CN108048867B - 一种光电催化材料电极的制备方法 - Google Patents

一种光电催化材料电极的制备方法 Download PDF

Info

Publication number
CN108048867B
CN108048867B CN201711268355.9A CN201711268355A CN108048867B CN 108048867 B CN108048867 B CN 108048867B CN 201711268355 A CN201711268355 A CN 201711268355A CN 108048867 B CN108048867 B CN 108048867B
Authority
CN
China
Prior art keywords
electrode
tio
prepared
nano
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711268355.9A
Other languages
English (en)
Other versions
CN108048867A (zh
Inventor
王凤武
毛雨路
徐迈
王智成
朱传高
方文彦
魏亦军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huainan Normal University
Original Assignee
Huainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huainan Normal University filed Critical Huainan Normal University
Priority to CN201711268355.9A priority Critical patent/CN108048867B/zh
Publication of CN108048867A publication Critical patent/CN108048867A/zh
Application granted granted Critical
Publication of CN108048867B publication Critical patent/CN108048867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明属于光催化电极材料制备技术领域,具体涉及一种光电催化材料电极的制备方法。本发明中,采用溶胶凝胶法制备TiO2nano‑Ce,采用阳极氧化法制备Ti/TiO2NTs,采用脉冲电沉积法制备Ti/TiO2/PbO2/TiO2nano‑Ce。本发明,通过稀土元素Ce的掺杂,使PbO2颗粒变小,比表面显著增加。与纯PbO2电极相比,催化活性更高,寿命更长,稳定性更好。采用脉冲电沉积的方法将TiO2nano‑Ce修饰到纳米管中,将Ti/TiO2NTs电极作为阳极,Pt片作为阴极,饱和甘汞电极作为参比电极,放入含有TiO2nano‑Ce电镀液中,采用特殊配方并通过稳压脉冲电流沉积的方法制备Ti/TiO2/PbO2/TiO2nano‑Ce电极,不仅操作简单,还提高了沉积层的纯度、密度、均匀度,并降低其空隙率,提高了电极的稳定性和催化性能。

Description

一种光电催化材料电极的制备方法
技术领域
本发明属于光催化电极材料制备技术领域,具体涉及一种光电催化材料电极的制备方法。
背景技术
当前,随着人类社会的飞速发展,人类赖以生存的家园—地球,面临着能源短缺和环境污染的双重威胁。而利用光电催化技术,通过将太阳能转变成我们所需的新能源,并且降解各种污染物使其变成对环境无害的无机小分子物质,是解决能源短缺问题和环境污染治理的重要手段。
光催化材料氧化物中最具有典型的是TiO2材料。1972年,经Fujishima和Honda报道,在光照的条件下,作为电极的TiO2可以分解H2O释放出H2和O2这两种气体,人们立即将目光注意到这一实验现象上来,随后国内外许多科学家都相继在光催化材料能否可以用于催化分解污染的领域进行了许多相关方面的研究。1976年Carey报道催化分解废水中的氰化物多氯联苯利用TiO2在紫外光照射下可以催化脱氯,以及1977年Frank和Bard提出利用TiO2光催化分解废水中的氰化物被等,大量实验研究表明,大多数有机污染物都能发生光催化反应生成无污染的无机物(CO2和H2O等),但进一步研究发现,虽然有些光催化材料具有优良的稳定性、价格低等优点,但是由于其带隙较宽,导致光催化反应只能在紫外光区域响应,因此,开发研究新型光催化材料则具有广阔的前景,越来越多的光催化材料开始受到人们的重视与研究。TiO2纳米管(TiO2NTs)因其高的比表面积以及独特的尺寸效应,引起人们的巨大兴趣。TiO2纳米管的这些特征可以把它们作为模板,从而进一步在其管内及其表面进一步修饰一些催化剂,制备纳米尺寸的电极材料,以增强电极的电化学性能。
二氧化铅(PbO2)电极因其具有高催化活性、高析氧电位、高化学稳定性、价格低廉的优点,被认为是最具有发展潜力的阳极材料。而作为基体的金属材料的腐蚀问题普遍存在于国民经济中,造成了巨大的经济损失和危害,腐蚀控制一直是艰巨而重要的任务。其中,纳米TiO2由于具有耐腐蚀、耐高温、低成本等特点而得到广泛的研究和应用,所以用Ti作为基体。溶胶-凝胶法制备纳米TiO2具有合成温度较低、反应条件容易控制、所需设备及其工艺条件较简单等特点,并且获得的纳米TiO2往往纯度高、均匀性好,因而受到了广泛关注。因而在Ti为基体的PbO2电极上修饰掺有稀土元素Ce纳米TiO2粒子,具有强耐腐蚀性,可以提高PbO2电极的使用寿命,以及稳定性。但是目前Ti/PbO2电极仍然存在使用寿命短、电催化性能差等问题。
发明内容
本发明的目的在于通过溶胶凝胶法制备掺铈的二氧化钛纳米颗粒(TiO2nano-CeO2),从而通过脉冲电沉积的方法将含有TiO2nano-CeO2的特殊配方的沉积液修饰到Ti/TiO2/PbO2中,相比其他方法,不仅操作简单,还提高了沉积层的纯度、密度、均匀度,并降低其空隙率,提高了电极的稳定性从而提高电极的受用寿命和氧化催化能力。
为达到上述目的,本发明采用的技术方案为:
一种光电催化材料电极的制备方法,采用溶胶凝胶法制备TiO2nano-Ce,采用阳极氧化法制备Ti/TiO2NTs,采用脉冲电沉积法制备Ti/TiO2/PbO2/TiO2nano-Ce。
进一步的:Ti/TiO2/PbO2/TiO2nano-Ce电极的制备的具体步骤包括:
步骤S1、将纯钛片依次用砂纸进行打磨,将打磨好的钛片依次在无水乙醇、丙酮、去离子水中超声洗涤12min用以去除钛片表面的油污及污垢,将超声后的钛片置于的氢氟酸水溶液中进行刻蚀1min,得到的钛片表面是凹凸不平的麻花状,置于乙醇中浸泡两小时,在温度为25℃、电压为60V下,通过阳极氧化的方法氧化3h就可以制备出高度有序的TiO2NTs,然后置于马弗炉中煅烧两小时,取出,待用;
步骤S2、将步骤S1制备好的Ti/TiO2NT电极作为工作电极,Pt片作为对电极,饱和甘汞电极作为参比电极,放入0.05mol/L(NH4)2SO4溶液中于-1.0下还原10~15s,把Ti4+还原成Ti3+
步骤S3、采用溶胶凝胶法制备掺有二氧化铈的二氧化钛纳米颗粒(TiO2nano-CeO2),配制A、B两种溶液,A溶液配比为钛酸四丁酯、无水乙醇、水和乙酰丙酮的摩尔比为5:8:0.6:0.5,B溶液配比为无水乙醇、水、六水合硝酸铈的摩尔比为1:0.1:0.001-0.005,最后加入浓硝酸调节PH,然后将B溶液缓慢滴加到A溶液中并不断搅拌,滴速为8秒每滴,滴毕,继续搅拌至成黄色凝胶状,烘干,在马弗炉中450℃下煅烧两个小时;
步骤S4、采用脉冲电沉积来制备Ti/TiO2/PbO2/TiO2nano-Ce;沉积液组成为:0.02mo/L Pb(NO3)2、8.0-10.0g/L TiO2nano-CeO2、0.01mol/L NaF、0.1mol/L HNO3;将制备好TiO2NTs置于制备好的沉积液中,以TiO2NTs为工作电极,铂片(Pt)为对电极,饱和甘汞电极为参比电极,采用脉冲电沉积的方法制备Ti/TiO2/PbO2/TiO2nano-Ce电极。
进一步的,步骤S3中B溶液必须是酸性,PH=1-3。
进一步的,步骤S4的沉积条件为:阴极脉冲(-100mA,1.0ms),阳极脉冲(+100mA,10ms),间隔(0mA,1.0s),沉积时间为120min,体系控温在55℃。
与已有的技术相比,采用本发明提供的技术方案具有如下显著的技术效果:
(1)本发明的一种新型高效光电催化活性Ti/TiO2/PbO2/TiO2nano-Ce电极,通过稀土元素Ce的掺杂,使PbO2颗粒变小,比表面显著增加。与纯PbO2电极相比,催化活性更高,寿命更长,稳定性更好。
(2)本发明的一种新型高效光电催化活性Ti/TiO2/PbO2/TiO2nano-Ce电极,采用脉冲电沉积的方法将TiO2nano-Ce修饰到纳米管中。将Ti/TiO2NTs电极作为阳极,Pt片作为阴极,饱和甘汞电极作为参比电极,放入含有TiO2nano-Ce电镀液中,采用特殊配方并通过稳压脉冲电流沉积的方法制备Ti/TiO2/PbO2/TiO2nano-Ce电极,不仅操作简单,还提高了沉积层的纯度、密度、均匀度,并降低其空隙率,提高了电极的稳定性和催化性能。
具体实施方式
下面将结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种新型光电催化材料Ti/TiO2/PbO2/TiO2nano-Ce电极的制备方法,采用溶胶凝胶法制备TiO2nano-Ce,采用阳极氧化法制备Ti/TiO2NTs,采用脉冲电沉积法制备Ti/TiO2/PbO2/TiO2nano-Ce,包括:
步骤S1、将纯钛片用砂纸进行打磨,将打磨好的钛片依次在无水乙醇、丙酮、去离子水中超声洗涤12min用以去除钛片表面的油污及污垢,将超声后的钛片置于氢氟酸水溶液中进行刻蚀1min,得到的钛片表面是凹凸不平的麻花状,置于乙醇中浸泡两小时,在温度为25℃、电压为60V下,通过阳极氧化的方法氧化3h就可以制备出高度有序的TiO2NTs。然后置于马弗炉中煅烧两小时,取出,待用;
步骤S2、将步骤S1制备好的Ti/TiO2NT电极作为阴极,Pt片作为阳极,饱和甘汞电极作为参比电极,放入1mol/L(NH4)2SO4溶液中于-1.2V下还原10s,把Ti4+还原成Ti3+
步骤S3、采用溶胶凝胶法制备掺有二氧化铈的二氧化钛纳米颗粒(TiO2nano-CeO2);具体步骤为,配制A、B两种溶液。A溶液配比为钛酸四丁酯、无水乙醇、水和乙酰丙酮的摩尔比为5:8:0.6:0.5;B溶液配比为无水乙醇、水、六水合硝酸铈的摩尔比为1:0.1:0.001,加入浓硝酸调节pH=1,然后将B溶液缓慢滴加到A溶液中并不断搅拌,滴速为8秒每滴,滴毕,继续搅拌至成黄色凝胶状,烘干,在马弗炉中450℃下煅烧两个小时;
步骤S4、采用脉冲电沉积来制备Ti/TiO2/PbO2/TiO2nano-Ce电极,沉积液组成为:0.06mo/L Pb(NO3)2、8.0g/L TiO2nano-CeO2、0.005mol/L NaF、0.01mol/L HNO3;将制备好TiO2NTs置于制备好的沉积液中,以TiO2NTs为工作电极,铂片(Pt)为对电极,饱和甘汞电极为参比电极,采用脉冲电沉积的方法制备Ti/TiO2/PbO2/TiO2nano-Ce电极;沉积条件为:阴极脉冲(-100mA,1.0ms),阳极脉冲(+100mA,10ms),间隔(0mA,1.0s),沉积时间为120min,体系控温在55℃。
实施例2
本实施例制备Ti/TiO2/PbO2/TiO2nano-Ce电极制备的方法,其过程基本同实例1,不同之处在于:
步骤S2、将步骤一制备好的Ti/TiO2NT电极作为阴极,Pt片作为阳极,饱和甘汞电极作为参比电极,放入0.05mol.L-1(NH4)2SO4溶液中于-1.0V下还原15s,把Ti4+还原成Ti3+
步骤S3、采用溶胶凝胶法制备掺有二氧化铈的二氧化钛纳米颗粒(TiO2nano-CeO2),具体步骤为,配制A、B两种溶液。A溶液配比为钛酸四丁酯、无水乙醇、水和乙酰丙酮的摩尔比为5:8:0.6:0.5;B溶液配比为无水乙醇、水、六水合硝酸铈的摩尔比为1:0.1:0.003,加入浓硝酸调节PH=2,然后将B溶液缓慢滴加到A溶液中并不断搅拌,滴速为8秒每滴,滴毕,继续搅拌至成黄色凝胶状,烘干,在马弗炉中450摄氏度下煅烧两个小时即可;
步骤四、采用脉冲电沉积来制备Ti/TiO2/PbO2/TiO2nano-Ce电极。沉积液组成为:0.06mo/L Pb(NO3)2、9.0g/L TiO2nano-CeO2、0.005mol/L NaF、0.01mol/L HNO3;将制备好TiO2NTs置于制备好的沉积液中,以TiO2NTs为工作电极,铂片(Pt)为对电极,饱和甘汞电极为参比电极,采用脉冲电沉积的方法制备Ti/TiO2/PbO2/TiO2nano-Ce电极。沉积条件为:阴极脉冲(-100mA,1.0ms),阳极脉冲(+100mA,10ms),间隔(0mA,1.0s),沉积时间为120min,体系控温在55℃。
实施例1-2的一种新型高效光电催化活性Ti/TiO2/PbO2/TiO2nano-Ce电极的制备方法,制备得到的电极具有强耐腐蚀性,良好的稳定性,同时提高了电极的使用寿命和电极的催化性能。在应用方面操作简单,无二次污染。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种光电催化材料电极的制备方法,其特征在于:采用溶胶凝胶法制备TiO2nano-Ce,采用阳极氧化法制备Ti/TiO2NTs,采用脉冲电沉积法制备Ti/TiO2/PbO2/TiO2nano-Ce。
2.根据权利要求1所述的一种光电催化材料电极的制备方法,其特征在于:其制备的具体步骤包括:
步骤S1、将纯钛片依次用砂纸进行打磨,将打磨好的钛片依次在无水乙醇、丙酮、去离子水中超声洗涤12min用以去除钛片表面的油污及污垢,将超声后的钛片置于的氢氟酸水溶液中进行刻蚀1min,得到的钛片表面是凹凸不平的麻花状,置于乙醇中浸泡两小时,在温度为25℃、电压为60V下,通过阳极氧化的方法氧化3h就可以制备出高度有序的TiO2NTs,然后置于马弗炉中煅烧两小时,取出,待用;
步骤S2、将步骤S1制备好的Ti/TiO2NT电极作为工作电极,Pt片作为对电极,饱和甘汞电极作为参比电极,放入0.05mol/L(NH4)2SO4溶液中于-1.0V下还原10~15s,把Ti4+还原成Ti3 +
步骤S3、采用溶胶凝胶法制备掺有二氧化铈的二氧化钛纳米颗粒(TiO2nano-CeO2),配制A、B两种溶液,A溶液配比为钛酸四丁酯、无水乙醇、水和乙酰丙酮的摩尔比为5:8:0.6:0.5,B溶液配比为无水乙醇、水、六水合硝酸铈的摩尔比为1:0.1:0.001-0.005,最后加入浓硝酸调节pH,然后将B溶液缓慢滴加到A溶液中并不断搅拌,滴速为8秒每滴,滴毕,继续搅拌至成黄色凝胶状,烘干,在马弗炉中450℃下煅烧两个小时;
步骤S4、采用脉冲电沉积来制备Ti/TiO2/PbO2/TiO2nano-Ce;沉积液组成为:0.02mo/LPb(NO3)2、8.0-10.0g/L TiO2nano-CeO2、0.01mol/L NaF、0.1mol/L HNO3;将制备好TiO2NTs置于制备好的沉积液中,以TiO2NTs为工作电极,铂片(Pt)为对电极,饱和甘汞电极为参比电极,采用脉冲电沉积的方法制备Ti/TiO2/PbO2/TiO2nano-Ce电极。
3.根据权利要求2所述的一种光电催化材料电极的制备方法,其特征在于:步骤S3中B溶液必须是酸性,pH=1-3。
CN201711268355.9A 2017-12-05 2017-12-05 一种光电催化材料电极的制备方法 Active CN108048867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711268355.9A CN108048867B (zh) 2017-12-05 2017-12-05 一种光电催化材料电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711268355.9A CN108048867B (zh) 2017-12-05 2017-12-05 一种光电催化材料电极的制备方法

Publications (2)

Publication Number Publication Date
CN108048867A CN108048867A (zh) 2018-05-18
CN108048867B true CN108048867B (zh) 2019-06-11

Family

ID=62122621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711268355.9A Active CN108048867B (zh) 2017-12-05 2017-12-05 一种光电催化材料电极的制备方法

Country Status (1)

Country Link
CN (1) CN108048867B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725866B (zh) * 2020-12-21 2021-12-07 安徽理工大学 一种光电催化材料电极的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2344645A1 (de) * 1973-09-05 1975-03-13 Basf Ag Verfahren zur herstellung von bleidioxid-titanverbundelektroden
JPH028391A (ja) * 1988-06-24 1990-01-11 Kamioka Kogyo Kk 二酸化鉛電極及びその製造方法
CN102173449A (zh) * 2011-01-14 2011-09-07 同济大学 一种纳米二氧化铅电极的制备方法
CN102190351A (zh) * 2010-03-10 2011-09-21 同济大学 一种用于废水处理的Ce掺杂PbO2电极及制备方法
CN102899683A (zh) * 2012-09-17 2013-01-30 淮南师范学院 一种Ti基纳米CeO2/PbO2修饰电极的制备方法
CN103205780A (zh) * 2013-04-15 2013-07-17 昆明理工恒达科技有限公司 有色金属电积用栅栏型钛基PbO2电极及其制备方法
CN103602967A (zh) * 2013-12-03 2014-02-26 淮南师范学院 一种新型高催化活性Ti/TiO2/Ce-PbO2电极的制备方法
CN103614739A (zh) * 2013-11-29 2014-03-05 淮南师范学院 采用Ti/Ce nano-TiO2修饰电极电催化还原哌啶酮合成哌啶醇的方法
CN106277228A (zh) * 2016-10-31 2017-01-04 淮南师范学院 一种新型高催化活性电极制备及其电催化降解甲基蓝的研究方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2344645A1 (de) * 1973-09-05 1975-03-13 Basf Ag Verfahren zur herstellung von bleidioxid-titanverbundelektroden
JPH028391A (ja) * 1988-06-24 1990-01-11 Kamioka Kogyo Kk 二酸化鉛電極及びその製造方法
CN102190351A (zh) * 2010-03-10 2011-09-21 同济大学 一种用于废水处理的Ce掺杂PbO2电极及制备方法
CN102173449A (zh) * 2011-01-14 2011-09-07 同济大学 一种纳米二氧化铅电极的制备方法
CN102899683A (zh) * 2012-09-17 2013-01-30 淮南师范学院 一种Ti基纳米CeO2/PbO2修饰电极的制备方法
CN103205780A (zh) * 2013-04-15 2013-07-17 昆明理工恒达科技有限公司 有色金属电积用栅栏型钛基PbO2电极及其制备方法
CN103614739A (zh) * 2013-11-29 2014-03-05 淮南师范学院 采用Ti/Ce nano-TiO2修饰电极电催化还原哌啶酮合成哌啶醇的方法
CN103602967A (zh) * 2013-12-03 2014-02-26 淮南师范学院 一种新型高催化活性Ti/TiO2/Ce-PbO2电极的制备方法
CN106277228A (zh) * 2016-10-31 2017-01-04 淮南师范学院 一种新型高催化活性电极制备及其电催化降解甲基蓝的研究方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrochemical performance and electroreduction of maleic acid on Ce-doped nano-TiO2 film electrode;Fengwu Wang et al.;《Electrochimica Acta 》;20130313;第97卷;第253-258页
Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation;Mai Xu et al.;《Electrochimica Acta》;20160329;第201卷;第240-250页
La/Ce掺杂钛基二氧化铅电极的制备及电催化性能研究;郑辉 等;《环境科学》;20120331;第33卷(第3期);第857-865页

Also Published As

Publication number Publication date
CN108048867A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
Lin et al. Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition
Nagakawa et al. Visible-light overall water splitting by CdS/WO3/CdWO4 tricomposite photocatalyst suppressing photocorrosion
Chen et al. Properties of sol–gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination
CN102962051B (zh) 一种高稳定可见光催化活性的β-Bi2O3/TiO2-NTs复合光催化剂的制备方法
CN105442012A (zh) 一种复合纳米材料MoS2/TiO2纳米管阵列的制备方法及其应用
CN106277229A (zh) 一种修饰电极电催化氧化处理有毒有机污染物阿特拉津的方法
CN103603008A (zh) 一种采用稀土镧掺杂的纳米TiO2 电极及其电催化还原糠醛的方法
CN104313663B (zh) 一种N、Ti3+共掺杂的可见光催化TiO2纳米管阵列的制备方法
CN105401150A (zh) 一种TiO2纳米束/掺硼金刚石薄膜复合光电催化电极、制备方法及应用
CN103964563A (zh) 一种高效降解有机物的可见光光电-Fenton方法
CN103489651A (zh) 一种硒化镉纳米颗粒修饰二氧化钛纳米管阵列电极材料的制备方法
CN106395998A (zh) 一种含盐废水资源化处理方法
CN102477565A (zh) 高催化活性Ti基电极:Ti/nanoTiO2-RE2O3;Ti/nanoTiO2-ZrO2制备
CN108842168A (zh) 一种两步电化学法制备g-C3N4/MMO复合薄膜光电极
CN108048867B (zh) 一种光电催化材料电极的制备方法
CN113061923B (zh) 一种高活性电化学自掺杂TiO2纳米管基材料及其制备与应用
CN101956194A (zh) 一种TiO2薄膜修饰的钛基β-PbO2光电极的制备方法
CN107841777B (zh) 一种钨掺杂二氧化钛纳米管阵列的制备方法
CN107164780B (zh) 一种wo3/石墨烯量子点复合膜光阳极的制备方法
CN110302772B (zh) 一种负载型光催化材料及其制备方法
CN110438527A (zh) 过渡金属掺杂的含钌涂层阳极的制备方法
CN111186883B (zh) 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术
CN115092991A (zh) 基于碳量子点和二茂铁共掺杂的p型MOF光阴极的废水燃料电池及其制备和应用
CN112429813B (zh) 一种掺杂碳纳米管的Blue-TiO2/CNT-PbO2电极材料的制备方法
CN103586036A (zh) 一种Al、Ta共掺杂的三元铁氧化物光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant