CN108051613B - 一种微米直径的锥形毛移动和转移纳米线的方法 - Google Patents

一种微米直径的锥形毛移动和转移纳米线的方法 Download PDF

Info

Publication number
CN108051613B
CN108051613B CN201711094075.0A CN201711094075A CN108051613B CN 108051613 B CN108051613 B CN 108051613B CN 201711094075 A CN201711094075 A CN 201711094075A CN 108051613 B CN108051613 B CN 108051613B
Authority
CN
China
Prior art keywords
nano wire
copper mesh
taper hair
taper
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711094075.0A
Other languages
English (en)
Other versions
CN108051613A (zh
Inventor
张振宇
崔俊峰
王博
郭东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201711094075.0A priority Critical patent/CN108051613B/zh
Priority to US16/339,907 priority patent/US10746760B2/en
Priority to PCT/CN2017/111168 priority patent/WO2019090799A1/zh
Publication of CN108051613A publication Critical patent/CN108051613A/zh
Application granted granted Critical
Publication of CN108051613B publication Critical patent/CN108051613B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • B82B3/0076Methods for manipulating nanostructures not provided for in groups B82B3/0066 - B82B3/0071
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/206Modifying objects while observing
    • H01J2237/2062Mechanical constraints

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供了一种微米直径的锥形毛移动和转移纳米线的方法,纳米线的直径为60‑150nm,锥形毛的直径为1‑100μm,尖端曲率半径为0.8‑3μm,长度为4‑10mm;去掉透射电镜用的铜网上的塑料薄膜,留下铜网,孔的直径为50‑100μm;用超声后的铜网在超声分散纳米线的丙酮液体中捞取纳米线;将分布有纳米线的铜网和锥形毛分别放在两个不同的光学显微镜的移动平台上,实现锥形毛的毫米和微米级移动,从而实现对纳米线的移动和转移操作。用锥形毛尖端蘸取一小滴导电银胶,分别滴在纳米线的两端,滴落后的导电银胶的半径为4‑8μm。本发明用两个光学显微镜的移动平台,实现锥形毛移动和转移纳米线的方法。

Description

一种微米直径的锥形毛移动和转移纳米线的方法
技术领域
一种微米直径的锥形毛移动和转移纳米线的方法,涉及纳米线的移动、转移和固定,对后续的测试与表征具有重要的影响,特别涉及扫描电镜和透射电镜原位纳米力学的测试与表征。
背景技术
高性能装备要求高性能零件表面具有纳米级平面度、亚纳米级粗糙度,这种苛刻的超精密加工要求已经接近物理加工的极限,需要研发新的超精密加工工艺与装备来解决。纳米精度表面制造方法是满足这种苛刻加工要求的有效方法。要研发新的纳米精度表面制造工艺与方法,就要对原子尺度损伤产生和演变机制、材料去除机理、应力诱导损伤形成机制进行研究。透射电镜原位纳米力学是研究这种基本原理的科学方法,过去由于实验条件的限制,难以进行透射电镜原位纳米力学的测试与表征。其中一个重要的原因是采用聚焦离子束和电子束对纳米线进行切割、焊接、转移、移动等操作,会对纳米线造成污染和损伤。这两种方法固定纳米线的时候一般采用化学气相沉积或者物理气相沉积,容易污染纳米线,从而使得随后的原位测试与表征受到重要的影响,甚至无法进行,也很难获得原子尺度的高分辨透射电镜像。此外,这两种方法在移动和转移纳米线的过程中,容易在纳米线内部产生空穴、填隙原子、层错和位错环等缺陷,这使得在微纳尺度获得的扫描和透射电镜像很难扩展到宏观材料。
为了消除传统的聚焦离子束和电子束在移动、转移、切割、焊接、固定纳米线的过程中对纳米线造成的污染和损伤,亟待研发一种新型的纳米线的移动、转移和固定方法,为后续的扫描电镜和透射电镜原位纳米力学测试和表征带来便利,从而消除传统的聚焦离子束和电子束对纳米线的操作带来的污染和损伤。
发明内容
本发明采用一种微米直径的锥形毛移动和转移纳米线的方法,用锥形毛实现纳米线的移动和转移。
本发明的技术方案:
一种微米直径的锥形毛移动和转移纳米线的方法,纳米线的直径为60-150nm,锥形毛为人的眉毛、眼睫毛、狼毫和羊毫,直径范围为1-100μm,尖端曲率半径为0.8-3μm,长度为4-10mm。用火烧掉透射电镜用的铜网上的塑料薄膜,留下铜网,孔的直径为50-100μm。然后用超声后的铜网在超声分散纳米线的丙酮液体中捞取纳米线。将分布有纳米线的铜网和锥形毛分别放在两个不同的光学显微镜的移动平台上,实现锥形毛的毫米和微米级移动,从而实现对纳米线的移动和转移操作。用锥形毛尖端蘸取一小滴导电银胶,分别滴在纳米线的两端,滴落后的导电银胶的半径为4-8μm。本发明提供一种利用两个光学显微镜的移动平台,用微米直径的锥形毛实现移动和转移纳米线的方法。
纳米线的直径为60-150nm。纳米线的直径超过150nm,电子束很难穿透,难以获得原子尺度的高分辨透射电镜像;纳米线的直径小于60nm,在光学显微镜下非常难操作和寻找。选择纳米线的直径范围为60-150nm,是考虑操作和原子成像的综合结果。
锥形毛为人的眉毛、眼睫毛、狼毫和羊毫,直径范围为1-100μm,尖端曲率半径为0.8-3μm,长度为4-10mm。这四种材料均较为容易获得,来自人体和毛笔。此外,这些毛均为锥形,对于操作纳米线非常有好处。这四种毛的直径范围为1-100μm,便于精确操作纳米线。锥形毛易于在光学显微镜下斜插入到纳米线的下部,从而实现对纳米线的操作。尖端曲率半径为0.8-3μm,对于利用锥形毛和纳米线之间的静电引力非常有好处。长度为4-10mm,是为了使得锥形毛既有一定的刚度,又有柔韧性,从而可以实现对纳米线的操作和转移。
用火烧掉透射电镜用的铜网上的塑料薄膜,留下铜网,孔的直径为50-100μm。为了转移纳米线,就要使得锥形毛能够插入到纳米线的下部,从而对纳米线进行较为精确的移动、提取、转移操作,因此需要去掉铜网上面覆盖的一层塑料膜。由于塑料膜很薄,用火烧的方法能迅速去除塑料膜,而且非常干净,不会对后续的操作造成污染。由于纳米线的长度一般在微米量级,因此选择孔径为50-100μm,既能放置纳米线,又不至于调入铜网的孔中。
将纳米线在丙酮中进行超声分散,时间为1-2min。丙酮具有较强的去污和分散能力,加上超声的作用,效果会更明显,因此用丙酮进行超声分散,时间较短即可,为1-2min。
用镊子夹住铜网,在丙酮溶液中超声0.5-1min,然后用超声后的铜网在超声分散纳米线的丙酮液体中捞取纳米线,丙酮溶液蒸发后,纳米线分布于铜网表面。用镊子夹住铜网在丙酮中进行超声清洗,是为了清洗掉火烧铜网留下的痕迹和污染。用清洗后的铜网在分散纳米线的丙酮溶液中捞取纳米线,是为了在铜网上留下较多的均匀分布的纳米线。
将分布有纳米线的铜网和锥形毛分别放在两个不同的光学显微镜的移动平台上,锥形毛用导电银胶粘接于锥形杆的尖端,另外的扁平端用导电银胶固定于显微镜的移动平台上。铜网放在光学显微镜的移动平台上,利用光学显微镜寻找和操作纳米线。锥形毛与另一台光学显微镜的移动平台相连,主要是利用另一台光学显微镜的移动平台的宏观和微观的移动功能,实现对纳米线的精确移动、提取、转移等操作,利用另一台光学显微镜的毫米和微米级组合移动功能实现对纳米线的操作。
利用光学显微镜的移动平台的粗调和微调旋钮,实现锥形毛的毫米和微米级移动,从而实现对纳米线的移动和转移操作。光学显微镜的粗调旋钮,主要是实现锥形毛的毫米级的快速移动,微调旋钮实现锥形毛的微米级移动,从而实现对纳米线的操作。
在铜网放置的光学显微镜中观察纳米线,借助锥形毛进行移动和转移操作,用扫描电镜或者透射电镜用的原位力学测试微装置替换铜网,将纳米线放到微装置的合适位置,用锥形毛尖端蘸取一小滴导电银胶,分别滴在纳米线的两端,滴落后的导电银胶的半径为4-8μm。在光学显微镜下找到纳米线,并进行聚焦,利用另一台光学显微镜的移动平台,实现锥形毛斜着插入到纳米线的下部,将纳米线挑起,使得纳米线与铜网的静电引力变小,然后在锥形毛与纳米线的静电引力下,将纳米线提取离开铜网表面。将铜网换成扫描电镜或者透射电镜的原位力学测试的微装置,将纳米线放在拉伸部位处。用锥形毛的尖端蘸一滴导电银胶,轻轻滴在纳米线的一端,蘸另一小滴,滴在另一端。导电银胶滴下后的尺寸半径为4-8μm。既不污染纳米线,同时固化后具有良好的粘接强度。
在空气中放置2-4h,导电银胶固化,即可进行扫描电镜或者透射电镜的原位纳米力学测试与表征。在空气中静置2-4h,导电银胶固化,纳米线被牢牢固定在微装置上,而且没有物理和化学气相沉积的污染和离子束以及电子束造成的对纳米线的损伤,即可进行扫描电镜或者透射电镜原位纳米力学测试与表征。
本发明的效果和益处是采用微米直径的锥形毛实现了纳米线的移动和转移,并用导电银胶固定,避免了传统聚焦离子束和电子束对纳米线的操作造成的污染和损伤。
附图说明
图1是微米直径的锥形羊毫的扫描电镜显微照片。
图2是微米直径的锥形狼毫扫描电镜显微照片。
图3是用狼毫在光学显微镜下转移纳米线的光学显微照片。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
一种微米直径的锥形毛移动和转移纳米线的方法,用锥形毛实现纳米线的移动和转移,其特征在于:
(1)纳米线的直径为60-150nm;
(2)锥形毛为人的眉毛、眼睫毛、狼毫和羊毫,直径范围为1-100μm,尖端曲率半径为0.8-3μm,长度为4-10mm;
(3)用火烧掉透射电镜用的铜网上的塑料薄膜,留下铜网,孔的直径为50-100μm;
(4)将纳米线在丙酮中进行超声分散,时间为1-2min;
(5)用镊子夹住铜网,在丙酮溶液中超声0.5-1min,然后用超声后的铜网在超声分散纳米线的丙酮液体中捞取纳米线,丙酮溶液蒸发后,纳米线分布于铜网表面;
(6)将分布有纳米线的铜网和锥形毛分别放在两个不同的光学显微镜的移动平台上,锥形毛用导电银胶粘接于锥形杆的尖端,另外的扁平端用导电银胶固定于显微镜的移动平台上;
(7)利用光学显微镜的移动平台的粗调和微调旋钮,实现锥形毛的毫米和微米级移动,从而实现对纳米线的移动和转移操作;
(8)在铜网放置的光学显微镜中观察纳米线,借助锥形毛进行移动和转移操作,用扫描电镜或者透射电镜用的原位力学测试微装置替换铜网,将纳米线放到微装置的测试位置,用锥形毛尖端蘸取一小滴导电银胶,分别滴在纳米线的两端,滴落后的导电银胶的半径为4-8μm;
(9)在空气中放置2-4h,导电银胶固化,即可进行扫描电镜或者透射电镜的原位纳米力学测试与表征。
实施例
选择直径为80-100nm的碳化硅单晶纳米线作为操作对象,分别用人的眉毛,羊毫毛笔的羊毫,如图1所示,狼毫毛笔的狼毫,如图2所示,作为微米直径的锥形毛。这三种锥形毛的直径范围为2-100μm,尖端曲率半径为1-3μm,长度为6-10mm。选择200目的带有塑料薄膜的透射电镜样品制备用的直径为3mm的铜网,用打火机烧掉铜网上的塑料薄膜,露出铜网上的通孔,直径为90-100μm。将纳米线在丙酮中超声分散,时间为1.5-2min。用镊子夹住去膜后的铜网,在丙酮溶液中超声清洗40-60s,去掉火烧后的痕迹和污染。然后取出铜网,用镊子夹住铜网在丙酮分散的纳米线溶液中捞取纳米线,在空气中放置,丙酮蒸发后,纳米线分布于铜网上。将带有纳米线的铜网放置在光学显微镜的移动平台上。将微米直径的锥形毛用导电银胶粘接于锥形塑料细长杆的尖端,另一端用火烧成扁平端,用导电银胶固定在另一台光学显微镜的移动平台上。在光学显微镜的目镜中找到纳米线,并调焦清晰。用另一台光学显微镜的移动平台,结合粗调和微调,实现微米直径的锥形毛的毫米和微米级移动,逐渐用锥形毛斜插入纳米线的下部。插入后,用移动平台的微调旋钮实现锥形毛的微米级向上移动,将纳米线一端挑起,离开铜网。纳米线一端挑起后,其与铜网静电引力随着接触面积的减小而逐步减小,最后只有一端的一点接触,继续上移锥形毛,纳米线即离开铜网,如图3所示,从而实现了微米直径的锥形毛对纳米线的移动、提取和转移操作。纳米线离开铜网后,将扫描电镜或者透射电镜的测试用的微装置,放在铜网的位置。在光学显微镜下聚焦,使得纳米线所要放置的位置清晰。然后用另一台光学显微镜的移动平台,用微调旋钮实现纳米线的微米级的逐步逼近,将纳米线的一端放置在微装置的测试位置,然后逐步利用微移动的微调功能,放平纳米线,这样随着纳米线与微装置的接触面积逐步增大,两者间的静电引力也逐步增大,放平后,即可后移锥形毛,使得锥形毛与纳米线脱离,从而实现了纳米线的转移操作。随后,滴一滴导电银胶在微装置的移动平台上,用锥形毛的尖端蘸取一小滴导电银胶,用移动平台准确滴到纳米线的一端,使得导电银胶与纳米线的一端接触,从而使得导电银胶滴落。重复这个操作,在纳米线的另一端滴落一小滴导电银胶。滴落后的导电银胶的半径为5-8μm。导电银胶在空气中静置3-4h,实现固化。
将固化后的微装置装入PI 95TEM PicoIndenter透射电镜原位力学测试系统中,将系统插入FEI Tecnai F20场发射透射电镜中,进行透射电镜纳米力学拉伸测试,透射电镜的操作电压为200kV。采用位移控制模式,加载速率是10nm/s,对纳米线施加拉伸载荷。纳米线的直径为80-100nm,拉断时的断裂力为110μN,纳米线的断裂强度为12GPa。纳米线的动态拉伸过程被原位力学测试系统录下视频,从中可以提取出断裂时的关键原子尺度高分辨透射电镜像,从而实现了纳米线的透射电镜原位力学拉伸测试和表征实验。

Claims (1)

1.一种微米直径的锥形毛移动和转移纳米线的方法,用锥形毛实现纳米线的移动和转移,其特征在于:
(1)纳米线的直径为60-150nm;
(2)锥形毛为人的眉毛、眼睫毛、狼毫或羊毫,直径为1-100μm,尖端曲率半径为0.8-3μm,长度为4-10mm;
(3)去掉透射电镜用的铜网上的塑料薄膜,留下铜网,铜网上的孔的直径为50-100μm;
(4)将纳米线在丙酮中进行超声分散,时间为1-2min;
(5)用镊子夹住铜网,在丙酮溶液中超声0.5-1min,然后用超声后的铜网在超声分散纳米线的丙酮液体中捞取纳米线,丙酮溶液蒸发后,纳米线分布于铜网表面;
(6)将分布有纳米线的铜网和锥形毛分别放在两个不同的光学显微镜的移动平台上;锥形毛用导电银胶粘接于锥形杆的尖端,扁平端用导电银胶固定于显微镜的移动平台上;
(7)利用光学显微镜的移动平台的粗调和微调旋钮,实现锥形毛的毫米和微米级移动,从而实现对纳米线的移动和转移操作;
(8)在铜网放置的光学显微镜中观察纳米线,借助锥形毛进行移动和转移操作,用扫描电镜或透射电镜用的原位力学测试微装置替换铜网,将纳米线放到原位力学测试微装置的测试位置,用锥形毛尖端蘸取导电银胶,分别滴在纳米线的两端,滴落后的导电银胶的半径为4-8μm;
(9)在空气中放置2-4h,导电银胶固化,即进行扫描电镜或透射电镜的原位纳米力学测试与表征。
CN201711094075.0A 2017-11-09 2017-11-09 一种微米直径的锥形毛移动和转移纳米线的方法 Expired - Fee Related CN108051613B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711094075.0A CN108051613B (zh) 2017-11-09 2017-11-09 一种微米直径的锥形毛移动和转移纳米线的方法
US16/339,907 US10746760B2 (en) 2017-11-09 2017-11-15 Method for moving and transferring nanowires using tapered hair of diameter on micron range
PCT/CN2017/111168 WO2019090799A1 (zh) 2017-11-09 2017-11-15 一种微米直径的锥形毛移动和转移纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711094075.0A CN108051613B (zh) 2017-11-09 2017-11-09 一种微米直径的锥形毛移动和转移纳米线的方法

Publications (2)

Publication Number Publication Date
CN108051613A CN108051613A (zh) 2018-05-18
CN108051613B true CN108051613B (zh) 2019-11-19

Family

ID=62118763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711094075.0A Expired - Fee Related CN108051613B (zh) 2017-11-09 2017-11-09 一种微米直径的锥形毛移动和转移纳米线的方法

Country Status (3)

Country Link
US (1) US10746760B2 (zh)
CN (1) CN108051613B (zh)
WO (1) WO2019090799A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896365B (zh) * 2018-07-06 2020-10-20 大连理工大学 一种透射电镜原位力学样品的无损制备方法
CN110658360B (zh) * 2019-09-16 2020-08-18 浙江大学 一种超细原子力显微镜金属探针的制备方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624212B2 (ja) 1999-05-13 2005-03-02 独立行政法人科学技術振興機構 走査型トンネル顕微鏡、その探針、その探針の処理方法及び微細構造物作製方法
CN100478270C (zh) 2004-04-27 2009-04-15 北京大学 解理纳米线的方法及应用
US7208730B2 (en) 2004-10-14 2007-04-24 International Business Machines Corporation Programmable molecular manipulating devices
CN1995962A (zh) * 2006-12-29 2007-07-11 北京工业大学 扫描电镜中单根纳米线原位力学综合性能测试装置及方法
CN101949957B (zh) 2010-09-10 2013-04-17 东华大学 一种采用半导体纳米线作为探针精确移动纳米线的方法
US9075081B2 (en) * 2013-03-29 2015-07-07 Mark J. Hagmann Method and means for coupling high-frequency energy to and/or from the nanoscale junction of an electrically-conductive tip with a semiconductor
US10107835B2 (en) 2015-01-07 2018-10-23 Board Of Supervisors Of Louisiana State University Tip enhanced laser assisted sample transfer for biomolecule mass spectrometry
CN107219243B (zh) * 2017-05-05 2019-10-11 大连理工大学 一种透射电镜原位纳米力学拉伸测试样品粘接方法
CN107282933A (zh) * 2017-05-17 2017-10-24 华东师范大学 一种干法铋纳米颗粒的制备方法

Also Published As

Publication number Publication date
CN108051613A (zh) 2018-05-18
WO2019090799A1 (zh) 2019-05-16
US20200081033A1 (en) 2020-03-12
US10746760B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
CN108051613B (zh) 一种微米直径的锥形毛移动和转移纳米线的方法
US8258473B2 (en) Method and apparatus for rapid preparation of multiple specimens for transmission electron microscopy
CN107796958B (zh) 一种原子力显微镜用胶体探针的制备方法
JP2016532267A (ja) 多孔性の金属箔を備える電子顕微鏡試料支持体
WO2010146773A1 (ja) 微小接触式プローバ
EP2681756A1 (en) Microtome utilizing a movable knife in a retardation field scanning electron microscope and a retardation field scanning electron microscope including the same
Gotsmann et al. Molecular resolution of an organic monolayer by dynamic AFM
CN102236160B (zh) 一种样品观测载网及其制造方法
CN109709116B (zh) 一种步进旋转样品台、微观颗粒三维表面成像方法及系统
DeRose et al. Examination of atomic (scanning) force microscopy probe tips with the transmission electron microscope
EP3272432B1 (en) Debris removal from high aspect structures
US6684676B2 (en) Apparatus for forming optical aperture
CN106556535A (zh) 一种基于力学感测器的力学性能测试方法
DE102007049321A1 (de) Probenbetriebseinrichtung
US8795495B2 (en) Method for manufacturing a one-dimensional nano-structure-based device
CN112834786B (zh) 基于扫描探针的纳米颗粒三维操控方法
JP2006221981A (ja) 加工用プローブ及び加工装置並びに加工用プローブの製造方法
WO2019008108A1 (en) ATOMIC FORCE MICROSCOPY PROBES WITH A SET OF METAL NANOWIRES AND A DIELECTROPHORETIC METHOD FOR ATTACHING AND DETACHING PROBES THEREOF METAL NANOWIRES
Revenikiotis Optimization of STM-tip preparation methods
Rostgaard A mechanical device for retrieving ribbons of ultrathin sections without folds
DE102010035931A1 (de) Verfahren zur Herstellung einer Messspitze für ein Rastersondenmikroskop sowie Messsonde mit nach diesem Verfahren hergestellter Messspitze
DE102022202657A1 (de) Wechseln von Sonden für Rastersondenmikroskope
JP2006010619A (ja) ウルトラミクロトーム
Kasama et al. A versatile three-contact electrical biasing transmission electron microscope specimen holder for electron holography and electron tomography of working devices
JP2006349419A (ja) 立体試料観察システム及び立体試料観察方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191119