CN107964034B - 酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用 - Google Patents

酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用 Download PDF

Info

Publication number
CN107964034B
CN107964034B CN201711111423.0A CN201711111423A CN107964034B CN 107964034 B CN107964034 B CN 107964034B CN 201711111423 A CN201711111423 A CN 201711111423A CN 107964034 B CN107964034 B CN 107964034B
Authority
CN
China
Prior art keywords
casein
inhibitory activity
polypeptide
ace inhibitory
caco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711111423.0A
Other languages
English (en)
Other versions
CN107964034A (zh
Inventor
任晓锋
梁秋芳
张熙
陆峰
侯婷
马海乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201711111423.0A priority Critical patent/CN107964034B/zh
Publication of CN107964034A publication Critical patent/CN107964034A/zh
Priority to US16/632,546 priority patent/US11524977B2/en
Priority to PCT/CN2018/114969 priority patent/WO2019091472A1/zh
Application granted granted Critical
Publication of CN107964034B publication Critical patent/CN107964034B/zh
Priority to US17/881,605 priority patent/US20230097644A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用,属于乳制品精深加工及保健食品制备技术领域。本发明先采用超声预处理酪蛋白,其次蛋白酶进行酶解制备酪蛋白ACE抑制活性肽,再通过模拟胃肠道消化追踪酪蛋白活性肽的ACE抑制活性,然后Caco‑2细胞模拟小肠上皮细胞吸收后,表征出了经过胃肠道消化、被Caco‑2细胞模拟小肠内壁吸收的高ACE抑制活性的酪蛋白功能性多肽。本发明首次结合模拟消化系统和Caco‑2细胞模拟小肠内壁吸收系统去追踪酪蛋白ACE抑制多肽的活性变化;本发明首次鉴定出了3种经过胃肠消化、并被Caco‑2细胞模拟小肠内壁吸收的具有很强ACE抑制活性酪蛋白功能多肽。

Description

酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用
技术领域
本发明提供了一种酪蛋白活性肽的超声辅助模拟消化方法及功能食品应用,属于乳制品精深加工及功能食品制备技术领域,可作为功能性用于制备保健食品或药物等。
背景技术
高血压(hypertension)是指以体循环动脉血压(收缩压和/或舒张压)增高为主要特征(收缩压≥140毫米汞柱,舒张压≥90毫米汞柱),可伴有心、脑、肾等器官的功能或器质性损害的临床综合征。高血压是最常见的慢性病,也是心脑血管病最主要的危险因素。目前中国高血压患者超过二亿,所以当前形势非常严峻。血管紧张素转化酶(Angiotensinconverting enzyme,ACE EC 3.4.15.1)是一种含有Zn2+的二肽外肽酶,分子量在1.29×105-1.36×105Da之间,广泛存在于人体组织及血液中。其主要功能是催化血管紧张素Ⅰ转化为血管紧张素Ⅱ,从而将缓激肽失去活性。血管中血管紧张素Ⅱ的活性最强,有着强烈的收缩血管的作用,使血管平滑肌收缩,从而升高血压。缓激肽具有舒缓血管的功能,血管舒张,血压下降,ACE使缓激肽失活,使得血管处于收缩状态,血压升高。因此,抑制ACE的活性被认为是治疗高血压的一种重要而有效的方法。虽然化学合成的ACE抑制剂有显著的降血压效果,但是在应用过程中往往会产生副作用,如咳嗽、味觉功能紊乱及皮疹等。因此,需要寻找更安全的ACE抑制剂,所以寻找和开发天然的ACE抑制剂成为了高血压和心血管疾病治疗和防治的研究热点。以食源性功能食品作为ACE抑制剂成为了研究热点,前景广阔。
酪蛋白(casein)是乳蛋白质的一种,将脱脂的新鲜牛乳加酸处理,在20℃时调节其pH至4.6时从牛乳中沉淀的蛋白质就是酪蛋白。牛乳中所含有的蛋白质总量大约为3.3%,其中酪蛋白约占2.5%左右。酪蛋白是一类含磷钙的结合蛋白,主要以五种形式存在:αs1 -,αs2 -,β-,κ-和γ-酪蛋白,它们分别占酪蛋白总量的38%、10%、36%、13%和3%。研究表明,牛乳中大量的酪蛋白是以酪蛋白胶束的形式存在的,它们由直径在10-300nm的酪蛋白酸钙-磷酸钙体系聚集而成。酪蛋白在食品工业中有着广泛的应用,可作为食品的营养强化剂,同时还可以作为食品加工中的增稠剂、乳化剂等。但酪蛋白在人体内不易消化吸收,在低酸性及酸性条件下溶解度很低,这也限制了它在食品工业中的应用。
研究表明,酪蛋白中蕴含着很多无活性或低活性的多肽片段,只有水解后才能形成具有生理活性的多肽。M.Miguel等通过SHR(Spontaneously Hypertensive Rat,原发性高血压大鼠)大鼠实验发现,酪蛋白经过蛋白酶酶解后,酶解产物具有明显的ACE抑制活性,而且分子量在3000Da以下的多肽降血压效果更是显著(M.Miguel,M.M.Contreras,I.Recio.ACE-inhibitory and antihypertensive properties of abovine caseinhydrolysate[J].Food Chemistry,2009(112):211-214.)。翟青新等人从酪蛋白的酶解产物中提取分离了多种外源性抗菌肽,结果表明这些产物对金黄色葡萄球菌、大肠杆菌等均具有抑制作用(翟青新,张源淑,哈惠馨.牛乳酪蛋白源抗菌肽的研究进展[J].生物技术通讯,2007,03:527-529.)。李海芹等人以酪蛋白为原料,在适宜条件下用胰蛋白酶进行水解,经过超滤膜超滤,分离出了具有较强抗菌活性的产物。结果表明,这种多肽能够有效抑制金黄色葡萄球菌和大肠杆菌的活性(李海芹,李兴民,杜艳,梁锋.酪蛋白酶解产物中抗菌肽的初步研究[J].食品与发酵工业,2006,03:147-148.)。研究开发酪蛋白功能活性肽具有广阔的应用前景。
现阶段关于酪蛋白功能活性肽的制备方法的研究,主要集中在蛋白酶的筛选、酶解工艺的优化和高活性肽的分离、纯化和鉴定等方法。然而上述研究忽略了口服生物活性肽必须经过胃肠道消化,小肠内皮细胞吸收后,以活性肽形式达到目标器官,才能发挥生理活性作用。胃肠道中含有大量的胃蛋白酶,胰酶,对生物活性肽在吸收之前进行二次酶解;小肠内皮细胞分泌产生细胞酶对途经多肽进一步的分解;与此同时,小肠内皮细胞对多肽的吸收具有多种途经,如转运蛋白介导、跨细胞被动扩散以及细胞旁路转运。把体内胃肠道消化吸收考虑进生物活性肽的制备方法已成必然。专利“从皱纹盘鲍鲍鱼内脏中分离的抗炎肽及其用途”(201510594885.7),虽然模拟胃肠道消化方法制备抗炎肽,却忽略了小肠上皮细胞对其选择性吸收的影响。综上所述,目前关于酪蛋白制备功能多肽的方法都忽略了胃肠道的消化吸收,并不能真实的模拟生物活性肽在胃肠道消化以及小肠内皮细胞对多肽的吸收。
发明内容
鉴于上述不足之处,本发明先采用超声预处理酪蛋白,其次蛋白酶进行酶解制备酪蛋白ACE抑制活性肽,再通过模拟胃肠道消化追踪酪蛋白活性肽的ACE抑制活性,然后Caco-2细胞模拟小肠上皮细胞吸收后,表征出了经过胃肠道消化、被Caco-2细胞模拟小肠内壁吸收的高ACE抑制活性的酪蛋白功能性多肽。
本发明的目的是首次利用酪蛋白水解产物模拟人体胃肠道消化及Caco-2细胞吸收制备得到三种酪蛋白ACE抑制活性多肽。
其氨基酸序列为:Leu-Gln-Pro-Pro;
Ala-Pro-Tyr;
Leu-Ser-Leu-Pro。
本发明的另一个目的是提供了利用超声预处理酪蛋白,蛋白酶酶解酪蛋白制备功能多肽,模拟人体胃肠道消化及Caco-2细胞吸收制备得到酪蛋白ACE抑制活性肽的方法,按照下述步骤进行:
(1)超声预处理酪蛋白酪蛋白:定量称取酪蛋白,溶解在pH=7.8的磷酸盐缓冲液中,使酪蛋白浓度为1g~5g/100mL,进行超声波处理;
(2)酪蛋白酶解液制备:调节上述蛋白溶液pH 7.5~8.0,加入蛋白酶,酶与底物的比例为1:20~50(w/w),均匀混合,酶解温度50~70℃,酶解时间2~4h;酶解结束后调节混合液pH为7.0,并在沸水浴中灭酶10min,离心获得上清液,脱盐、浓缩、冷冻干燥成粉末。
(3)模拟胃肠道消化:配置人工胃液。在37℃下,将将步骤(2)制备得到的酪蛋白水解物与胃液以1:20~50混合,在震荡频率为120~180rpm条件下模拟胃消化2~4h。用NaOH调节pH为6.8,以1:100(w/v)加入胰酶至混合液,继续酶解4~6h;沸水浴灭酶10min,离心取上清液,脱盐、浓缩、冷冻干燥成粉末。
(4)Caco-2模拟小肠上皮细胞吸收:构建Caco-2细胞转运模型,将步骤(3)制备得到的酪蛋白多肽消化产物配置成20mg/ml,加入到Caco-2细胞的绒毛面AP侧(apical,肠腔侧),0.5~4h后,收集基底面BL侧(basolateral,肠内壁侧)转运的酪蛋白肽,脱盐、冷冻干燥。
(5)采用UPLC-MC鉴定及分析多肽序列:对步骤(4)经过Caco-2细胞吸收的酪蛋白多肽进行鉴定及多肽序列分析,筛选出离子强度强,小于500的多肽序列;
(6)对步骤(5)筛选出来的多肽进行合成以及ACE抑制活性的验证。最终验证得到三种酪蛋白ACE抑制活性多肽,其氨基酸序列为:
Leu-Gln-Pro-Pro;
Ala-Pro-Tyr;
Leu-Ser-Leu-Pro。
对步骤(5)鉴定得到的三种酪蛋白ACE抑制活性多肽进行人工合成,并验证其ACE抑制活性,发现人工合成的多肽具有很强的ACE抑制活性。
其中步骤(1)所述的超声波处理工艺条件如下:超声处理,超声处理时间10~30min,间歇比10s/3s,温度25~40℃;超声波处理频率及频率组合为:单频20kHz、40kHz、60kHz,同步双频20/40kHz、20/60kHz、40/60kHz,同步三频20/40/60kHz
其中步骤(2)所述的蛋白酶为碱性蛋白酶、木瓜蛋白酶、中性蛋白酶或嗜热蛋白酶;优选嗜热蛋白酶。
其中步骤(5)中的酪蛋白ACE抑制活性多肽优选Leu-Gln-Pro-Pro。
上述酪蛋白活性肽作为保健食品应用,经过公知方法的制造成胶囊或者片剂,作为辅助降血压的保健食品或者功能食品。
本发明的优势在于:
(1)本发明首次报道了一种新颖的用于分离鉴定出可以经过胃肠道消化、吸收的ACE抑制肽的方法;
(2)本发明首次鉴定出了3种经过胃肠消化、并被Caco-2细胞模拟小肠内壁吸收的具有很强ACE抑制活性酪蛋白功能多肽。
(3)本发明首次结合模拟消化系统和Caco-2细胞模拟小肠内壁吸收系统去追踪酪蛋白ACE抑制多肽的活性变化;
(4)本发明首次研究了酪蛋白多肽消化产物在Caco-2模拟小肠内壁吸收系统的吸收率。
附图说明
图1为本发明的技术路线;
图2为酪蛋白多肽消化物在Caco-2模拟小肠吸收的0.5h,1.0h,2.0h和4.0h相对应的吸收到肠内壁BL侧和0h加入肠腔AP侧收集多肽的液相色谱图。
具体实施方式
一、实验方法:
1、水解度和蛋白转化率的测定
使用2,4,6-三硝基苯磺酸(TNBS)法测定酪蛋白的水解度。
水解度的测定采用pH-stat方法,水解度(DH)即蛋白质在酶解的过程中,断裂的肽键数占总蛋白质肽键数的百分比。
式中:V—NaOH消耗量(mL);N—NaOH的摩尔浓度(mol/L);α—酪蛋白中α-NH2的平均解离度,试验条件下为0.985;M—水解蛋白的质量(g);htot—单位质量蛋白质中肽键的数量(mmol/g),对于不同的蛋白质htot为不同值,取经验值酪蛋白的htot=7.35mmol/g。
通过凯氏定氮法测定酪蛋白蛋白和其水解产物的总氮量,计算酪蛋白的转化率。蛋白转化率(%)=水解物含氮量/底物蛋白氮含量*100%
2、ACE抑制活性实验:
采用FAPGG作为ACE的底物,按表1添加各反应组分,在波长为340nm下用酶标仪测定样品的ACE抑制率。设空白孔的初始吸光度为X1,样品孔的初始吸光度为Y1,在37℃的环境中反应30min后再次测定在340nm的吸光度,反应后空白孔的吸光度为X2,样品孔的吸光度为Y2。平行测定五组。ACE抑制率可以表示为:ACE抑制率(%)=100-(ΔA样品/ΔA空白)×100%
ΔA空白=X1-X2;ΔA样品=Y1-Y2
表1 ACE抑制率的测定
注:FAPGG(1.0mmol/L):取3.994mg FAPGG加基质缓冲液,定容至10ml,溶解混合,置4℃避光放置;**基质缓冲液:HEPES 1.910g,NaCl 1.755g,用双蒸馏水溶解后,用NaOH调pH到8.3,再补充水到100ml,置4℃备用。
3、细胞培养:
人结肠腺癌细胞系Caco-2(HTB-37TM)购自美国菌种保藏中心,细胞用含10%胎牛血清的、1%非必需氨基酸、1%抗生素和2.5%HEPES缓冲液的DMEM培养液,在37℃,5%CO2的培养箱中培养。每周更换3次培养液。使用0.25%胰蛋白酶-EDTA处理将细胞传代培养。
4、细胞毒性实验:
使用Alamar Blue试剂检测酪蛋白多肽对细胞的毒性。将Caco-2细胞以1×104个细胞/孔的密度接种在96孔板中24小时,细胞用不同浓度(10~50mg/ml)的酪蛋白多肽再处理24小时。处理24小时后,弃去培养液,加入含有10%Alamar Blue试剂的培养液,并在37℃再培养4小时。在激发波长560nm和发射波长590nm下测量荧光强度。细胞活力表示为相比于未处理细胞的百分比。
5、Caco-2模拟小肠内皮吸收率的测定:
收集Caco-2细胞的AP和BL表面的多肽,通过UPLC测定多肽的吸收率,反相C18柱(100mm×2.1mm id,1.7μm,Waters,Milford,MA,USA)上样15μL,流动相A(含1%TFA的纯水),溶剂B(含1%TFA的乙腈)。洗脱条件:100-75%A,25min;75-50%A,25-35min;流速为0.3ml/min;检测波长为220nm。多肽的吸收率表示为相应时间点(0.5h、1h、2h和4h)对应的BL收集多肽的吸收峰占加入到AP表面的多肽(0h)的吸收峰的积分面积比。
6、UPLC-MS分析多肽的序列:
液相色谱分析柱为nanoACQUITY BEH130C18(75μmx150mm,1.7μm),流动相A为含0.1%甲酸的乙腈,流动相B含0.1%甲酸的水洗脱梯度为:1-6%B,0-2min;6-25%B,2-25min;25-45%B,25-40min;45-75%B 40-45min;75-95%B,45-50min;95%B,50-55min。质谱采用电喷雾正离子模式采集数据,毛细管电压为3.5kV,离子源温度为100℃,扫描范围m/z为200-1000。用Mass Lynx软件(Micromass U.K.Ltd)分析肽的氨基酸序列。PeaksViewer4.5(Bioinformatics Solutions Inc.,Waterloo,ON,Canada)与手动测序结合来处理MS/MS数据。通过Genscript Corp(Piscataway,NJ)合成鉴定的肽序列(>98%纯度)并用于ACE抑制活性测定。
实施例1
超声处理酪蛋白:定量称取酪蛋白,溶解在pH=7.8的磷酸盐缓冲液中,酪蛋白浓度为1g/100mL。单频(40kHz)超声处理。超声处理时间30min,间歇比10s/3s,温度25℃。
酪蛋白酶解液制备:调节上述蛋白溶液pH 8,加入碱性蛋白酶,酶与底物的比例为1:20(w/w),均匀混合,酶解温度50℃,酶解时间2h。酶解结束后调节混合液pH为7.0,并在沸水浴中灭酶10min混合液在沸水浴中灭酶10min,离心获得上清液,脱盐、浓缩、冷冻干燥成粉末。测酪蛋白的水解度,蛋白转化率,以及其水解产物的ACE抑制活性。
模拟胃肠道消化:根据美国药典(USP30-NF25)配置人工胃液。在37℃下,将酪蛋白水解物与胃液以1:20混合,在震荡频率为120rpm条件下模拟胃消化4h。用NaOH调节pH为6.8,以1:100(w/v)加入胰酶至混合液,继续酶解6h。沸水浴灭酶10min,离心取上清液,脱盐、浓缩、冷冻干燥成粉末。测4h和10h后的消化产物的ACE抑制活性。
相比于传统酶解,单频超声预处理后,酪蛋白的水解度由10.02%提高到了16.54%,蛋白转化率由30.10%提高到了44.08%,其水解产物的ACE活性显著提高,其IC50由64.21μg/ml降低到了52.13μg/ml(表1)。酪蛋白的水解产物模拟胃消化后,其消化产物仍然具有良好的ACE抑制活性效果,其IC50值为49.21%;模拟肠消化后,最终消化产物依然保持良好的ACE抑制活性效果,其IC50值为55.19%(表2)。通过模拟胃肠道消化模型追踪酪蛋白的水解产物的ACE抑制活性,以上结果表明酪蛋白的水解产物经过模拟胃肠道消化,其ACE抑制活性基本不受影响。
实施例2
超声处理酪蛋白:定量称取酪蛋白,溶解在pH=7.8的磷酸盐缓冲液中,酪蛋白浓度为2g/100mL。双频(20/40kHz)超声处理。超声处理时间20min,间歇比10s/3s,温度30℃。
酪蛋白酶解液制备:调节上述蛋白溶液pH 7.5,加入中性蛋白酶,酶与底物的比例为1:30(w/w),均匀混合,酶解温度55℃,酶解时间4h。酶解结束后调节混合液pH为7.0,并在沸水浴中灭酶10min,离心获得上清液,脱盐、浓缩、冷冻干燥成粉末。测酪蛋白的水解度,蛋白转化率,以及其水解产物的ACE抑制活性活性。
模拟胃肠道消化:根据美国药典(USP30-NF25)配置人工胃液。在37℃下,将酪蛋白水解物与胃液以1:30混合,在震荡频率为150rpm条件下模拟胃消化3h。用NaOH调节pH为6.8,以1:100(w/v)加入胰酶至混合液,继续酶解4h。沸水浴灭酶10min,离心取上清液,脱盐、浓缩、冷冻干燥成粉末。测4h和10h后的消化产物的ACE抑制活性活性。
相比于传统酶解,双频超声预处理后,酪蛋白的水解度由5.21%提高到了9.45%,蛋白转化率由18.11%提高到了22.39%,其水解产物的ACE活性显著提高,其IC50由100.23μg/ml降低到了95.21μg/ml(表1)。酪蛋白的水解产物模拟胃消化后,其消化产物仍然具有良好的ACE抑制活性效果,其IC50值为72.11%;模拟肠消化后,最终消化产物依然保持良好的ACE抑制活性效果,其IC50值为79.03%(表2)。通过模拟胃肠道消化模型追踪酪蛋白的水解产物的ACE抑制活性,以上结果表明酪蛋白的水解产物经过模拟胃肠道消化,其ACE抑制活性基本不受影响。
实施例3
超声处理酪蛋白:定量称取酪蛋白,溶解在pH=7.8的磷酸盐缓冲液中,酪蛋白浓度为5g/100mL。三频(20/40/60kHz)超声处理。超声处理时间10min,间歇比10s/3s,温度40℃。
酪蛋白酶解液制备:调节上述蛋白溶液pH 8,加入木瓜蛋白酶,酶与底物的比例为1:50(w/w),均匀混合,酶解温度70℃,酶解时间2h。酶解结束后调节混合液pH为7.0,并在沸水浴中灭酶10min,离心获得上清液,脱盐、浓缩、冷冻干燥成粉末,测其水解度、蛋白转化率以及ACE抑制活性。
模拟胃肠道消化:根据美国药典(USP30-NF25)配置人工胃液。在37℃下,将酪蛋白水解物与胃液以1:50混合,在震荡频率为180rpm条件下模拟胃消化2h。用NaOH调节pH为6.8,以1:100(w/v)加入胰酶至混合液,继续酶解4h。沸水浴灭酶10min,离心取上清液,脱盐、浓缩、冷冻干燥成粉末。测4h和10后的消化产物的ACE抑制活性。
相比于传统酶解,三频超声预处理后,酪蛋白的水解度由7.21%提高到了11.36%,蛋白转化率由21.98%提高到了26.02%,其水解产物的ACE活性显著提高,其IC50由97.32μg/ml降低到了90.11μg/ml(表1)。酪蛋白的水解产物模拟胃消化后,其消化产物仍然具有良好的ACE抑制活性效果,其IC50值为65.32%;模拟肠消化后,最终消化产物依然保持良好的ACE抑制活性效果,其IC50值为60.31%(表2)。通过模拟胃肠道消化模型追踪酪蛋白的水解产物的ACE抑制活性,以上结果表明酪蛋白的水解产物经过模拟胃肠道消化,其ACE抑制活性基本不受影响。
表1.超声预处理对不同酶酶解酪蛋白的水解度、蛋白转化率以及ACE抑制活性的影响
表2.不同酪蛋白水解产物在模拟胃肠道消化前、消化中、消化结束后的ACE抑制活性影响
实施例4选择实施例1的消化产物多肽进行Caco-2模拟小肠内皮细胞吸收:
检测酪蛋白多肽对Caco-2的细胞毒性。进行Caco-2模拟小肠内皮细胞吸收模型的建立:Caco-2细胞以2×105cells/mL接种于12孔Transwell板的滤膜上,隔天换一次培养液,21天后测定Caco-2细胞模型的评价指标:上皮细胞电阻,碱性磷酸酶活力,荧光素钠渗漏实验。实验开始前用HBSS缓冲液清洗Caco-2细胞,在绒毛面AP侧加入由HBSS缓冲液配制的酪蛋白多肽0.5ml,浓度为20mg/mL,在BL侧加入HBSS缓冲液1.5mL,置于37℃,5%CO2培养箱中转运4h,在0.5h、1h、2h从BL侧吸取0.2ml转运的酪蛋白多肽检测酪蛋白多肽的Caco-2细胞的吸收率。在Caco-2模拟小肠内皮细胞吸收4h的时候收集所有的AP侧(apical,肠腔侧)和BL侧(basolateral,肠内壁侧)的多肽分别测定其ACE抑制活性;并且采用UPLC-MC分析肽序:对酪蛋白多肽消化产物以及经过Caco-2细胞吸收的多肽进行多肽序列分析,筛选出离子强度强的小肽;并且对这些小肽进行合成,验证合成的小肽的ACE抑制活性。
表3显示加入酪蛋白多肽后,Caco-2细胞的活力不仅没有下降,反而有所上升,该结果表明了酪蛋白多肽对Caco-2细胞没有任何毒性,并且有助于Caco-2细胞生长;酪蛋白水解产物的模拟消化后所得多肽经过Caco-2细胞的吸收,随着转运时间的延长,其多肽的转运率也随着增加,在4h结束转运的时候,经过计算得到其转运率达到了2.31%,表明了Caco-2细胞对多肽具有选择性的吸收(图1);酪蛋白多肽经过Caco-2模拟小肠内皮细胞吸收后,和AP侧的未吸收的多肽相比,BL侧其ACE抑制活性的IC50值由55.19μg/ml降低到了21.37μg/ml(表2)。上述结果表明了酪蛋白多肽经过Caco-2模拟小肠内皮细胞吸收后,其ACE抑制活性大幅度提高,间接表明了吸收的多肽具有很好的ACE抑制活性。对经过Caco-2细胞吸收的多肽进行结构鉴定、分析,筛选出离子强度强的小肽,合成,进行ACE抑制活性的验证,筛选出具有高活性的ACE抑制肽,其结构分别为Leu-Gln-Pro-Pro(LQPP)、Ala-Pro-Tyr(APY)、Leu-Ser-Leu-Pro(LSLP)。该三种多肽其ACE抑制活性的IC50值分别为:14.21μM,19.12μM,21.09μM(表4)。
表3.酪蛋白多肽(碱性蛋白酶酶解)消化产物对Caco-2细胞的活力影响
多肽浓度(mg/ml) Caco-2细胞活力
对照 - 100
组1 5 109.8±5.3
组2 10 119.2±8.5
组3 20 110.2±10.6
组4 50 103.6±9.8
表4.酪蛋白碱性蛋白酶水解产物经过模拟胃肠道消化,Caco-2细胞模拟肠吸收后

Claims (5)

1.酪蛋白ACE抑制活性多肽,其特征在于其氨基酸序列为:Leu-Gln-Pro-Pro;
Ala-Pro-Tyr。
2.根据权利要求1所述的酪蛋白ACE抑制活性多肽,其特征在于其氨基酸序列为:Leu-Gln-Pro-Pro。
3.根据权利要求1或2所述的酪蛋白ACE抑制活性多肽的制备方法,其特征在于按照下述步骤进行:
(1)超声预处理酪蛋白酪蛋白:定量称取酪蛋白,溶解在pH=7.8的磷酸盐缓冲液中,使酪蛋白浓度为1g~5g/100mL,进行超声波处理;超声波处理工艺条件如下:超声处理时间10~30min,间歇比10s/3s,温度25~40℃;超声波处理频率及频率组合为:单频20kHz;
(2)酪蛋白酶解液制备:调节上述蛋白溶液pH7.5~8.0,加入蛋白酶,酶与底物的比例为1:20~50(w/w),均匀混合,酶解温度50~70℃,酶解时间2~4h;酶解结束后调节混合液pH为7.0,并在沸水浴中灭酶10min,离心获得上清液,脱盐、浓缩、冷冻干燥成粉末;所述的蛋白酶为碱性蛋白酶;
(3)模拟胃肠道消化:配置人工胃液;在37℃下,将将步骤(2)制备得到的酪蛋白水解物与胃液以1:20~50混合,在震荡频率为120~180rpm条件下模拟胃消化2~4h;用NaOH调节pH为6.8,以1:100(w/v)加入胰酶至混合液,继续酶解4~6h;沸水浴灭酶10min,离心取上清液,脱盐、浓缩、冷冻干燥成粉末;
(4)Caco-2模拟小肠上皮细胞吸收:构建Caco-2细胞转运模型,将步骤(3)制备得到的酪蛋白多肽消化产物配置成20mg/ml,加入到Caco-2细胞的绒毛面AP侧(apical,肠腔侧),0.5~4h后,收集基底面BL侧(basolateral,肠内壁侧)转运的酪蛋白肽,脱盐、冷冻干燥;
(5)采用UPLC-MC鉴定及分析多肽序列:对步骤(4)经过Caco-2细胞吸收的酪蛋白多肽进行鉴定及多肽序列分析,筛选出离子强度强,小于500的多肽序列;
(6)对步骤(5)筛选出来的多肽进行合成以及ACE抑制活性的验证;最终验证得到酪蛋白ACE抑制活性多肽,其氨基酸序列为:
Leu-Gln-Pro-Pro;
Ala-Pro-Tyr;
对步骤(5)鉴定得到的酪蛋白ACE抑制活性多肽进行人工合成,并验证其ACE抑制活性,发现人工合成的多肽具有很强的ACE抑制活性。
4.根据权利要求3所述的酪蛋白ACE抑制活性多肽的制备方法,其特征在于其中步骤(6)中的酪蛋白ACE抑制活性多肽为Leu-Gln-Pro-Pro。
5.权利要求1所述的酪蛋白ACE抑制活性多肽在制备辅助降血压的保健食品中的应用。
CN201711111423.0A 2017-11-13 2017-11-13 酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用 Active CN107964034B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201711111423.0A CN107964034B (zh) 2017-11-13 2017-11-13 酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用
US16/632,546 US11524977B2 (en) 2017-11-13 2018-11-12 Ultrasound-assisted simulated digestion method of milk protein active peptide and application thereof in health foods
PCT/CN2018/114969 WO2019091472A1 (zh) 2017-11-13 2018-11-12 乳蛋白活性肽的超声辅助模拟消化方法及保健食品应用
US17/881,605 US20230097644A1 (en) 2017-11-13 2022-08-05 Ultrasound-assisted simulated digestion method of casein active peptide and application there of in health foods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711111423.0A CN107964034B (zh) 2017-11-13 2017-11-13 酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用

Publications (2)

Publication Number Publication Date
CN107964034A CN107964034A (zh) 2018-04-27
CN107964034B true CN107964034B (zh) 2019-10-01

Family

ID=62000111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711111423.0A Active CN107964034B (zh) 2017-11-13 2017-11-13 酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用

Country Status (1)

Country Link
CN (1) CN107964034B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091472A1 (zh) * 2017-11-13 2019-05-16 江苏大学 乳蛋白活性肽的超声辅助模拟消化方法及保健食品应用
CN110218240B (zh) * 2019-06-14 2022-06-03 河北黄金龙农业科技有限公司 一种酪氨酸酶抑制肽及其应用
CN113555060B (zh) * 2021-07-26 2024-09-20 江南大学 具有降血糖、降血压活性的山羊奶酪蛋白肽的制备方法
CN114134101A (zh) * 2021-10-19 2022-03-04 广东省农业科学院蚕业与农产品加工研究所 一种模拟大鼠胃肠环境的液态乳体外静态消化及肠道细胞培养的方法
CN117264018B (zh) * 2023-09-26 2024-04-09 南京工业大学 一种鸽蛋清中功能肽的制备及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245694A (ja) * 1995-03-09 1996-09-24 Sanei Touka Kk 血圧降下物質とその製造用中間体であるプロテアーゼ易分解性ゼイン及びそれらの製造方法
CN103215332A (zh) * 2013-04-16 2013-07-24 陕西科技大学 一种分步酶解羊乳酪蛋白制备ace抑制肽的方法
CN105044222B (zh) * 2014-12-19 2017-09-12 浙江辉肽生命健康科技有限公司 生物活性多肽的分析测试和鉴定方法
CN105504003A (zh) * 2015-12-30 2016-04-20 南京师范大学 一种利用Caco-2细胞分析肠道可吸收乳清肽序列的方法
CN107338278A (zh) * 2017-08-10 2017-11-10 江苏大学 超声联合模拟消化制备胶原凝胶抗氧化多肽液的方法

Also Published As

Publication number Publication date
CN107964034A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
CN107964034B (zh) 酪蛋白活性肽的超声辅助模拟消化方法及保健食品应用
WO2019091472A1 (zh) 乳蛋白活性肽的超声辅助模拟消化方法及保健食品应用
CN105586379B (zh) 一种具有抑制癌细胞增殖作用的胶原蛋白活性肽的制备方法
Aluko Antihypertensive peptides from food proteins
CN103052717B (zh) 一种工业化生产玉米降压活性肽的方法
Barati et al. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review
CN104561208B (zh) 一种螺旋藻抗肿瘤多肽的三酶解制备方法
CN104561207B (zh) 螺旋藻抗肿瘤多肽的双酶解制备方法
CN109293740B (zh) 一种牡蛎来源的ace抑制及抗肿瘤活性肽
CN101845080B (zh) 一种血管紧张素转化酶的抑制肽及其制备方法
CN109022527A (zh) 一种具有降血压作用的藜麦多肽及其制备方法
CN107964040B (zh) 乳球蛋白活性肽的超声辅助模拟消化方法及功能食品应用
CN103923177B (zh) 一种海洋微藻来源的血管紧张素转化酶抑制肽
Bersi et al. Bioactive peptides as functional food ingredients
CN101906135A (zh) 一种新型螺旋藻源降血压肽及其制备方法
CN101768209B (zh) 具有高体内活性的降血压肽及其制备和纯化方法
CN107868124A (zh) 一种玉米醇溶蛋白抗炎多肽及其制备方法
CN102296100A (zh) 一种酪蛋白降血压肽的制备方法
CN109206483A (zh) 一种贻贝来源的ace抑制及抗肿瘤活性肽
Kang et al. Recent research progress of biologically active peptides
de Oliveira et al. Anti-hypertensive peptides derived from caseins: mechanism of physiological action, production bioprocesses, and challenges for food applications
CN108003229B (zh) 玉米醇溶蛋白ace抑制肽及作为保健食品应用
EA012972B1 (ru) Трипептиды мар и itp или их соли, белковые гидролизаты и смеси, содержащие указанные трипептиды или их соли, для снижения кровяного давления
US20230097644A1 (en) Ultrasound-assisted simulated digestion method of casein active peptide and application there of in health foods
CN101130801A (zh) 一种降血压活性肽产品的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant