CN107994834B - 多电机系统自适应快速终端滑模同步控制方法 - Google Patents

多电机系统自适应快速终端滑模同步控制方法 Download PDF

Info

Publication number
CN107994834B
CN107994834B CN201710957680.XA CN201710957680A CN107994834B CN 107994834 B CN107994834 B CN 107994834B CN 201710957680 A CN201710957680 A CN 201710957680A CN 107994834 B CN107994834 B CN 107994834B
Authority
CN
China
Prior art keywords
formula
error
diag
bounded
motor system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710957680.XA
Other languages
English (en)
Other versions
CN107994834A (zh
Inventor
陈强
余歆祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710957680.XA priority Critical patent/CN107994834B/zh
Publication of CN107994834A publication Critical patent/CN107994834A/zh
Application granted granted Critical
Publication of CN107994834B publication Critical patent/CN107994834B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P23/0009Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P23/0022Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)
  • External Artificial Organs (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

一种基于均值耦合误差的多电机系统有限时间位置同步控制方法,针对一个考虑扰动影响的多电机系统,将位置跟踪误差和均值耦合误差组合得到复合误差,利用复合误差,结合快速终端滑模控制方法与自适应方法,设计了一种自适应快速终端滑模同步控制方法;复合误差用于同时确保系统的位置跟踪性能和同步性能;终端滑模控制方法用于保证系统的快速稳定收敛;自适应方法用于估计系统的未知扰动。本发明提供了一种能够同时保证系统的位置跟踪性能和同步性能,并且能有效补偿系统未知扰动的控制方法,实现系统的快速稳定控制。

Description

多电机系统自适应快速终端滑模同步控制方法
技术领域
本发明涉及一种基于均值耦合误差的多电机系统自适应快速终端滑模同步控制方法,特别是带有未知扰动的多电机系统的同步控制方法。
背景技术
一直以来,多电机系统在工业生产中有着举足轻重的地位,且随着现代工业的发展,对多电机系统的控制精度与抗扰性要求越来越高。从传统的轧钢机、造纸机,印刷机,到现在的工业机器人、小型四旋翼无人机等都是多电机系统的应用领域。通常来说,这些多电机系统都需要保持各电机同步运行,较差的同步性能会导致次品增多,指定任务无法完成,甚至损害设备本身。因此,提高多电机系统的同步性能具有重要意义。然而,实际应用中存在许多影响多电机系统同步性能的因素。比如设备的参数变化,运行中的负载扰动等,这些不可预知的干扰对多电机系统的抗扰能力与系统的同步性能提出了巨大考验。可见,研究高精度的多电机同步控制方法具有十分重要的应用价值。
关于同步方法,最早由Koren针对双轴运动系统提出交叉耦合同步方法,该方法良好地解决了各电机的期望轨迹跟踪与同步问题,但是受到控制复杂度的限制,该方法仅适用于电机数目为2的情形。为了便于工程拓展,偏差耦合同步方法被提出,但是当电机数目较多时该同步方法仍面临控制复杂度过高的问题。为此,一些改进型同步方法被提出,例如环耦合控制、相邻耦合控制等。随着电机数目增多,这些改进型同步方法的控制复杂度不会随之上升,但是同步控制性能却会随之下降。因此,研究一种电机数目增多时控制复杂度不会上升,且同步性能不会下降的同步方法具有重要意义。
关于控制方法,滑模控制在解决系统不确定性和外部扰动方面被认为是一个有效的鲁棒控制方法。滑模控制方法具有算法简单、响应速度快、对外界噪声干扰和参数摄动鲁棒性强等优点。因此,滑模控制方法被广泛应用于机器人、电机、飞行器等领域。然而,传统的线性滑模控制和终端滑模控制分别存在渐进收敛和奇异值问题。非奇异快速终端滑模控制能在保证系统有限时间收敛的同时解决奇异值问题,成为了滑模控制领域一个热点研究方向。此外,在控制器设计过程中,如何对扰动进行补偿直接影响着系统在扰动下的工作性能。通常采用自适应方法对扰动进行实时估计,然后根据估计值进行补偿,从而无需关于扰动上界的先验知识。
发明内容
为了克服现有的多电机系统控制方法的在未知扰动作用下无法兼顾跟踪性能与同步性能的不足,本发明将跟踪误差与均值耦合误差组合得到复合误差,利用复合误差,提出了一种基于均值耦合误差的多电机系统自适应快速终端滑模同步控制方法,保证系统快速稳定收敛。
为了解决上述技术问题提出的技术方案如下:
一种多电机系统自适应快速终端滑模同步控制方法,所述控制方法包括以下步骤:
步骤1,建立多电机系统的动态模型,初始化系统状态、采样时间以及控制参数;
一个由n台电机组成的多电机系统,其动态模型描述为
Figure GDA0002189095200000021
定义diag[g1,g2,...,gn]为n阶对角矩阵,g1,g2,...,gn为对角线元素,则式(1)中J=diag[J1,J2,...,Jn]表示转动惯量,x=[x1,x2,...,xn]T表示位置,则
Figure GDA0002189095200000022
Figure GDA0002189095200000023
分别表示加速度、速度,b=diag[b1,b2,...,bn]表示粘滞摩擦系数,k=diag[k1,k2,...,kn]表示控制增益,u=[u1,u2,...,un]T表示控制输入,d=[d1,d2,...,dn]T表示扰动,且d是有界的;
步骤2,对多电机系统的位置跟踪误差、同步误差、均值耦合误差、复合误差进行定义,定义如下:
2.1位置跟踪误差定义为
e=x-xd (2)
其中e=[e1,e2,...,en]T,xd=[xd1,xd2,...,xdn]T为期望位置;
2.2同步误差定义为
Figure GDA0002189095200000031
2.3多电机系统的同步条件表示为
Figure GDA0002189095200000032
2.4均值耦合误差定义为
定义ε=[ε1,ε2,...,εn]T,将式(5)写成矩阵形式为
ε=Te (6)
其中
只要控制ε=0,也就是解方程组ε=Te=0,就能得到同步条件式(4);
2.5复合误差定义为
E=e+λε (8a)
式(8a)也表示为
E=(I+λT)e (8b)
其中E=[E1,E2,...,En]T,I为n阶单位矩阵,λ=diag[λ1,λ2,...,λn]表示同步系数矩阵,且λ1,λ2,...,λn均为正数,根据λ、T的定义,(I+λT)亦为正定矩阵,由式(8b)可知,当E=0,有唯一解e=0,再由式(8a)可知,此时也有ε=0,也就是说,只要设计控制器控制E=0,就能同时保证e=0,ε=0,即同时保证了系统的跟踪性能和同步性能;
步骤3,利用复合误差,结合快速终端滑模理论与自适应理论,设计控制输入,过程如下:
3.1做如下定义
sig(y)η=[|y1|ηsign(y1),|y2|ηsign(y2),...,|yn|ηsign(yn)] (9)
其中y=[y1,y2,...,yn]T表示n维向量,η为正实数,sign()为符号函数;
3.2对一个n电机系统,设计快速终端滑模切换函数
Figure GDA0002189095200000041
其中s=[s1,s2,...,sn]T表示滑模变量,α=diag[α1,α2,...,αn]、β=diag[β1,β2,...,βn]为两个n阶正定矩阵,1/2<γ<1;
3.3定义
Figure GDA0002189095200000042
由于γ-1<0,当Ej=0,j=1,2,...,n时,Erj会出现奇异值问题;为此对Erj进行如下处理
Figure GDA0002189095200000043
3.4将式(10)对时间求导有
3.5在一个实际系统中,扰动d是有界的,其上界用以下不等式表示
Figure GDA0002189095200000049
其中μ0,μ1,μ2为正数;
3.6定义
Figure GDA0002189095200000045
分别为μ0,μ1,μ2的估计值,设计参数自适应律为
Figure GDA0002189095200000046
其中η0,η1,η2,σ0,σ1,σ2均为正常数;
3.7定义
Figure GDA0002189095200000047
分别为
Figure GDA0002189095200000048
的参数估计误差,表达式为
3.8定义扰动上界估计误差∈为
3.9控制输入u由趋近控制律u0和扰动补偿控制律u1两部分构成,表示为
u=u0+u1 (18)
Figure GDA0002189095200000053
Figure GDA0002189095200000054
其中m=diag[m1,m2,...,mn],n=diag[n1,n2,...,nn],0<ρ<1
步骤4复合误差的有限时间一致最终有界性分析,过程如下:
4.1设计李雅普诺夫函数
Figure GDA0002189095200000055
式(21)对时间求导有
Figure GDA0002189095200000056
其中,mmin=min{mj},nmin=min{nj},符号min表示取一个集合中元素的最小值,A=min{2mmin,σiηi},
Figure GDA0002189095200000061
显然,式(22)所示微分方程说明V1是有界的,因此s、
Figure GDA0002189095200000062
是有界的,从而系统中所有信号都是有界的;
4.2再选取李雅普诺夫函数为
将式(23)对时间求导得
Figure GDA0002189095200000064
式(24)中,当
Figure GDA0002189095200000065
Figure GDA0002189095200000066
时,有
Figure GDA0002189095200000067
Figure GDA0002189095200000068
Figure GDA0002189095200000069
时,有
Figure GDA00021890952000000610
结合式(25)和式(26)有,当
Figure GDA00021890952000000611
时,符号max表示求集合中元素的最大值,有
Figure GDA00021890952000000612
Figure GDA00021890952000000613
式(28)是一种典型的快速终端型李雅普诺夫条件,说明滑模变量s会在有限时间内收敛到区域
||s||≤Δ1 (29)
4.3根据式(29)||s||≤Δ1,有
|sj|≤Δ1 (30)
由式(10)和式(30)有
Figure GDA0002189095200000071
其中φj为一个正数,且满足|φj|<Δ1
式(31)写为
Figure GDA0002189095200000072
显然,只要保证
Figure GDA0002189095200000075
式(32)仍可保持快速终端滑模面的结构,因此Ej将在有限时间内收敛到区域
Figure GDA0002189095200000074
复合误差有限时间一致最终有界,从而也有跟踪误差和均值耦合误差有限时间一致最终有界。
本发明考虑未知扰动的影响,将位置跟踪误差与均值耦合误差组合得到复合误差,利用复合误差,结合快速终端滑模控制方法与自适应方法,设计多电机系统的自适应快速终端滑模同步控制方法,实现系统快速稳定控制。
本发明的技术构思为:针对一个考虑扰动影响的多电机系统,将位置跟踪误差和均值耦合误差组合得到复合误差,利用复合误差,结合快速终端滑模控制方法与自适应方法,设计了一种自适应快速终端滑模同步控制方法。复合误差用于同时确保系统的位置跟踪性能和同步性能;终端滑模控制方法用于保证系统的快速稳定收敛;自适应方法用于估计系统的未知扰动。本发明提供了一种能够同时保证系统的位置跟踪性能和同步性能,并且能有效补偿系统未知扰动的控制方法,实现系统的快速稳定控制。
本发明的优点为:保证复合误差收敛能同时保证多电机系统的位置跟踪性能与同步性能,补偿系统未知扰动,系统有限时间稳定。
附图说明
图1为本发明的控制系统结构框图;
图2为本发明的位置跟踪误差的示意图,其中,(a)、(b)、(c)、(d)分别表示1-4号电机的跟踪误差;
图3为本发明的同步误差的示意图,其中,(a)、(b)、(c)、(d)分别表示1-4号电机的同步误差;
图4为本发明的控制输入的示意图,其中,(a)、(b)、(c)、(d)分别表示1-4号电机的控制输入;
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1-图4,一种基于均值耦合误差的多电机系统自适应快速终端滑模同步控制方法,包括以下步骤:
步骤1,建立多电机系统的动态模型,初始化系统状态、采样时间以及控制参数;
一个由n台电机组成的多电机系统,其动态模型描述为
Figure GDA0002189095200000081
定义diag[g1,g2,...,gn]为n阶对角矩阵,g1,g2,...,gn为对角线元素,则式(1)中J=diag[J1,J2,...,Jn]表示转动惯量,x=[x1,x2,...,xn]T表示位置,则
Figure GDA0002189095200000082
Figure GDA0002189095200000083
分别表示加速度、速度,b=diag[b1,b2,...,bn]表示粘滞摩擦系数,k=diag[k1,k2,...,kn]表示控制增益,u=[u1,u2,...,un]T表示控制输入,d=[d1,d2,...,dn]T表示扰动,且d是有界的;
步骤2,对多电机系统的位置跟踪误差、同步误差、均值耦合误差、复合误差进行定义,定义如下:
2.1位置跟踪误差定义为
e=x-xd (2)
其中e=[e1,e2,...,en]T,xd=[xd1,xd2,...,xdn]T为期望位置;
2.2同步误差定义为
Figure GDA0002189095200000084
2.3多电机系统的同步条件表示为
2.4均值耦合误差定义为
定义ε=[ε1,ε2,...,εn]T,将式(5)写成矩阵形式为
ε=Te (6)
其中
Figure GDA0002189095200000092
只要控制ε=0,也就是解方程组ε=Te=0,就能得到同步条件式(4);
2.5复合误差定义为
E=e+λε (8a)
式(8a)也表示为
E=(I+λT)e (8b)
其中E=[E1,E2,...,En]T,I为n阶单位矩阵,λ=diag[λ1,λ2,...,λn]表示同步系数矩阵,且λ1,λ2,...,λn均为正数,根据λ、T的定义,(I+λT)亦为正定矩阵,由式(8b)可知,当E=0,有唯一解e=0,再由式(8a)可知,此时也有ε=0,也就是说,只要设计控制器控制E=0,就能同时保证e=0,ε=0,即同时保证了系统的跟踪性能和同步性能;
步骤3,利用复合误差,结合快速终端滑模理论与自适应理论,设计控制输入,过程如下;
3.1做如下定义
sig(y)η=[|y1|ηsign(y1),|y2|ηsign(y2),...,|yn|ηsign(yn)] (9)
其中y=[y1,y2,...,yn]T表示n维向量,η为正实数,sign()为符号函数;
3.2对一个n电机系统,设计快速终端滑模切换函数
Figure GDA0002189095200000101
其中s=[s1,s2,...,sn]T表示滑模变量,α=diag[α1,α2,...,αn]、β=diag[β1,β2,...,βn]为两个n阶正定矩阵,1/2<γ<1;
3.3定义
Figure GDA0002189095200000102
由于γ-1<0,当Ej=0,j=1,2,...,n时,Erj会出现奇异值问题;为此对Erj进行如下处理
Figure GDA0002189095200000103
3.4将式(10)对时间求导有
Figure GDA0002189095200000104
3.5在一个实际系统中,扰动d是有界的,其上界用以下不等式表示
Figure GDA0002189095200000105
其中μ0,μ1,μ2为正数;
3.6定义
Figure GDA0002189095200000106
分别为μ0,μ1,μ2的估计值,设计参数自适应律为
Figure GDA0002189095200000107
其中η0,η1,η2,σ0,σ1,σ2均为正常数;
3.7定义分别为的参数估计误差,表达式为
Figure GDA00021890952000001010
3.8定义扰动上界估计误差∈为
3.9控制输入u由趋近控制律u0和扰动补偿控制律u1两部分构成,表示为
u=u0+u1 (18)
Figure GDA00021890952000001012
其中m=diag[m1,m2,...,mn],n=diag[n1,n2,...,nn],0<ρ<1
步骤4复合误差的有限时间一致最终有界性分析,过程如下:
4.1设计李雅普诺夫函数
Figure GDA0002189095200000112
式(21)对时间求导有
其中,mmin=min{mj},nmin=min{nj},符号min表示取一个集合中元素的最小值,A=min{2mmin,σiηi},
Figure GDA0002189095200000114
显然,式(22)所示微分方程说明V1是有界的,因此s、
Figure GDA0002189095200000115
是有界的,从而系统中所有信号都是有界的;
4.2再选取李雅普诺夫函数为
将式(23)对时间求导得
Figure GDA0002189095200000117
Figure GDA0002189095200000121
式(24)中,当时,有
Figure GDA0002189095200000124
Figure GDA0002189095200000125
Figure GDA0002189095200000126
时,有
Figure GDA0002189095200000127
结合式(25)和式(26)有,当时(符号max表示求集合中元素的最大值),有
Figure GDA0002189095200000129
Figure GDA00021890952000001210
式(28)是一种典型的快速终端型李雅普诺夫条件,说明滑模变量s会在有限时间内收敛到区域
||s||≤Δ1 (29)
4.3根据式(29)||s||≤Δ1,有
|sj|≤Δ1 (30)
由式(10)和式(30)有
Figure GDA00021890952000001211
其中φj为一个正数,且满足|φj|<Δ1
式(31)写为
Figure GDA00021890952000001212
显然,只要保证
Figure GDA0002189095200000131
Figure GDA0002189095200000132
式(32)仍可保持快速终端滑模面的结构,因此Ej将在有限时间内收敛到区域
Figure GDA0002189095200000133
可见复合误差有限时间一致最终有界,从而也有跟踪误差和均值耦合误差有限时间一致最终有界。
以4电机系统n=4为例,四台电机的模型参数略有差别,如表1所示:
参数 电机1 电机2 电机3 电机4
J(kg·m<sup>2</sup>) 0.008 0.0082 0.0077 0.0073
b(N·m·s) 0.0005 0.00052 0.00047 0.00045
表1
系统初始化为[x1,x2,x3,x4]T=[0,0,0,0]T,期望位置统一给为[xd1,xd2,xd3,xd4]T=[2,2,2,2]T,d=[0,0,0,0]T
为了验证本发明能同时保证系统的位置跟踪性能与同步性能的优点,本发明将传统多电机系统平行控制方法作为对比,即本发明中同步系数矩阵λ取为diag[0.8,0.8,0.8,0.8],平行控制方法中取λ=diag[0,0,0,0](相当于不考虑均值耦合误差),此外控制器设计与其他所有控制参数都是一致的。α=diag[3,3,3,3],β=diag[5,5,5,5],γ=3/5,m=diag[5,5,5,5],n=diag[0.1,0.1,0.1,0.1],ρ=1/3,η0=2,η1=1,η2=0.01,σ0=0.3,σ1,0.8,σ2=0.01,在1s时对每台电机加入d=[-5,-5,-5,-5]T的扰动。
从图2可以看出,本发明能够快速对位置给定信号进行跟踪,且在加入扰动后,位置跟踪误差仍可收敛到0附近一个很小的领域内;从图3可以看出,对比平行控制方法,无论是在电机启动阶段或受到扰动后,本发明同步误差更小,同步性能更好;结合图2与图3可见,本发明将位置跟踪误差和均值耦合误差组合成复合误差来设计控制器,可以同时保证系统的位置跟踪性能和同步性能。从图4可以看出,系统中各电机受到-5N·m的扰动后,控制输入也迅速增加到5N·m左右,说明本发明能够较好的对扰动进行补偿。
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提下对其可作种种变形加以实施。

Claims (1)

1.一种多电机系统自适应快速终端滑模同步控制方法,其特征在于,所述控制方法包括以下步骤:
步骤1,建立多电机系统的动态模型,初始化系统状态、采样时间以及控制参数;
一个由n台电机组成的多电机系统,其动态模型描述为
Figure FDA0002150574520000011
定义diag[g1,g2,...,gn]为n阶对角矩阵,g1,g2,...,gn为对角线元素,则式(1)中J=diag[J1,J2,...,Jn]表示转动惯量,x=[x1,x2,...,xn]T表示位置,则
Figure FDA0002150574520000012
分别表示加速度、速度,b=diag[b1,b2,...,bn]表示粘滞摩擦系数,k=diag[k1,k2,...,kn]表示控制增益,u=[u1,u2,...,un]T表示控制输入,d=[d1,d2,...,dn]T表示扰动,且d是有界的;
步骤2,对多电机系统的位置跟踪误差、同步误差、均值耦合误差、复合误差进行定义,定义如下:
2.1位置跟踪误差定义为
e=x-xd (2)
其中e=[e1,e2,...,en]T,xd=[xd1,xd2,...,xdn]T为期望位置;
2.2同步误差定义为
Figure FDA0002150574520000014
2.3多电机系统的同步条件表示为
Figure FDA0002150574520000015
2.4均值耦合误差定义为
Figure FDA0002150574520000016
定义ε=[ε1,ε2,...,εn]T,将式(5)写成矩阵形式为
ε=Te (6)
其中
Figure FDA0002150574520000021
只要控制ε=0,也就是解方程组ε=Te=0,就能得到同步条件式(4);
2.5复合误差定义为
E=e+λε (8a)
式(8a)也表示为
E=(I+λT)e (8b)
其中E=[E1,E2,...,En]T,I为n阶单位矩阵,λ=diag[λ1,λ2,...,λn]表示同步系数矩阵,且λ1,λ2,...,λn均为正数,根据λ、T的定义,(I+λT)亦为正定矩阵,由式(8b)可知,当E=0,有唯一解e=0,再由式(8a)可知,此时也有ε=0,也就是说,只要设计控制器控制E=0,就能同时保证e=0,ε=0,即同时保证了系统的跟踪性能和同步性能;
步骤3,利用复合误差,结合快速终端滑模理论与自适应理论,设计控制输入,过程如下:
3.1做如下定义
sig(y)η=[|y1|ηsign(y1),|y2|ηsign(y2),...,|yn|ηsign(yn)] (9)
其中y=[y1,y2,...,yn]T表示n维向量,η为正实数,sign( )为符号函数;
3.2对一个n电机系统,设计快速终端滑模切换函数
其中s=[s1,s2,...,sn]T表示滑模变量,α=diag[α1,α2,...,αn]、β=diag[β1,β2,...,βn]为两个n阶正定矩阵,1/2<γ<1;
3.3定义
由于γ-1<0,当Ej=0,j=1,2,...,n时,Erj会出现奇异值问题;为此对Erj进行如下处理
Figure FDA0002150574520000032
3.4将式(10)对时间求导有
3.5在一个实际系统中,扰动d是有界的,其上界用以下不等式表示
Figure FDA0002150574520000034
其中μ0,μ1,μ2为正数;
3.6定义分别为μ0,μ1,μ2的估计值,设计参数自适应律为
Figure FDA0002150574520000036
其中η0,η1,η2,σ0,σ1,σ2均为正常数;
3.7定义
Figure FDA0002150574520000037
分别为
Figure FDA0002150574520000038
的参数估计误差,表达式为
3.8定义扰动上界估计误差∈为
Figure FDA00021505745200000310
3.9控制输入u由趋近控制律u0和扰动补偿控制律u1两部分构成,表示为
u=u0+u1 (18)
Figure FDA00021505745200000311
其中m=diag[m1,m2,...,mn],n=diag[n1,n2,...,nn],0<ρ<1
步骤4复合误差的有限时间一致最终有界性分析,过程如下:
4.1设计李雅普诺夫函数
式(21)对时间求导有
Figure FDA0002150574520000042
其中,mmin=min{mj},nmin=min{nj},符号min表示取一个集合中元素的最小值,A=min{2mmin,σiηi},显然,式(22)所示微分方程说明V1是有界的,因此s、
Figure FDA0002150574520000044
是有界的,从而系统中所有信号都是有界的;
4.2再选取李雅普诺夫函数为
Figure FDA0002150574520000045
将式(23)对时间求导得
Figure FDA0002150574520000046
式(24)中,当
Figure FDA0002150574520000051
Figure FDA0002150574520000052
时,
Figure FDA0002150574520000054
Figure FDA0002150574520000055
时,有
Figure FDA0002150574520000056
结合式(25)和式(26)有,当||s||>Δ1
Figure FDA0002150574520000057
时,符号max表示求集合中元素的最大值,有
Figure FDA0002150574520000059
式(28)是一种典型的快速终端型李雅普诺夫条件,说明滑模变量s会在有限时间内收敛到区域
||s||≤Δ1 (29)
4.3根据式(29)||s||≤Δ1,有
|sj|≤Δ1 (30)
由式(10)和式(30)有
Figure FDA00021505745200000510
其中φj为一个正数,且满足|φj|<Δ1
式(31)写为
Figure FDA00021505745200000511
显然,只要保证
Figure FDA00021505745200000512
Figure FDA00021505745200000513
式(32)仍可保持快速终端滑模面的结构,因此Ej将在有限时间内收敛到区域
Figure FDA00021505745200000514
复合误差有限时间一致最终有界,从而也有跟踪误差和均值耦合误差有限时间一致最终有界。
CN201710957680.XA 2017-10-16 2017-10-16 多电机系统自适应快速终端滑模同步控制方法 Active CN107994834B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710957680.XA CN107994834B (zh) 2017-10-16 2017-10-16 多电机系统自适应快速终端滑模同步控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710957680.XA CN107994834B (zh) 2017-10-16 2017-10-16 多电机系统自适应快速终端滑模同步控制方法

Publications (2)

Publication Number Publication Date
CN107994834A CN107994834A (zh) 2018-05-04
CN107994834B true CN107994834B (zh) 2020-01-10

Family

ID=62029856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710957680.XA Active CN107994834B (zh) 2017-10-16 2017-10-16 多电机系统自适应快速终端滑模同步控制方法

Country Status (1)

Country Link
CN (1) CN107994834B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681252B (zh) * 2018-05-15 2021-01-01 浙江工业大学 一种多机械臂系统有限时间参数辨识与位置同步控制方法
CN108549400B (zh) * 2018-05-28 2021-08-03 浙江工业大学 基于对数增强型双幂次趋近律和快速终端滑模面的四旋翼飞行器自适应控制方法
CN108762088B (zh) * 2018-06-20 2021-04-09 山东科技大学 一种迟滞非线性伺服电机系统滑模控制方法
CN110855191B (zh) * 2019-11-13 2021-04-06 浙江工业大学 一种基于滑模控制的智能手套机针筒电机与机头电机的同步控制方法
CN111277175B (zh) * 2020-03-12 2023-05-09 荣信汇科电气股份有限公司 一种基于混合交叉耦合的多电机同步控制方法
CN113098347A (zh) * 2021-04-12 2021-07-09 山东理工大学 一种多电机速度同步控制方法
CN113110512B (zh) * 2021-05-19 2022-08-26 哈尔滨工程大学 一种减弱未知干扰与抖振影响的可底栖式auv自适应轨迹跟踪控制方法
CN114362597A (zh) * 2022-01-14 2022-04-15 西安理工大学 电动汽车爬坡多电机无位置传感器同步控制方法
CN116619383B (zh) * 2023-06-21 2024-02-20 山东大学 基于确定学习的机械臂pid控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130282A1 (en) * 2012-03-02 2013-09-06 Deere & Company Drive systems including sliding mode observers and methods of controlling the same
CN203562983U (zh) * 2013-11-18 2014-04-23 湖南工业大学 多电机同步控制系统
CN103872951A (zh) * 2014-04-23 2014-06-18 东南大学 基于滑模磁链观测器的永磁同步电机转矩控制方法
CN105743395A (zh) * 2016-01-08 2016-07-06 浙江工业大学 一种基于自抗扰的多电机运动同步改进型相邻耦合控制方法
CN106208824A (zh) * 2016-07-22 2016-12-07 浙江工业大学 一种基于自抗扰迭代学习的多电机同步控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130282A1 (en) * 2012-03-02 2013-09-06 Deere & Company Drive systems including sliding mode observers and methods of controlling the same
CN203562983U (zh) * 2013-11-18 2014-04-23 湖南工业大学 多电机同步控制系统
CN103872951A (zh) * 2014-04-23 2014-06-18 东南大学 基于滑模磁链观测器的永磁同步电机转矩控制方法
CN105743395A (zh) * 2016-01-08 2016-07-06 浙江工业大学 一种基于自抗扰的多电机运动同步改进型相邻耦合控制方法
CN106208824A (zh) * 2016-07-22 2016-12-07 浙江工业大学 一种基于自抗扰迭代学习的多电机同步控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《多轴位置伺服相邻耦合滑模控制》;胡旭等;《机械设计与研究》;20150430;第31卷(第2期);全文 *

Also Published As

Publication number Publication date
CN107994834A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN107994834B (zh) 多电机系统自适应快速终端滑模同步控制方法
Zhang et al. Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties
CN109564406B (zh) 一种自适应终端滑模控制方法
CN108303885B (zh) 一种基于干扰观测器的电机位置伺服系统自适应控制方法
Lu et al. Finite-time distributed tracking control for multi-agent systems with a virtual leader
Sui et al. Adaptive fuzzy backstepping output feedback tracking control of MIMO stochastic pure-feedback nonlinear systems with input saturation
CN111459051B (zh) 一种带扰动观测器的离散终端滑模无模型控制方法
CN111158343B (zh) 一种针对带有执行器和传感器故障的切换系统的异步容错控制方法
Wang et al. Neural network-based adaptive output feedback fault-tolerant control for nonlinear systems with prescribed performance
CN110572093B (zh) 基于电机位置伺服系统期望轨迹和干扰补偿的arc控制方法
CN104216284A (zh) 机械臂伺服系统的有限时间协同控制方法
CN107544256A (zh) 基于自适应反步法的水下机器人滑模控制方法
Cheng et al. Neural observer-based adaptive prescribed performance control for uncertain nonlinear systems with input saturation
CN110244561B (zh) 一种基于干扰观测器的二级倒立摆自适应滑模控制方法
CN110579970B (zh) 一种2d滚动优化下间歇过程终端约束预测控制方法
CN113359445A (zh) 一种多智能体磁滞系统分布式输出反馈渐近一致控制方法
CN109188913A (zh) 一种无人机姿态的鲁棒控制方法和实现该方法的鲁棒控制器
CN113110048B (zh) 采用hosm观测器的非线性系统输出反馈自适应控制系统和方法
CN110162067B (zh) 一种无人机非奇异自适应非光滑姿态跟踪控制方法
Ramezani et al. Neuro-adaptive backstepping control of SISO non-affine systems with unknown gain sign
Chang et al. Adaptive distributed fault-tolerant formation control for multi-robot systems under partial loss of actuator effectiveness
CN108958035A (zh) 永磁同步电机的自适应非光滑位置跟踪控制方法
CN114114928A (zh) 一种压电微定位平台的固定时间自适应事件触发控制方法
Su et al. Global robust output regulation for nonlinear multi-agent systems in strict feedback form
Wang et al. NN event-triggered finite-time consensus control for uncertain nonlinear Multi-Agent Systems with dead-zone input and actuator failures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant