CN107991180A - 一种碳化硅单晶纳米线拉断后的自愈合方法 - Google Patents

一种碳化硅单晶纳米线拉断后的自愈合方法 Download PDF

Info

Publication number
CN107991180A
CN107991180A CN201711094034.1A CN201711094034A CN107991180A CN 107991180 A CN107991180 A CN 107991180A CN 201711094034 A CN201711094034 A CN 201711094034A CN 107991180 A CN107991180 A CN 107991180A
Authority
CN
China
Prior art keywords
healing
nano wire
self
writing brush
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711094034.1A
Other languages
English (en)
Inventor
张振宇
崔俊峰
杜岳峰
郭东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201711094034.1A priority Critical patent/CN107991180A/zh
Priority to PCT/CN2017/111166 priority patent/WO2019090797A1/zh
Priority to US16/340,356 priority patent/US10942099B2/en
Publication of CN107991180A publication Critical patent/CN107991180A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • C04B35/62281Fibres based on carbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种碳化硅单晶纳米线拉断后的自愈合方法,用狼毫毛笔的狼毫移动和转移纳米线,将纳米线放置到透射电镜原位力学的微测试装置上,在透射电镜中实现原位纳米力学拉伸测试,对纳米线进行加载,位移为0‑200nm,单晶纳米线的断裂强度为12‑15GPa。纳米线拉断后,卸载使得断裂的端面轻轻接触,关闭电子束,在透射电镜真空腔中进行纳米线的自愈合,透射电镜原位表征发现自愈合后的断口处发生部分重结晶,自愈合后再次进行断裂强度测试,愈合后拉断的位置与愈合前的位置相同,自愈合后单晶纳米线的断裂强度为1‑2.5GPa,断裂强度恢复率为10‑20%。本发明提供一种拉断后的碳化硅单晶纳米线无需外部介入实现自愈合的方法。

Description

一种碳化硅单晶纳米线拉断后的自愈合方法
技术领域
本发明涉及一种碳化硅单晶纳米线拉断后的自愈合方法,具体涉及半导体器件和装备的长寿命、可靠性和稳定性,特别涉及碳化硅半导体器件和装备的长寿命及可靠性。
背景技术
碳化硅具有独特的物理、机械和电子学性能,例如高导热系数、高击穿电压和高的带隙宽度,因此碳化硅成为高能和高温电子、光电和机电器件的最广泛的应用材料。碳化硅也是下一代电子器件最有前途的材料。碳化硅广泛应用于高温、高能、高电压、高电流和高频等苛刻环境和极端条件,这些极端条件使得碳化硅材料发生断裂的可能性大大增高,一旦碳化硅断裂,将导致器件的失效,对于应用于高速、高温等环境中的碳化硅器件和装备,如航空、航天、核能、高速发动机等领域,将产生灾难性的后果。因此,碳化硅断裂后无需外部介入的自愈合方法是高性能碳化硅器件和装备长寿命和高可靠性的重要保证,受到了广泛关注。
但是,目前国际上无需外部介入的固体自愈合方法尚未见报道。自愈合方法研究得最多的是聚合物及其复合材料。最常见的自愈合方法是采用微胶囊技术,事先在聚合物及其复合材料中注入这种自愈合剂,当局部开裂后,微胶囊就释放自愈合剂,将断裂的地方愈合。这种方法的缺点是微胶囊的自愈合剂一般只能释放一次,而且是根据毛细作用达到微裂纹处,不是所有的地方都能到达。这种方法制造的自愈合聚合物及其复合材料非常昂贵,而且其制造工艺也不成熟。此外,这种自愈合方法是侵入式愈合方法,会降低材料的性能,而且也只适用于某些特定的聚合物及其复合材料,并不适合于半导体及碳化硅器件。碳化硅主要应用于高温和高能等极端条件下,这种聚合物愈合剂难以满足这种苛刻环境的使役要求。
发明内容
本发明采用一种碳化硅单晶纳米线拉断后的自愈合方法,无需外部介入实现了单晶纳米线的自愈合。
本发明的技术方案:
一种碳化硅单晶纳米线拉断后的自愈合方法,用狼毫毛笔的一根狼毫移动和转移纳米线,将纳米线放置到透射电镜原位力学的微测试装置上,在透射电镜中实现原位纳米力学拉伸测试,对纳米线进行加载,加载速率为0.5-15nm/s,位移为0-200nm,单晶纳米线的断裂强度为12-15GPa。纳米线拉断后,卸载使得断裂的端面轻轻接触,关闭电子束,在透射电镜真空腔中等待15-30min进行纳米线的自愈合,透射电镜原位表征发现自愈合后的断口处发生了部分重结晶,自愈合后再次进行断裂强度测试,愈合后拉断的位置与愈合前的位置相同,自愈合后单晶纳米线的断裂强度为1-2.5GPa,断裂强度恢复率为10-20%。本发明提供一种拉断后的碳化硅单晶纳米线无需外部介入实现自愈合的方法。
碳化硅单晶纳米线,直径为60-90nm。碳化硅单晶是应用最广的碳化硅材料。综合考虑微机电系统和纳机电系统的双重应用,以及微观和宏观的应用,选择单晶纳米线的范围为60-90nm。
狼毫毛笔的一端用导电银胶固定在光学显微镜的移动平台上,利用移动平台使得毛笔实现毫米和微米级移动,用狼毫毛笔的另一端的一根狼毫移动和转移纳米线,将纳米线放置到透射电镜原位力学的微测试装置上。狼毫具有一定的韧性和强度,因此选择狼毫毛笔的狼毫作为操作工具。将狼毫毛笔固定在光学显微镜的移动平台上,利用移动平台的粗调和微调旋钮,实现狼毫的三维宏观毫米和微观微米级移动,从而能够准确操作碳化硅单晶纳米线。利用狼毫与纳米线之间的静电引力移动和转移碳化硅单晶纳米线,纳米线的操作是在另一台光学显微镜的移动平台上,将纳米线放在物镜下,对焦清晰,目镜成像,进行操作。
纳米线的两端用导电银胶固定在微测试装置上。用狼毫将纳米线在光学显微镜中放置到微测试装置上,用导电银胶固定并固化。这种方法可以有效避免传统的聚焦离子束和电子束操作和沉积固定纳米线带来的污染和对纳米线的损伤。
将微测试装置安装到透射电镜原位纳米力学测试系统上,在透射电镜中实现原位纳米力学拉伸测试。透射电镜原位拉伸测试能够获得加载卸载曲线,并且能够录制高分辨透射电镜原位拉伸视频,获得与力学性能曲线相对应的高分辨透射电镜显微照片。
对纳米线进行加载,用位移控制模式,加载速率为0.5-15nm/s,位移为0-200nm。位移控制模式,是根据碳化硅为硬脆材料,受力容易断裂,给出合适的位移,即可测试纳米线的断裂强度。加载速率为0.5-15nm/s,可以获得碳化硅纳米线的力学曲线和对应的透射电镜原子尺度高分辨显微照片,位移为0-200nm是根据对应的纳米线的长度给出的位移,可以拉断纳米线,从而获得碳化硅单晶纳米线的断裂强度。
单晶纳米线的断裂强度为12-15GPa。纳米线的断裂强度是根据拉断纳米线的最大力和断口的面积获得的透射电镜原位力学测试结果。
纳米线拉断后,卸载使得断裂的端面轻轻接触,端面的载荷为0,关闭电子束,在透射电镜真空腔中等待15-30min进行纳米线的自愈合。碳化硅单晶纳米线的自愈合无需外部介入,只要断裂的端面轻轻接触,经过15-30min,就可以自己愈合,这种方法对于高性能装备的高性能零件的长寿命和高可靠性起到至关重要的作用,甚至能避免灾难性的断裂和器件及装备失效,为设计制造高性能碳化硅器件和装备提供了一种独特的思路和方法。
自愈合后,再次进行断裂强度测试,对纳米线进行加载,用位移控制模式,加载速率为0.5-15nm/s,位移为0-100nm。自愈合后,用透射电镜原位力学拉伸测试方法,测试愈合后的碳化硅单晶纳米线的断裂强度,这对评估碳化硅单晶器件和装备的寿命和可靠性非常重要。加载速率为0.5-15nm/s,是为了获得原子尺度的高分辨透射电镜显微照片,位移为0-100nm可以将愈合的碳化硅单晶纳米线拉断,获得断裂强度。
透射电镜原位表征发现自愈合后的断口处发生了部分重结晶,愈合后拉断的位置与愈合前的位置相同。从动态加载卸载视频中提取的愈合断口处的原子级的高分辨透射电镜显微照片显示,愈合的断口处发现了部分重结晶,这是自愈合的基本原理。由于发生了部分的重结晶,导致自愈合的断口的断裂强度低于单晶的断裂强度,因此自愈合后的拉断位置与愈合前的断口位置相同。
自愈合后单晶纳米线的断裂强度为1-2.5GPa,断裂强度恢复率为10-20%。透射电镜原位纳米力学拉伸测试结果显示,自愈合后的碳化硅单晶纳米线的断裂强度为1-2.5GPa,而单晶纳米线的断裂强度为12-15GPa,因此自愈合后的断裂强度恢复率为10-20%。
本发明的效果和益处是对于拉断的碳化硅单晶纳米线,无需任何外部介入,实现了拉断后的纳米线自愈合,并且在愈合的断口处发现了重结晶。
附图说明
图1是碳化硅单晶纳米线的透射电镜原位拉伸测试的加载卸载曲线。
图2是自愈合后的碳化硅单晶纳米线自愈合断口处的透射电镜显微照片。
图3是自愈合后的碳化硅单晶纳米线透射电镜原位拉伸加载卸载曲线。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
一种碳化硅单晶纳米线拉断后的自愈合方法,无需外部介入实现了单晶纳米线的自愈合,其特征在于:
(1)碳化硅单晶纳米线,直径为60-90nm;
(2)狼毫毛笔的一端用导电银胶固定在光学显微镜的移动平台上,利用移动平台使得毛笔实现毫米和微米级移动,用狼毫毛笔的另一端的一根狼毫移动和转移纳米线,将纳米线放置到透射电镜原位力学的微测试装置上;
(3)纳米线的两端用导电银胶固定在微测试装置上;
(4)将微测试装置安装到透射电镜原位纳米力学测试系统上,在透射电镜中实现原位纳米力学拉伸测试;
(5)对纳米线进行加载,用位移控制模式,加载速率为0.5-15nm/s,位移为0-200nm;
(6)单晶纳米线的断裂强度为12-15GPa;
(7)纳米线拉断后,卸载使得断裂的端面轻轻接触,端面的载荷为0,关闭电子束,在透射电镜真空腔中等待15-30min进行纳米线的自愈合;
(8)自愈合后,再次进行断裂强度测试,对纳米线进行加载,用位移控制模式,加载速率为0.5-15nm/s,位移为0-100nm;
(9)透射电镜原位表征发现自愈合后的断口处发生了部分重结晶,愈合后拉断的位置与愈合前的位置相同;
(10)自愈合后单晶纳米线的断裂强度为1-2.5GPa,断裂强度恢复率为10-20%。
实施例
选择3C-SiC单晶纳米线,直径为80-90nm作为自愈合的材料。将单晶纳米线在丙酮溶液中超声30-50s。透射电镜样品制备用的200目的带有塑料薄膜的铜网,铜网的直径为3mm,用打火机点燃铜网上的塑料薄膜,去除薄膜。然后用镊子夹住去除薄膜的铜网在丙酮溶液中超声清洗15-25s,去除铜网上的痕迹和污染。超声清洗铜网完成后,用镊子夹住铜网在超声分散的碳化硅丙酮溶液中捞取碳化硅纳米线,放在一台光学显微镜的移动平台上,待丙酮蒸发后,纳米线出现在铜网的表面,在光学显微镜中寻找纳米线,并对焦清晰。将狼毫毛笔的尾端固定在另一台光学显微镜上。把曲别针弄直,在蜡烛上烧红,在狼毫毛笔的塑料笔帽中下部扎出一个孔,将一根狼毫从孔中穿出,并用塑料笔帽把别的狼毫盖住。利用光学显微镜的移动平台实现单根狼毫的三维毫米和微米级移动,在另一台光学显微镜下,利用狼毫和纳米线的静电引力,移动和转移纳米线,放到透射电镜原位力学测试微装置上。用狼毫的尖端蘸取一小滴导电银胶,滴在纳米线的两端,待导电银胶固化,纳米线就固定在微测试装置上。
将微测试装置装入PI 95TEM PicoIndenter透射电镜原位纳米力学测试系统上,将测试系统插入FEI Tecnai F20场发射透射电镜中,操作电压为200kV。采用透射电镜原位拉伸测试方法,对纳米线进行断裂强度测试,采用位移控制模式,加载速率为4nm/s,位移为0-180nm,加载卸载曲线如图1所示。经过测试,碳化硅单晶纳米线的断裂强度为13.4GPa。卸载,将拉断的碳化硅单晶纳米线的端面轻轻接触,载荷为0。关闭电子束,等待时间为20min,进行碳化硅单晶纳米线的自愈合。20min后,打开电子束拍摄自愈合后的断口透射电镜显微照片,如图2所示,发现自愈合后的断口处发生了部分重结晶。然后进行愈合后的碳化硅纳米线的透射电镜原位断裂强度测试,加载方式为位移控制模式,加载速率为4nm/s,位移为0-60nm,自愈合后的碳化硅纳米线的断裂强度测试的加载卸载曲线如图3所示。测试结果显示,自愈合的碳化硅单晶纳米线的断裂强度为1.7GPa,断裂强度恢复率为12.7%。

Claims (1)

1.一种碳化硅单晶纳米线拉断后的自愈合方法,无需外部介入,实现单晶纳米线的自愈合,其特征在于:
(1)碳化硅单晶纳米线,直径为60-90nm;
(2)狼毫毛笔的一端用导电银胶固定在光学显微镜的移动平台上,利用移动平台使得狼毫毛笔实现毫米和微米级移动,通过狼毫毛笔另一端的一根狼毫移动和转移纳米线,将纳米线放置到透射电镜原位力学的微测试装置上;
(3)纳米线的两端用导电银胶固定在微测试装置上;
(4)将微测试装置安装到透射电镜原位纳米力学测试系统上,在透射电镜中实现原位纳米力学拉伸测试;
(5)对纳米线进行加载,用位移控制模式,加载速率为0.5-15nm/s,位移为0-200nm;
(6)单晶纳米线的断裂强度为12-15GPa;
(7)纳米线拉断后,卸载使得断裂的端面轻轻接触,端面的载荷为0,关闭电子束,在透射电镜真空腔中等待15-30min进行纳米线的自愈合;
(8)自愈合后,再次进行断裂强度测试,对纳米线进行加载,用位移控制模式,加载速率为0.5-15nm/s,位移为0-100nm;
(9)透射电镜原位表征发现自愈合后的断口处发生部分重结晶,愈合后拉断的位置与愈合前的位置相同;
(10)自愈合后单晶纳米线的断裂强度为1-2.5GPa,断裂强度恢复率为10-20%。
CN201711094034.1A 2017-11-09 2017-11-09 一种碳化硅单晶纳米线拉断后的自愈合方法 Withdrawn CN107991180A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201711094034.1A CN107991180A (zh) 2017-11-09 2017-11-09 一种碳化硅单晶纳米线拉断后的自愈合方法
PCT/CN2017/111166 WO2019090797A1 (zh) 2017-11-09 2017-11-15 一种碳化硅单晶纳米线拉断后的自愈合方法
US16/340,356 US10942099B2 (en) 2017-11-09 2017-11-15 Self-healing method for fractured SiC single crystal nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711094034.1A CN107991180A (zh) 2017-11-09 2017-11-09 一种碳化硅单晶纳米线拉断后的自愈合方法

Publications (1)

Publication Number Publication Date
CN107991180A true CN107991180A (zh) 2018-05-04

Family

ID=62030695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711094034.1A Withdrawn CN107991180A (zh) 2017-11-09 2017-11-09 一种碳化硅单晶纳米线拉断后的自愈合方法

Country Status (3)

Country Link
US (1) US10942099B2 (zh)
CN (1) CN107991180A (zh)
WO (1) WO2019090797A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110256082A (zh) * 2019-05-17 2019-09-20 浙江理工大学 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN111115562A (zh) * 2019-12-13 2020-05-08 华东师范大学 一种原位加工空心纳米腔的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107991181A (zh) * 2017-11-09 2018-05-04 大连理工大学 一种碳化硅非晶纳米线拉断后的自愈合方法
CN110864975B (zh) * 2019-11-21 2022-01-28 中国石油天然气股份有限公司 一种自愈合凝胶堵漏材料的愈合堵漏性能评价方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995962A (zh) * 2006-12-29 2007-07-11 北京工业大学 扫描电镜中单根纳米线原位力学综合性能测试装置及方法
CN101109687A (zh) * 2007-07-20 2008-01-23 北京工业大学 一种透射电镜中纳米线原位拉伸下力电性能测试装置
CN202133586U (zh) * 2011-06-22 2012-02-01 北京工业大学 用于透射电镜的原位力、电性能单轴拉伸样品杆
CN102879271A (zh) * 2012-09-29 2013-01-16 长安大学 沥青砂浆损伤自愈性的检测装置及检测方法
KR101440349B1 (ko) * 2013-03-18 2014-09-18 중앙크리텍 주식회사 셀프-힐링 강구조물 도장공법
CN104634660A (zh) * 2015-02-04 2015-05-20 北京工业大学 透射电镜中原位双倾单轴拉伸纳米线、二维层状薄膜装置及方法
CN104725064A (zh) * 2013-12-19 2015-06-24 青岛天地碳素有限公司 一种具有抗氧化功能的复合材料
CN106431452A (zh) * 2016-09-12 2017-02-22 西北工业大学 弥散分布自愈合相B12(C,Si,B)3改性SiC/SiC复合材料的制备方法
WO2017040296A1 (en) * 2015-08-28 2017-03-09 Battelle Memorial Institute Paintable hydrophobic and lubricant-infused surface coatings and processes for making and using same
CN107219243A (zh) * 2017-05-05 2017-09-29 大连理工大学 一种透射电镜原位纳米力学拉伸测试样品粘接方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101113946B (zh) 2007-07-20 2010-08-04 北京工业大学 透射电镜中纳米线原位压缩下力电性能测试装置
CN201488957U (zh) 2009-05-15 2010-05-26 北京工业大学 纳米线的显微结构与电学性能测试装置
WO2011053346A1 (en) 2009-10-26 2011-05-05 Northwestern University Microelectromechanical device and system
US20150255227A1 (en) * 2014-03-05 2015-09-10 Nanyang Technological University Self-healing composite, self-healing supercapacitor and methods of fabrication thereof
US20150360408A1 (en) * 2014-06-17 2015-12-17 Sabanci Universitesi Self-healing system comprising logitudinal nano/microstructures and method of production thereof
CN107991181A (zh) * 2017-11-09 2018-05-04 大连理工大学 一种碳化硅非晶纳米线拉断后的自愈合方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995962A (zh) * 2006-12-29 2007-07-11 北京工业大学 扫描电镜中单根纳米线原位力学综合性能测试装置及方法
CN101109687A (zh) * 2007-07-20 2008-01-23 北京工业大学 一种透射电镜中纳米线原位拉伸下力电性能测试装置
CN202133586U (zh) * 2011-06-22 2012-02-01 北京工业大学 用于透射电镜的原位力、电性能单轴拉伸样品杆
CN102879271A (zh) * 2012-09-29 2013-01-16 长安大学 沥青砂浆损伤自愈性的检测装置及检测方法
KR101440349B1 (ko) * 2013-03-18 2014-09-18 중앙크리텍 주식회사 셀프-힐링 강구조물 도장공법
CN104725064A (zh) * 2013-12-19 2015-06-24 青岛天地碳素有限公司 一种具有抗氧化功能的复合材料
CN104634660A (zh) * 2015-02-04 2015-05-20 北京工业大学 透射电镜中原位双倾单轴拉伸纳米线、二维层状薄膜装置及方法
WO2017040296A1 (en) * 2015-08-28 2017-03-09 Battelle Memorial Institute Paintable hydrophobic and lubricant-infused surface coatings and processes for making and using same
CN106431452A (zh) * 2016-09-12 2017-02-22 西北工业大学 弥散分布自愈合相B12(C,Si,B)3改性SiC/SiC复合材料的制备方法
CN107219243A (zh) * 2017-05-05 2017-09-29 大连理工大学 一种透射电镜原位纳米力学拉伸测试样品粘接方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIN WOOK LEE等: "Self-healing nanofiber-reinforced polymer composites.1.tensile testing and recovery of mechanical properties", 《ACS APPLIED MATERIALS& INTERFACES》 *
YANBO WANG 等: "Self-Healing of Fractured GaAs Nanowires", 《NANO LETTERS》 *
梁仕飞 等: "2.5维自愈合C/SiC复合材料的压缩力学行为", 《固体力学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110256082A (zh) * 2019-05-17 2019-09-20 浙江理工大学 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN111115562A (zh) * 2019-12-13 2020-05-08 华东师范大学 一种原位加工空心纳米腔的方法
CN111115562B (zh) * 2019-12-13 2023-03-10 华东师范大学 一种原位加工空心纳米腔的方法

Also Published As

Publication number Publication date
WO2019090797A1 (zh) 2019-05-16
US10942099B2 (en) 2021-03-09
US20200080921A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
CN107991180A (zh) 一种碳化硅单晶纳米线拉断后的自愈合方法
Koka et al. Vertically aligned BaTiO 3 nanowire arrays for energy harvesting
Lin et al. Ultrahigh energy harvesting properties in temperature-insensitive eco-friendly high-performance KNN-based textured ceramics
Zhu et al. A review of microelectromechanical systems for nanoscale mechanical characterization
US11313774B2 (en) TEM electromechanical in-situ testing method of one-dimensional materials
Zhang et al. In situ TEM observation of rebonding on fractured silicon carbide
Lin et al. Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers
Phuah et al. Defects in flash-sintered ceramics and their effects on mechanical properties
CN107991181A (zh) 一种碳化硅非晶纳米线拉断后的自愈合方法
Yu et al. High and thermally stable piezoelectricity in relaxor-based ferroelectrics for mechanical energy harvesting
JP6211775B2 (ja) 焼結体の製造方法
Xi et al. Diffuse multiphase coexistence renders temperature-insensitive lead-free energy-harvesting piezoceramics
Davis et al. High-Q mechanical resonator arrays based on carbon nanotubes
Robertson et al. Visualizing the behavior of dislocations—seeing is believing
CN101049906B (zh) 一种制作纳米尖锥的方法
Zhang et al. Transmission electron microscopy investigation of dislocations in forward-biased 4H-SiC p–i–n diodes
Zhao et al. Tailored ceramic–metal piezocomposite energy harvester with high current output by controlling the electrical impedance
Cui et al. Atomic Insights of Self‐Healing in Silicon Nanowires
KR102076956B1 (ko) 표면산화막과 전계증발현상을 이용한 금속선 팁의 초미세 선단부 가공방법
Li et al. RF nano switch based on single crystalline graphene
Zhang et al. A multiphysics nanorobotic manipulation system
Huang et al. Microelectromechanical system for in situ quantitative testing of tension–compression asymmetry in nanostructures
Zhao et al. Electric current-restrained crack propagation in brittle GaN ceramics
Huang et al. Real-time Quantitative Electro-mechanical Characterization of Nanomaterials Based on Integrated MEMS Device
Stein et al. Processing and mechanical property characterization of aligned carbon nanotube carbon matrix nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180504