CN108014789B - 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法 - Google Patents

一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法 Download PDF

Info

Publication number
CN108014789B
CN108014789B CN201711277618.2A CN201711277618A CN108014789B CN 108014789 B CN108014789 B CN 108014789B CN 201711277618 A CN201711277618 A CN 201711277618A CN 108014789 B CN108014789 B CN 108014789B
Authority
CN
China
Prior art keywords
preparing
hydrogenation
catalyst
solution
hollow microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711277618.2A
Other languages
English (en)
Other versions
CN108014789A (zh
Inventor
袁珮
杨江涛
鲍晓军
岳源源
白正帅
朱海波
王廷海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711277618.2A priority Critical patent/CN108014789B/zh
Publication of CN108014789A publication Critical patent/CN108014789A/zh
Application granted granted Critical
Publication of CN108014789B publication Critical patent/CN108014789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种用于聚苯乙烯(PS)加氢制聚环己基乙烯的负载型催化剂及其制备方法,其采用水/油/水三相乳液法制备表面具有贯穿大孔的二氧化硅空心微球,然后将其先后经高温水蒸汽处理以及富羟基化处理后,采用络合辅助等体积浸渍法负载活性金属组分,得到负载型加氢催化剂。本发明方法合成的催化剂的载体孔径大,有利于大分子的扩散和提高金属的可接近性,而金属颗粒粒径小、分散程度高,有利于暴露更多的活性位。将该催化剂应用到PS的加氢反应中,其加氢转化率能够达到95%以上,且5次加氢反应后,催化剂对PS的加氢转化率仍能保持在90%以上,说明该催化剂具有良好的活性稳定性和优异的重复利用性。

Description

一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其 制备方法
技术领域
本发明属于催化剂制备技术领域,具体涉及一种用于聚苯乙烯(PS)加氢制聚环己基乙烯的负载型催化剂及其制备方法。
背景技术
聚环己基乙烯(PVCH)是通过对聚苯乙烯(PS)结构中苯环进行催化加氢制得的性能优异的高分子材料,由于加氢后极大提高了其玻璃化转变温度,使得该材料具有更加优异的耐高温、耐臭氧、耐化学品腐蚀性能,同时还具有更好的拉伸强度,因而广泛应用于电子通讯、光学材料、光存贮介质等领域。
芳环比碳-碳双键的加氢反应生成焓要高得多,因此对于PS这种含芳环的聚合物的加氢反应比含碳-碳双键的聚合物的加氢更加困难。而且聚合物加氢反应与小分子加氢反应存在明显差异,由于聚合物分子旋转动力学直径大、构型复杂,其溶液体系胶液粘度高,导致聚合物分子扩散速率慢,加氢效率低。目前,PS加氢催化剂主要分为均相催化剂和非均相催化剂,虽然均相催化剂具有相对较高的催化活性,但与PS分离相对困难,增大了贵金属的使用量以及加氢成本;非均相催化剂是活性金属负载在载体上对PS加氢起催化作用,能够很好地解决催化剂与产物分离的问题,既可以回收贵金属催化剂,又避免了金属在产物中残留。
催化剂载体的孔道结构对加氢速率起着至关重要的作用,韩凯悦等(Han, K.-Y.,et al. (2014). "Hydrogenation of commercial polystyrene on Pd/TiO2 monolithicceramic foam catalysts: catalytic performance and enhanced internal masstransfer." Reaction Kinetics, Mechanisms and Catalysis 114(2): 501-517.)以具有超大孔的TiO2为载体,负载活性组分Pd制备出应用于PS加氢的非均相催化剂,由于TiO2具有10-40μm的超大孔径,其较低的比表面积导致表面负载活性数目较少,需要使用大量的催化剂才能保证催化效率。该课题组(Han, K.-Y., et al. (2013). "High Performance ofPalladium Nanoparticles Supported on Carbon Nanotubes for the Hydrogenationof Commercial Polystyrene." Industrial & Engineering Chemistry Research 52(50): 17750-17759.)又采用碳纳米管作为载体制备出PS加氢催化剂,加氢效果较好,但其采用传统的浸渍法负载活性金属,使得活性组分不易分散均匀。
目前所报道的大孔材料虽然孔径能达到几百纳米甚至微米级,可以有效的消除大分子聚合物扩散的问题,但这些材料内部也往往存在很多微/介孔(Han, K., et al.(2014). "Hydrogenation of commercial polystyrene over Pd/BaSO4 catalysts:Effect of carrier structure." Transactions of Tianjin University 20(4): 282-291.),微/介孔的存在可增大比表面积有利于提高活性组分的分散程度,但同样会导致大量的活性中心分布到微/介孔之中,而大尺寸PS分子无法扩散进入这些小孔与活性位接触,从而影响活性金属的利用率。
综上所述,为开发具有高活性的PS非均相加氢催化剂,在致力于消除聚合物内孔扩散限制的同时应保证催化剂能够提供较多的活性位,提高聚合物与活性位的可接近性,从而增强非均相催化剂对大分子聚合物的催化活性。这是开发高活性非均相催化体系的关键,也对负载型催化剂用于生产高附加值的聚环己基乙烯具有十分重要的科学意义和实用价值。
发明内容
为解决上述问题,本发明开发了一种应用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法,其将以水/油/水三相乳液法制备的二氧化硅空心微球为载体,先后经高温水蒸汽处理以及富羟基化处理,使载体保留大孔的同时有效地去除无序微/介孔,并增加氧化硅表面的硅羟基数量以利于活性组分的负载;再采用络合辅助等体积浸渍法在载体上负载活性金属组分,以显著地增强载体表面与负载前驱液的相互作用,提高活性组分的负载量与分散度,控制活性颗粒的尺寸。
为实现上述目的,本发明采用如下技术方案:
一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂的制备方法,是采用水/油/水三相乳液法制备表面具有贯穿大孔的二氧化硅空心微球;然后将其置于水蒸汽处理装置中,加热至500-800℃(优选700-800℃),在30 mL/h的水蒸气流量条件下水热处理1-10h(优选1-3h),再利用稀酸或稀碱在100℃水浴中冷凝回流1-10h(优选5-8h)进行富羟基化处理,120℃下烘干至恒重,得预处理后的二氧化硅空心微球;将所得预处理后的二氧化硅空心微球作为载体,以络合辅助等体积浸渍法负载活性金属组分,得到负载量为0.5-5 wt%的负载型加氢催化剂。
所述表面具有贯穿大孔的二氧化硅空心微球是通过以下步骤制备的:
(1)内层水相的制备:将硅酸钠和去离子水配成硅含量为22.4 wt%的水玻璃溶液,其相对粘度为4.0-5.0Pa·S;
(2)油相的制备:将正己烷、Tween 80、Span 80按质量比30:1:1混合,得到油相;
(3)外层水相的制备:配制浓度为2 mol/L的NH4HCO3溶液;
(4)二氧化硅空心微球的制备:将内层水相和油相按体积比1:1-3:1混合,高速搅拌器中6000-12000 rpm搅拌乳化1 min,然后转移到烧杯中,再按体积比1:1加入外层水相,在搅拌条件下常温老化2 h后过滤,所得白色固体用去离子水洗涤2次、乙醇洗涤3次后,于100 ℃烘箱中烘干至恒重。
所述富羟基化处理中所用稀酸为pH值1.0-5.0的盐酸溶液或硝酸溶液;所用稀碱为pH值7.0-13.0的NaOH溶液、氨水或Na2CO3溶液。
所述活性金属组分为Pd、Rh或Ni。
所述络合辅助等体积浸渍法是采用氨基羧酸盐类或醇胺类络合剂,将其与金属氯化盐按摩尔比1:1-3:1混合配成活性金属前驱体溶液,然后将活性金属前驱体溶液逐滴加入到作为载体的预处理后的二氧化硅空心微球上,空气中晾干后在300-500℃下焙烧3h,冷却至室温,再在120℃、H2气氛下还原2 h。
所得负载型催化剂适用于聚苯乙烯加氢制备聚环己基乙烯,其应用方法为:将聚苯乙烯溶解在有机溶剂中配成胶液,然后置于高压反应釜中,按与聚苯乙烯的质量比为1:1~10加入所述负载型催化剂进行加氢反应,反应结束后对产物进行离心分离;
其中,所述有机溶剂为十氢化萘、丙酮、四氢呋喃以及正己烷中的一种或几种,优选为正己烷与四氢呋喃的混合溶剂。
所述胶液的浓度为1-10 wt.%。
加氢反应的反应温度为60-150℃(优选为120-150 ℃),氢压为2-10Mpa(优选为5-7 Mpa),反应时间为2-10h(优选为6-8h),搅拌速率为1000-1200 rpm。
本发明的有益效果在于:
1)本发明所制的负载型催化剂,其载体表面具有贯穿大孔,无无序微/介孔存在;活性金属组分颗粒小、分散均匀、稳定性强,反应时不易团聚,所得催化剂回收简单,可重复利用性强。
2)将本发明制备的负载型催化剂用于聚苯乙烯(PS)的非均相加氢,PS的加氢转化率可达到95%以上,回收利用5次以上,PS的加氢转化率仍保持在90%以上。
附图说明
图1为二氧化硅空心微球经过不同时间高温水蒸汽处理后的孔径分布图;
图2为实施例1所得催化剂的TEM图;
图3为对比例1所得催化剂的TEM图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
所用原料均为试剂级。实施例中,SEM采用荷兰产FEI Quanta 200F型场发射扫描电子显微镜;TEM采用荷兰Philips公司生产的Tecnai G2 F20型场发射型透射电子显微镜;红外光谱分析采用美国产Magna-IR560 E.S.P型傅里叶变换红外(FT-IR)光谱仪。
将硅酸钠和去离子水配成硅含量为22.4wt%的水玻璃溶液,其相对粘度为4.0Pa·S,作为内层水相;将正己烷、Tween 80、Span 80按质量比30:1:1混合,得到油相;配制浓度为2 mol/L的NH4HCO3溶液作为外层水相;将内层水相和油相按体积比1:1混合,高速搅拌器中10000 rpm搅拌乳化1 min,然后转移到烧杯中,再按体积比1:1加入外层水相,在搅拌条件下常温老化2 h后过滤,所得白色固体用去离子水洗涤2次、乙醇洗涤3次后,于100 ℃烘箱中烘干至恒重,得二氧化硅空心微球。
图1为所得二氧化硅空心微球经过不同时间高温水蒸汽处理后的孔径分布图。由图1可以看出,未经水蒸汽处理时,载体存在大量介孔,孔径集中分布在7.2 nm,而介孔的存在会阻碍大分子聚苯乙烯与活性中心的可接近性;水蒸汽处理2h后,没有集中的介孔分布,说明壳层中保留大孔的同时介孔已被完全除去。
实施例1
取1.0g制备的二氧化硅空心微球置于石英杯中,装入水蒸汽处理装置的横温段,升温至800℃,在水蒸气流量为30 mL/h的条件下水热处理2h,然后置于三口烧瓶中,加入100 mL pH值为9.5的氨水溶液,在100 ℃水浴中冷凝回流6h进行富羟基化处理,然后收集处理后的二氧化硅空心微球,放在120 ℃烘箱中烘干至恒重。以EDTA-PdCl2为浸渍液,以等体积浸渍法将其逐滴加入到预处理后的二氧化硅空心微球上,制备Pd负载量为4 wt.%的非均相催化剂Pd/SiO2
图2为本实施例所得催化剂的TEM图。由图中可见,催化剂表面颗粒分布均匀,尺寸较小。
实施例2
预处理的二氧化硅空心微球载体的制备方法如实施例1。以EDTA-NiCl2为浸渍液,制备Ni负载量为4wt.%的非均相催化剂Ni/SiO2
实施例3
预处理的二氧化硅空心微球载体的制备方法如实施例1。以TEA-PdCl2为浸渍液,制备Pd负载量为4wt.%的非均相催化剂Pd/SiO2
实施例4
取1.0g制备的二氧化硅空心微球置于石英杯中,装入水蒸汽处理装置的横温段,升温至600℃,在水蒸气流量为30 mL/h的条件下水热处理4h,然后置于三口烧瓶中,加入100 mL pH值为10的Na2CO3溶液,在100 ℃水浴中冷凝回流6h进行富羟基化处理,然后收集处理后的二氧化硅空心微球,放在120 ℃烘箱中烘干至恒重。以EDTA-PdCl2为浸渍液,按实施例1相同操作制备Pd负载量为4wt.%的非均相催化剂Pd/SiO2
实施例5
取1.0g制备的二氧化硅空心微球置于石英杯中,装入水蒸汽处理装置的横温段,升温至600 oC,在水蒸气流量为30 mL/h的条件下水热处理4h,然后置于三口烧瓶中,加入100 ml pH值为1.0的硝酸溶液,在100 ℃水浴中冷凝回流6h进行富羟基化处理,然后收集处理后的二氧化硅空心微球,放在120 ℃烘箱中烘干至恒重。以EDTA-PdCl2为浸渍液,按实施例1相同操作制备Pd负载量为4wt.%的非均相催化剂Pd/SiO2
对比例1
取1.0g制备的二氧化硅空心微球置于石英杯中,装入水蒸汽处理装置的横温段,升温至800℃,在水蒸气流量为30 mL/h的条件下水热处理2h。然后直接以其为载体,以EDTA-PdCl2为浸渍液,按实施例1相同操作制备Pd负载量为4wt.%的非均相催化剂Pd/SiO2
图3为本对比例所得催化剂的TEM图。由图中可见,仅经高温水蒸汽除孔处理后的催化剂表面颗粒分布不均匀,尺寸较大。
对比例2
直接以二氧化硅空心微球作为载体,以EDTA-PdCl2为浸渍液,按实施例1相同操作制备Pd负载量为4wt.%的非均相催化剂Pd/SiO2
1. 将实施例1-5及对比例1、2所得催化剂进行聚苯乙烯(PS)的催化加氢试验,其具体是将2.0g PS溶解在100mL环己烷(80vol%)与四氢呋喃(20vol%)的混合物中得到胶液;将1.0g催化剂加入到胶液中,在高压反应釜中进行加氢反应,反应条件为:温度150℃,氢压7Mpa,反应时间8h,搅拌速率1200rpm,反应结束后,蒸发其中的有机溶剂得到聚环己基乙烯。所得PS的加氢度结果见表1。
表1 PS的加氢度
Figure DEST_PATH_IMAGE002
由表1可见,与对比例相比,本发明采用经高温水蒸汽处理及富羟基化处理后的二氧化硅空心微球作为载体制备的负载型催化剂对PS的非均相加氢具有良好催化活性。
2. 将经聚苯乙烯(PS)催化加氢试验后的实施例1催化剂经离心分离回收,用于考察其对PS的加氢催化性能。其回收方法为:将反应后的催化剂以丙酮洗涤5次,充分去除表面粘附的聚合物,然后于50 ℃烘箱中完全烘干至恒重。所得试验结果见表2。
表2 PS的加氢度
Figure DEST_PATH_IMAGE004
由表2可见,本发明催化剂稳定性良好,经5次重复加氢反应后,对PS的加氢转化率仍能保持在90%以上。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1. 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂的制备方法,其特征在于:采用水/油/水三相乳液法制备表面具有贯穿大孔的二氧化硅空心微球;然后将其进行高温水蒸汽处理,再利用稀酸或稀碱进行富羟基化处理,得预处理后的二氧化硅空心微球;将所得预处理后的二氧化硅空心微球作为载体,以络合辅助等体积浸渍法负载活性金属组分,得到负载量为0.5-5wt %的负载型加氢催化剂;
高温水蒸汽处理的时间为1-10 h,温度为500-800℃;
富羟基化处理中所用稀酸为pH值1.0-5.0的盐酸溶液或硝酸溶液;所用稀碱为pH值7.0-13.0的NaOH溶液、氨水或Na2CO3溶液;
所述络合辅助等体积浸渍法是采用氨基羧酸盐类或醇胺类络合剂,将其与金属氯化盐按摩尔比1:1-3:1混合配成活性金属前驱体溶液,然后将活性金属前驱体溶液逐滴加入到作为载体的预处理后的二氧化硅空心微球上,空气中晾干后在300-500℃下焙烧3h,冷却至室温,再在120℃、H2气氛下还原2 h;
所述活性金属组分为Pd、Rh或Ni。
2.根据权利要求1所述的用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂的制备方法,其特征在于:所述表面具有贯穿大孔的二氧化硅空心微球是通过以下步骤制备的:
(1)内层水相的制备:将硅酸钠和去离子水配成硅含量为22.4 wt%的水玻璃溶液,其相对粘度为4.0-5.0Pa·S;
(2)油相的制备:将正己烷、Tween 80、Span 80按质量比30:1:1混合,得到油相;
(3)外层水相的制备:配制浓度为2 mol/L的NH4HCO3溶液;
(4)二氧化硅空心微球的制备:将内层水相和油相按体积比1:1-3:1混合,6000-12000rpm搅拌乳化1 min,然后转移到烧杯中,再按体积比1:1加入外层水相,在搅拌条件下常温老化2 h后过滤,所得白色固体用去离子水洗涤2次、乙醇洗涤3次后,于100 ℃烘箱中烘干至恒重。
CN201711277618.2A 2017-12-06 2017-12-06 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法 Active CN108014789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711277618.2A CN108014789B (zh) 2017-12-06 2017-12-06 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711277618.2A CN108014789B (zh) 2017-12-06 2017-12-06 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN108014789A CN108014789A (zh) 2018-05-11
CN108014789B true CN108014789B (zh) 2020-03-10

Family

ID=62078812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711277618.2A Active CN108014789B (zh) 2017-12-06 2017-12-06 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108014789B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111085268B (zh) * 2018-10-24 2023-07-21 中国石油化工股份有限公司 聚苯乙烯加氢制聚环己烷基乙烯的加氢催化剂及制备方法和加氢方法
CN111085272B (zh) * 2018-10-24 2023-05-12 中国石油化工股份有限公司 聚苯乙烯加氢制聚环己烷基乙烯的加氢催化剂及制备方法和加氢方法
CN112871199A (zh) * 2021-02-27 2021-06-01 福州大学 一种非均相负载型加氢催化剂、其制备方法以及其在加氢制备聚环己烷基乙烯上的应用
CN117225403A (zh) * 2023-11-14 2023-12-15 北京海望氢能科技有限公司 脱氢催化剂及其制备方法与应用
CN117380183B (zh) * 2023-12-04 2024-02-20 黎明化工研究设计院有限责任公司 一种负载型钯纳米颗粒催化剂的制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909034B (zh) * 2011-08-03 2014-07-02 中国科学院大连化学物理研究所 一种担载型金镍合金纳米催化剂的制备
CN104140480B (zh) * 2013-05-08 2016-10-19 中国石油大学(北京) 一种聚苯乙烯加氢制备聚环己基乙烯的方法
CN104941654B (zh) * 2015-05-21 2017-07-21 中国石油大学(北京) 一种氧化铝基加氢精制催化剂及其制备方法与应用
CN105601463B (zh) * 2015-12-31 2017-12-05 浙江工业大学 一种直链烷基苯催化加氢精制的方法
CN105646148B (zh) * 2015-12-31 2017-12-29 浙江工业大学 一种乙酸加氢制乙醇的方法

Also Published As

Publication number Publication date
CN108014789A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN108014789B (zh) 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法
CN109796019B (zh) 一种空心二氧化硅纳米球及其制备方法和应用
CN109305881A (zh) 一种醇类化合物的合成方法
CN111135840B (zh) 负载型单原子分散贵金属催化剂的制备方法
CN105565296B (zh) 一种单次高产量制备粒径为100~800 nm的单分散氮掺杂有序介孔碳球的方法
Cao et al. Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO 2 for hydrogenation of nitrile butadiene rubber
CN103008012A (zh) 金属有机骨架结构材料负载铂催化剂、制备方法及其应用
JP2005314223A (ja) 多孔質炭素材料およびその製造方法
CN107597106B (zh) 一种中空介孔硅纳米胶囊包裹铂催化剂的制备方法及其应用
Zhang et al. Combining shell confinement and outside decoration to boost the selectivity of Pt nanocatalysts in hollow-flower like Zr-MOFs double shell micro-reactor for hydrogenation cinnamaldehyde to unsaturated alcohol
CN112495374B (zh) 采用低温等离子体改性石墨烯制备负载型贵金属催化剂的方法和应用
CN112371173B (zh) 一种应用于间硝基苯磺酸加氢的铂炭催化剂及其制备方法
CN112138696A (zh) 一种过渡金属负载氮修饰有序介孔纳米碳球的制备方法
Xu et al. Synthesis of multiple Ag nanoparticles loaded hollow mesoporous carbon spheres for highly efficient and recyclable catalysis
CN104248984B (zh) 球形硅藻土介孔复合材料和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
Tian et al. Nickel and cobalt nanoparticles modified hollow mesoporous carbon microsphere catalysts for efficient catalytic reduction of widely used dyes
CN109046442B (zh) 多级孔分子筛负载铂铁双金属催化剂及其制备和应用
CN111468118A (zh) 碳包覆过渡金属的纳米复合材料及其制备方法和应用
CN113976167A (zh) 一种Pd/HY分子筛的制备方法及其应用和在多级孔分子筛上选择性负载金属的方法
Ma et al. Phosphorus and nitrogen-doped palladium nanomaterials support on coral-like carbon materials as the catalyst for semi-hydrogenation of phenylacetylene and mechanism study
CN112871199A (zh) 一种非均相负载型加氢催化剂、其制备方法以及其在加氢制备聚环己烷基乙烯上的应用
CN102895970B (zh) 一种有机气凝胶负载Pd化合物制备Pd/C催化剂的方法及Pd/C催化剂
Wei et al. Facile synthesis of hollow structured mesoporous silica nanoreactors with confined ultra-small Pd NPs for efficient hydrogenation reactions
CN111468154A (zh) 碳包覆过渡金属的纳米复合材料及其制备方法和应用
CN112044392A (zh) 镁改性纳米二氧化硅中空球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant