1140
cgaaggagct aaccgctttt ttgcacaaca tgggggatca tgtaactcgc cttgatcgtt 1200
gggaaccgga gctgaatgaa gccataccaa acgacgagcg tgacaccacg atgcctgtag 1260
caatggcaac aacgttgcgc aaactattaa ctggcgaact acttactcta gcttcccggc 1320
aacaattaat agactggatg gaggcggata aagttgcagg accacttctg cgctcggccc 1380
ttccggctgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg tctcgcggta 1440
tcattgcagc actggggcca gatggtaagc cctcccgtat cgtagttatc tacacgacgg 1500
ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt gcctcactga 1560
ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt gatttaaaac 1620
ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc atgaccaaaa 1680
tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag atcaaaggat 1740
cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc 1800
taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg aaggtaactg 1860
gcttcagcag agcgcagata ccaaatactg tccttctagt gtagccgtag ttaggccacc 1920
acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg ttaccagtgg 1980
ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga tagttaccgg 2040
ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc ttggagcgaa 2100
cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc acgcttcccg 2160
aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga gagcgcacga 2220
gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt cgccacctct 2280
gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg aaaaacgcca 2340
gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac atgttctttc 2400
ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga gctgataccg 2460
ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg gaagagcgcc 2520
caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc tggcacgaca 2580
ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt tacctcactc 2640
attaggcacc ccaggcttta cactttatgc ttccggctcc tatgttgtgt ggaattgtga 2700
gcggataaca atttcacaca ggaaacagct atgaccatga ttacgccaag cgcgcaatta 2760
accctcacta aagggaacaa aagctggagc tcatagcttc aaaatgtttc tactcctttt 2820
ttactcttcc agattttctc ggactccgcg catcgccgta ccacttcaaa acacccaagc 2880
acagcatact aaatttcccc tctttcttcc tctagggtgt cgttaattac ccgtactaaa 2940
ggtttggaaa agaaaaaaga gaccgcctcg tttctttttc ttcgtcgaaa aaggcaataa 3000
aaatttttat cacgtttctt tttcttgaaa attttttttt tgattttttt ctctttcgat 3060
gacctcccat tgatatttaa gttaataaac ggtcttcaat ttctcaagtt tcagtttcat 3120
ttttcttgtt ctattacaac tttttttact tcttgctcat tagaaagaaa gcatagcaat 3180
ctaatctaag ttttctagaa ctagtggatc ccccgggaaa aatggacaag aagtactcca 3240
ttgggctcga tatcggcaca aacagcgtcg gttgggccgt cattacggac gagtacaagg 3300
tgccgagcaa aaaattcaaa gttctgggca ataccgatcg ccacagcata aagaagaacc 3360
tcattggcgc cctcctgttc gactccgggg agacggccga agccacgcgg ctcaaaagaa 3420
cagcacggcg cagatatacc cgcagaaaga atcggatctg ctacctgcag gagatcttta 3480
gtaatgagat ggctaaggtg gatgactctt tcttccatag gctggaggag tcctttttgg 3540
tggaggagga taaaaagcac gagcgccacc caatctttgg caatatcgtg gacgaggtgg 3600
cgtaccatga aaagtaccca accatatatc atctgaggaa gaagcttgta gacagtactg 3660
ataaggctga cttgcggttg atctatctcg cgctggcgca tatgatcaaa tttcggggac 3720
acttcctcat cgagggggac ctgaacccag acaacagcga tgtcgacaaa ctctttatcc 3780
aactggttca gacttacaat cagcttttcg aagagaaccc gatcaacgca tccggagttg 3840
acgccaaagc aatcctgagc gctaggctgt ccaaatcccg gcggctcgaa aacctcatcg 3900
cacagctccc tggggagaag aagaacggcc tgtttggtaa tcttatcgcc ctgtcactcg 3960
ggctgacccc caactttaaa tctaacttcg acctggccga agatgccaag cttcaactga 4020
gcaaagacac ctacgatgat gatctcgaca atctgctggc ccagatcggc gaccagtacg 4080
cagacctttt tttggcggca aagaacctgt cagacgccat tctgctgagt gatattctgc 4140
gagtgaacac ggagatcacc aaagctccgc tgagcgctag tatgatcaag cgctatgatg 4200
agcaccacca agacttgact ttgctgaagg cccttgtcag acagcaactg cctgagaagt 4260
acaaggaaat tttcttcgat cagtctaaaa atggctacgc cggatacatt gacggcggag 4320
caagccagga ggaattttac aaatttatta agcccatctt ggaaaaaatg gacggcaccg 4380
aggagctgct ggtaaagctt aacagagaag atctgttgcg caaacagcgc actttcgaca 4440
atggaagcat cccccaccag attcacctgg gcgaactgca cgctatcctc aggcggcaag 4500
aggatttcta cccctttttg aaagataaca gggaaaagat tgagaaaatc ctcacatttc 4560
ggatacccta ctatgtaggc cccctcgccc ggggaaattc cagattcgcg tggatgactc 4620
gcaaatcaga agagaccatc actccctgga acttcgagga agtcgtggat aagggggcct 4680
ctgcccagtc cttcatcgaa aggatgacta actttgataa aaatctgcct aacgaaaagg 4740
tgcttcctaa acactctctg ctgtacgagt acttcacagt ttataacgag ctcaccaagg 4800
tcaaatacgt cacagaaggg atgagaaagc cagcattcct gtctggagag cagaagaaag 4860
ctatcgtgga cctcctcttc aagacgaacc ggaaagttac cgtgaaacag ctcaaagaag 4920
actatttcaa aaagattgaa tgtttcgact ctgttgaaat cagcggagtg gaggatcgct 4980
tcaacgcatc cctgggaacg tatcacgatc tcctgaaaat cattaaagac aaggacttcc 5040
tggacaatga ggagaacgag gacattcttg aggacattgt cctcaccctt acgttgtttg 5100
aagataggga gatgattgaa gaacgcttga aaacttacgc tcatctcttc gacgacaaag 5160
tcatgaaaca gctcaagagg cgccgatata caggatgggg gcggctgtca agaaaactga 5220
tcaatgggat ccgagacaag cagagtggaa agacaatcct ggattttctt aagtccgatg 5280
gatttgccaa ccggaacttc atgcagttga tccatgatga ctctctcacc tttaaggagg 5340
acatccagaa agcacaagtt tctggccagg gggacagtct tcacgagcac atcgctaatc 5400
ttgcaggtag cccagctatc aaaaagggaa tactgcagac cgttaaggtc gtggatgaac 5460
tcgtcaaagt aatgggaagg cataagcccg agaatatcgt tatcgagatg gcccgagaga 5520
accaaactac ccagaaggga cagaagaaca gtagggaaag gatgaagagg attgaagagg 5580
gtataaaaga actggggtcc caaatcctta aggaacaccc agttgaaaac acccagcttc 5640
agaatgagaa gctctacctg tactacctgc agaacggcag ggacatgtac gtggatcagg 5700
aactggacat caatcggctc tccgactacg acgtggatca tatcgtgccc cagtcttttc 5760
tcaaagatga ttctattgat aataaagtgt tgacaagatc cgataaaaat agagggaaga 5820
gtgataacgt cccctcagaa gaagttgtca agaaaatgaa aaattattgg cggcagctgc 5880
tgaacgccaa actgatcaca caacggaagt tcgataatct gactaaggct gaacgaggtg 5940
gcctgtctga gttggataaa gccggcttca tcaaaaggca gcttgttgag acacgccaga 6000
tcaccaagca cgtggcccaa attctcgatt cacgcatgaa caccaagtac gatgaaaatg 6060
acaaactgat tcgagaggtg aaagttatta ctctgaagtc taagctggtc tcagatttca 6120
gaaaggactt tcagttttat aaggtgagag agatcaacaa ttaccaccat gcgcatgatg 6180
cctacctgaa tgcagtggta ggcactgcac ttatcaaaaa atatcccaag cttgaatctg 6240
aatttgttta cggagactat aaagtgtacg atgttaggaa aatgatcgca aagtctgagc 6300
aggaaatagg caaggccacc gctaagtact tcttttacag caatattatg aattttttca 6360
agaccgagat tacactggcc aatggagaga ttcggaagcg accacttatc gaaacaaacg 6420
gagaaacagg agaaatcgtg tgggacaagg gtagggattt cgcgacagtc cggaaggtcc 6480
tgtccatgcc gcaggtgaac atcgttaaaa agaccgaagt acagaccgga ggcttctcca 6540
aggaaagtat cctcccgaaa aggaacagcg acaagctgat cgcacgcaaa aaagattggg 6600
accccaagaa atacggcgga ttcgattctc ctacagtcgc ttacagtgta ctggttgtgg 6660
ccaaagtgga gaaagggaag tctaaaaaac tcaaaagcgt caaggaactg ctgggcatca 6720
caatcatgga gcgatcaagc ttcgaaaaaa accccatcga ctttctcgag gcgaaaggat 6780
ataaagaggt caaaaaagac ctcatcatta agcttcccaa gtactctctc tttgagcttg 6840
aaaacggccg gaaacgaatg ctcgctagtg cgggcgagct gcagaaaggt aacgagctgg 6900
cactgccctc taaatacgtt aatttcttgt atctggccag ccactatgaa aagctcaaag 6960
ggtctcccga agataatgag cagaagcagc tgttcgtgga acaacacaaa cactaccttg 7020
atgagatcat cgagcaaata agcgaattct ccaaaagagt gatcctcgcc gacgctaacc 7080
tcgataaggt gctttctgct tacaataagc acagggataa gcccatcagg gagcaggcag 7140
aaaacattat ccacttgttt actctgacca acttgggcgc gcctgcagcc ttcaagtact 7200
tcgacaccac catagacaga aagcggtaca cctctacaaa ggaggtcctg gacgccacac 7260
tgattcatca gtcaattacg gggctctatg aaacaagaat cgacctctct cagctcggtg 7320
gagacagcag ggctgacccc aagaagaaga ggaaggtgtg atctcttctc gagtcatgta 7380
attagttatg tcacgcttac attcacgccc tccccccaca tccgctctaa ccgaaaagga 7440
aggagttaga caacctgaag tctaggtccc tatttatttt tttatagtta tgttagtatt 7500
aagaacgtta tttatatttc aaatttttct tttttttctg tacagacgcg tgtacgcatg 7560
taacattata ctgaaaacct tgcttgagaa ggttttggga cgctcgaagg ctttaatttg 7620
cggccggtac ccaattcgcc ctatagtgag tcgtattacg cgcgctcact ggccgtcgtt 7680
ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct tgcagcacat 7740
ccccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc ttcccaacag 7800
ttgcgcagcc tgaatggcga atggcgcgac gcgccctgta gcggcgcatt aagcgcggcg 7860
ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc gcccgctcct 7920
ttcgctttct tcccttcctt tctcgccacg ttcgccggct ttccccgtca agctctaaat 7980
cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc caaaaaactt 8040
gattagggtg atggttcacg tagtgggcca tcgccctgat agacggtttt tcgccctttg 8100
acgttggagt ccacgttctt taatagtgga ctcttgttcc aaactggaac aacactcaac 8160
cctatctcgg tctattcttt tgatttataa gggattttgc cgatttcggc ctattggtta 8220
aaaaatgagc tgatttaaca aaaatttaac gcgaatttta acaaaatatt aacgtttaca 8280
atttcctgat gcggtatttt ctccttacgc atctgtgcgg tatttcacac cgcataggca 8340
agtgcacaaa caatacttaa ataaatacta ctcagtaata acctatttct tagcattttt 8400
gacgaaattt gctattttgt tagagtcttt tacaccattt gtctccacac ctccgcttac 8460
atcaacacca ataacgccat ttaatctaag cgcatcacca acattttctg gcgtcagtcc 8520
accagctaac ataaaatgta agctttcggg gctctcttgc cttccaaccc agtcagaaat 8580
cgagttccaa tccaaaagtt cacctgtccc acctgcttct gaatcaaaca agggaataaa 8640
cgaatgaggt ttctgtgaag ctgcactgag tagtatgttg cagtcttttg gaaatacgag 8700
tcttttaata actggcaaac cgaggaactc ttggtattct tgccacgact catctccatg 8760
cagttggacg atatcaatgc cgtaatcatt gaccagagcc aaaacatcct ccttaggttg 8820
attacgaaac acgccaacca agtatttcgg agtgcctgaa ctatttttat atgcttttac 8880
aagacttgaa attttccttg caataaccgg gtcaattgcg ttttcgacac tggatggcgg 8940
cgttagtatc gaatcgacag cagtatagcg accagcattc acatacgatt gacgcatgat 9000
attactttct gcgcacttaa cttcgcatct gggcagatga tgtcgaggcg aaaaaaaata 9060
taaatcacgc taacatttga ttaaaataga acaactacaa tataaaaaaa ctatacaaat 9120
gacaagttct tgaaaacaag aatcttttta ttgtcagtac tgattagggg cagggcatgc 9180
tcatgtagag cgcctgctcg ccgtccgagg cggtgccgtc gtacagggcg gtgtccaggc 9240
cgcagagggt gaaccccatc cgccggtacg cgtggatcgc cggtgcgttg acgttggtga 9300
cctccagcca gaggtgcccg gcgccccgct cgcgggcgaa ctccgtcgcg agccccatca 9360
acgcgcgccc gaccccgtgc ccccggtgct ccggggcgac ctcgatgtcc tcgacggtca 9420
gccggcggtt ccagccggag tacgagacga ccacgaagcc cgccaggtcg ccgtcgtccc 9480
cgtacgcgac gaacgtccgg gagtccgggt cgccgtcctc cccgtcgtcc gattcgtcgt 9540
ccgattcgtc gtcggggaac accttggtca ggggcgggtc caccggcacc tcccgcaggg 9600
tgaagccgtc cccggtggcg gtgacgcgga agacggtgtc ggtggtgaag gacccatcca 9660
gtgcctcgat ggcctcggcg tcccccggga cactggtgcg gtaccggtaa gccgtgtcgt 9720
caagagtggt acccatggtt gtttatgttc ggatgtgatg tgagaactgt atcctagcaa 9780
gattttaaaa ggaagtatat gaaagaagaa cctcagtggc aaatcctaac cttttatatt 9840
tctctacagg ggcgcggcgt ggggacaatt caacgcgtct gtgaggggag cgtttccctg 9900
ctcgcaggtc tgcagcgagg agccgtaatt tttgcttcgc gccgtgcggc catcaaaatg 9960
tatggatgca aatgattata catggggatg tatgggctaa atgtacgggc gacagtcaca 10020
tcatgcccct gagctgcgca cgtcaagact gtcaaggagg gtattctggg cctccatgtc 10080
gctggccggg tgacccggcg gggacaaggc aagctaaaca gatctacgta aggtgacaag 10140
ctatttttca ataaagaata tcttccacta ctgccatctg gcgtcataac tgcaaagtac 10200
acatatatta cgatgctgtt ctattaaatg cttcctatat tatatatata gtaatgtcgt 10260
ttatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca gccccgacac 10320
ccgccaacac ccgctgacgc gccctgacgg gcttgtctgc tcccggcatc cgcttacaga 10380
caagctgtga ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc atcaccgaaa 10440
cgcgcga 10447
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> 转化子基因组DNA的正向引物XKS1-dg-Fv
<400> 7
tagccgctga ggtgcataac 20
<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> 转化子基因组DNA的反向引物XKS1-dg-Rw
<400> 8
tcgtccagtg cttccacatc 20

Claims (10)

1.一株表达木糖还原酶的酿酒酵母菌株,其特征在于,所述酿酒酵母菌株为敲除XKS1基因的酿酒酵母菌株。
2.根据权利要求1所述的一株表达木糖还原酶的酿酒酵母菌株,其特征在于,所述酿酒酵母菌株为敲除KanMX基因的酿酒酵母菌株。
3.根据权利要求2所述的一株表达木糖还原酶的酿酒酵母菌株,其特征在于,所述酿酒酵母菌株命名为SEB9,其保藏编号为CGMCC No.14272,保藏单位为中国微生物菌种保藏管理委员会普通微生物中心。
4.一株如权利要求1~3中任一项所述的酿酒酵母菌株的构建方法,其特征在于,包括如下步骤:
a)选取出发菌株;
b)敲除出发菌株的KanMX基因构建KanMX菌株,并筛选高木糖醇产量的KanMX菌株;
c)利用CRISPR/Cas9系统敲除KanMX菌株的XKS1基因构建ΔXKS1菌株,并筛选高木糖醇产率的ΔXKS1菌株。
5.根据权利要求4所述的酿酒酵母菌株的构建方法,其特征在于,在步骤c)之后,还包括步骤d)筛选最优ΔXKS1菌株。
6.根据权利要求4所述的酿酒酵母菌株的构建方法,其特征在于,步骤a)中的出发菌株为絮凝性工业酵母SEB6,其保藏编号为CGMCC No.11326。
7.根据权利要求4所述的酿酒酵母菌株的构建方法,其特征在于,步骤b)中敲除KanMX基因的步骤包括:将诱导型质粒pSH47/ZEO转化到出发菌株中,在预定浓度的博莱霉素中筛选阳性转化子,采用Cre-LoxP系统将KanMX基因敲除。
8.根据权利要求4所述的酿酒酵母菌株的构建方法,其特征在于,步骤c)中敲除XKS1基因的步骤包括:
1)以pMEL13质粒为模板,PCR扩增并切胶纯化回收PCR扩增产物,制得含gRNA的质粒线性骨架;
2)设计识别XKS1基因的gRNA片段和重组修复XKS1基因的DNA片段;
3)将质粒Cas9-NAT、步骤1)制备的质粒线性骨架、步骤2)设计的识别XKS1基因的gRNA片段和重组修复XKS1基因的DNA片段均转化到步骤b)所筛选的KanMX菌株中,并筛选出可能的已敲除XKS1基因的阳性转化子;
4)对步骤3)所筛选的阳性转化子进行处理粗提酿酒酵母转化子基因组DNA,以提取的转化子基因组DNA为模板,进行PCR扩增,筛选已敲除XKS1基因的ΔXKS1菌株。
9.根据权利要求8所述的酿酒酵母菌株的构建方法,其特征在于,所述pMEL13质粒的序列如SEQ ID NO:1所示,其引物序列如SEQ ID NO:2~SEQ ID NO:3所示;所述识别XKS1基因的gRNA片段的序列如SEQ ID NO:4所示,所述重组修复XKS1基因的DNA片段的序列如SEQ IDNO:5所示;所述质粒Cas9-NAT的序列如SEQ ID NO:6所示;所述转化子基因组DNA的引物序列如SEQ ID NO:7~SEQ ID NO:8所示。
10.根据权利要求5所述的酿酒酵母菌株的构建方法,其特征在于,步骤d)筛选最优ΔXKS1菌株包括以下步骤:分别对步骤a)的出发菌株与步骤c)筛选出的高木糖醇产率的ΔXKS1菌株进行接种、发酵、采样,并对发酵参数进行测定,计算木糖醇收率,其中,筛选木糖醇收率最接近于理论值1.0的菌株作为最优ΔXKS1菌株。
CN201710948677.1A 2017-10-12 2017-10-12 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法 Active CN108102940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710948677.1A CN108102940B (zh) 2017-10-12 2017-10-12 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710948677.1A CN108102940B (zh) 2017-10-12 2017-10-12 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法

Publications (2)

Publication Number Publication Date
CN108102940A true CN108102940A (zh) 2018-06-01
CN108102940B CN108102940B (zh) 2021-07-13

Family

ID=62207081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710948677.1A Active CN108102940B (zh) 2017-10-12 2017-10-12 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法

Country Status (1)

Country Link
CN (1) CN108102940B (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
CN112011472A (zh) * 2020-08-04 2020-12-01 中国石油化工股份有限公司 一株具有xr-xdh途径的可快速发酵木糖的酿酒酵母菌株及构建方法
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN113717874A (zh) * 2021-09-27 2021-11-30 四川大学 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105368732A (zh) * 2015-11-10 2016-03-02 四川大学 一株产木糖醇的工业酿酒酵母菌株及构建方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105368732A (zh) * 2015-11-10 2016-03-02 四川大学 一株产木糖醇的工业酿酒酵母菌株及构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCALCINATI, G. ET AL.: "Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption", 《FEMS YEAST RESEARCH》 *
焦静雨等: "基因工程技术改造木糖醇生产菌株的研究进展", 《中国生物工程杂志》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112011472A (zh) * 2020-08-04 2020-12-01 中国石油化工股份有限公司 一株具有xr-xdh途径的可快速发酵木糖的酿酒酵母菌株及构建方法
CN113717874A (zh) * 2021-09-27 2021-11-30 四川大学 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用
US12031126B2 (en) 2023-12-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
CN108102940B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN108102940B (zh) 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法
CN108300671A (zh) 一株共发酵木糖和葡萄糖以高产木糖醇及乙醇的工业酿酒酵母菌株及构建方法
CA2794817C (en) Cell suitable for fermentation of a mixed sugar composition
CN101835901B (zh) 遗传修饰的光合生物的高通量筛选
CN101796193A (zh) 制备对映异构体富集的胺的方法
CN109661403A (zh) 前导序列修饰的葡糖淀粉酶多肽和具有增强的生物产物产生的工程化的酵母菌株
KR20200116084A (ko) 발효 공정
CA2747462A1 (en) Systems and methods for the secretion of recombinant proteins in gram negative bacteria
KR20210151916A (ko) 뒤시엔느 근육 이영양증의 치료를 위한 aav 벡터-매개된 큰 돌연변이 핫스팟의 결실
CN111979240B (zh) 一种基于Type I-F CRISPR/Cas的基因表达调控方法和调控系统
CN101511996B (zh) 酶促还原炔衍生物的方法
CN112063669A (zh) 酶法反应组合物、增加酶法反应中三磷酸腺苷(atp)量的方法及其应用
CN108992665B (zh) 基于重组减毒单增李斯特菌的宫颈癌治疗性疫苗
CN113302303A (zh) 经修饰的丝状真菌宿主细胞
CN114672447B (zh) 一种具有自絮凝能力的菌株及其制备方法与应用
CN116917485A (zh) 表达岩藻糖基转移酶的重组微生物和使用其生产2’-岩藻糖基乳糖的方法
CN109010819B (zh) 重组减毒李斯特菌在制备宫颈癌治疗性疫苗中的应用
KR102106038B1 (ko) 형질전환 생물체 선별용 마커 조성물, 형질전환 생물체 및 형질전환 방법
CN114958759B (zh) 一种肌萎缩侧索硬化症模型猪的构建方法及应用
CN114134058A (zh) 一株同步生产木糖醇和乙醇的工业酿酒酵母菌株及其构建方法
US20020094523A1 (en) Chimeric retroviral gag genes and screening assays
CN111088209B (zh) 一种产1,4-丁二醇的重组丁醇梭菌及其构建方法与应用
JP3845697B2 (ja) 放射線抵抗性細菌/大腸菌シャトルベクター
US20030219829A1 (en) Heavy chain libraries
CN114480470A (zh) 高通量制备模式生物基因编辑突变体的方法及相关质粒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant