CN107957652B - 具有动态自适应聚焦的激光投影仪 - Google Patents
具有动态自适应聚焦的激光投影仪 Download PDFInfo
- Publication number
- CN107957652B CN107957652B CN201710964914.3A CN201710964914A CN107957652B CN 107957652 B CN107957652 B CN 107957652B CN 201710964914 A CN201710964914 A CN 201710964914A CN 107957652 B CN107957652 B CN 107957652B
- Authority
- CN
- China
- Prior art keywords
- assembly
- laser beam
- lens
- laser
- processor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003044 adaptive effect Effects 0.000 title abstract description 3
- 230000004044 response Effects 0.000 claims abstract description 9
- 230000003287 optical effect Effects 0.000 claims description 9
- 239000000835 fiber Substances 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 2
- 230000033001 locomotion Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2513—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3179—Video signal processing therefor
- H04N9/3185—Geometric adjustment, e.g. keystone or convergence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/24—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
- B23Q17/2404—Arrangements for improving direct observation of the working space, e.g. using mirrors or lamps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/24—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
- B23Q17/2414—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for indicating desired positions guiding the positioning of tools or workpieces
- B23Q17/2423—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for indicating desired positions guiding the positioning of tools or workpieces by projecting crossing light beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/24—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
- B23Q17/248—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
- B23Q17/249—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods using image analysis, e.g. for radar, infrared or array camera images
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2518—Projection by scanning of the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/02—Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/04—Interpretation of pictures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0825—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/239—Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/254—Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3129—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3155—Modulator illumination systems for controlling the light source
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/317—Convergence or focusing systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3191—Testing thereof
- H04N9/3194—Testing thereof including sensor feedback
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q2717/00—Arrangements for indicating or measuring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10141—Special mode during image acquisition
- G06T2207/10152—Varying illumination
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Geometry (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本申请涉及具有动态自适应聚焦的激光投影仪。提供了一种用于将模板投影到物体上的激光投影仪组件。激光投影仪组件包括框架、附加到所述框架的用于生成激光束的激光源、传感器组件、透镜组件和检流计组件。传感器组件附加到所述框架,用于识别三维物体的表面位置。透镜组件包括可调透镜,用于改变从所述激光源接收的激光束的聚焦。检流计组件沿着扫描路径重定向从所述透镜组件接收的激光束。透镜放置在相对于所述传感器组件的固定位置并且响应于由所述传感器组件沿着激光束的扫描路径识别的三维物体的表面位置可调。
Description
先前申请
本申请要求于2016年10月17日提交的美国临时申请No.62/408,944的优先权,该美国临时申请的内容通过引用结合到本文。
技术领域
本发明一般而言涉及用于投影激光模板的改进组件。更具体地,本发明涉及用于将高精度激光模板投影到工作表面上的集成激光投影仪和定位组件。
背景技术
不断增加的加工公差已经要求制造技术上的改进。一种这样的改进是将激光模板投影到工作表面上用于指导制造过程。这种技术已经允许以之前不可实现的公差制造产品。但是,对现有技术的约束限制了激光投影图像在工业应用中的更广泛的使用。例如,由于在制造环境中操作的同时不能够快速地识别三维工作表面以及不能以精确的方式将激光束聚焦到三维工作表面上,因此将模板投影到三维表面上已经被证明是困难的。
如在美国专利No.9,200,899中所公开的,已经实现了各种定位组件以提高激光投影的准确度、降低成本以及提供对投影激光模板的快速调整,该美国专利通过引用结合到本文。虽然本专利解决了与相对于工件和摄影测量组件定位激光投影仪相关联的许多问题,但是其不提供模块化。
提供满足现代制造环境的需求的模块化组件已经被证明是难以捉摸的。投影仪组件(特别是不精密的模块化组件)的可用性也被证明是难以捉摸的。此外,响应于与制造环境相关联的动态运动来快速调整三维工作服务上的激光束的聚焦也被证明是难以捉摸的。
因此,期望提供模块化激光投影仪组件,其是可用的并且还提供在复杂三维表面上快速高质量激光投影的好处。
发明内容
一种用于将模板投影到物体上的激光投影仪组件包括框架。用于生成激光束的激光源被附加到框架。传感器组件被附加到框架,用于识别三维物体的表面位置。透镜组件包括可调透镜,用于改变从激光源接收的激光束的聚焦。检流计组件沿着扫描路径重定向从透镜组件接收的激光束。透镜放置在相对于检流计组件固定的位置并且响应于由传感器组件沿着激光束的扫描路径识别的三维物体的表面位置可调。
本发明的激光源不需要相对于可调透镜的准确位置或者甚至不需要摄影测量组件,这提供检修的简便。因此,在不引起当前激光投影仪组件已知的报废或昂贵的对准的情况下,为了检修激光源可以被替换。为了克服这种缺陷,激光束以光纤缆线的方式朝着可调透镜定向。照此,用于与透镜或检流计对准所需要的就是将光纤缆线与透镜组件互连的配件(fitting)。由本发明的激光投影仪组件提供的额外好处在下面变得更加显而易见。
附图说明
当结合附图考虑,通过参考以下的具体实施方式更好地理解本发明时,将容易认识本发明的其他优点,其中:
图1示出本发明的激光投影仪组件的示意图;
图2示出次要光源朝工件发射光;
图3示出来自次要光源的光被反射到激光投影仪的摄影测量组件;
图4示出激光投影仪朝附接到工件的反射目标投影的激光束;
图5示出从附接到工件的反射目标朝激光投影仪反射的激光束;
图6示出具有从激光投影仪组件投影的激光模板的工件的透视图;以及
图7示出本发明的激光投影仪组件的透视图。
具体实施方式
参考图1,以10一般地示出本发明的激光组件。组件10包括用于生成激光束14的激光源12。激光源12通过光纤缆线13将激光束14传送到包括在透镜组件15中的透镜16。激光束14通过聚焦透镜16向分束器18投影。分束器18将激光束14重定向到检流计组件20。分束器18允许激光束14的一部分通过光传感器22。
光传感器22通过闭环处理的方式提供可靠的功率输出控制。照此,光传感器22通过用于生成功率控制环路的模拟电路连接到主处理器24。主处理器24是A20ARM处理器。主处理器24将必须的功率调整定向到激光源12以在投影激光束14的同时保持期望的图像清晰度。
检流计组件20包括第一检流计马达30和第二检流计马达32。第一检流计马达30向第一检流计镜34提供枢转运动,并且第二检流计马达32向第二检流计镜36提供枢转运动。应当理解的是,虽然本申请中描述两个检流计马达30、32,但是额外的检流计马达和检流计镜组件也在本发明的范围内,使得检流计组件20可以包括三个、四个或更多个检流计马达,从而根据期望提供可变的和不同的投影特征。
如下文将进一步解释的,第一检流计镜34和第二检流计镜36通过输出光阑26将激光束14重定向到工件38。第一检流计马达30和第二检流计马达32与主处理器24电连接,使得主处理器24能够连续地计算第一检流计镜34和第二检流计镜36的朝向,用于识别通过输出光阑26投影激光束14的方向。
第一检流计镜34和第二检流计镜36还通过分束器18将反射激光束40重定向到反射激光传感器42上。反射激光传感器42也电连接到主处理器24,使得主处理器24在反射激光束40接触反射激光传感器42时计算第一检流计镜34和第二检流计镜36的朝向。以这样的方式,如将在下文进一步解释的,主处理器24确定反射激光束40发出的方向。
摄影测量组件44包括第一相机46,该第一相机46互连到用于发送工件38的图像的第一照片处理器47。在替代的实施例中,第二相机50电连接到第二照片处理器51,用于用第一相机46生成工作表面48的图像。当确定工作表面48在三维坐标系中的位置时,工作表面48的立体成像提供更好的准确性。第一照片处理器47和第二照片处理器51是具有集成的5兆像素传感器的双核A20ARM处理器,所述传感器预期是用于在照片处理器47、51本地捕获图像的直接接口COMS传感器。应当理解的是,也可以使用CCD传感器,但是能量要求更高。第一照片处理器47和第二照片处理器51电连接到主处理器24。主处理器24和第一与第二照片处理器47、51连接到处理器板53。为了检修,处理器47、51中的每一个都是在处理器板53上各自可替换的,主处理器24也是这样。还应当理解的是,如在本发明的权利要求中所记载的传感器组件可选地包括反射激光传感器42和第一相机46以及第二相机50的组合,第一相机和第二相机中的每一个包括CMOS或CCD传感器。
如共同未决的美国专利申请No.14/160,945所公开的,主处理器24将视频显示直接实现为3D列表以允许动态聚焦调整并且许可运动补偿校正,该美国专利申请的内容通过引用结合到本文。对用于将图像记录到主ARM处理器模块24的本地存储器的所有相机46、50功能的直接控制由通过照片处理器47、51的相机46、50的互连分别提供。第一光学透镜55与第一相机46互连并且第二光学透镜57互连到第二相机50。在一种实施例中,透镜55、57将工件38的视图聚焦到传感器上,以4毫米焦距的低失真提供大概80度光学视场。在替代的实施例中,特别是对于更大的或更小的工作表面48,可以利用不同的光学视场。
激光源12的次要光源52向工件38和工作表面48、38提供次要光照54。在一种实施例中,次要光源52是接近第一相机46和第二相机50中的每一个定位的LED闪光阵列。次要光源52生成次要光54,在一种实施例中该次要光包括与激光束14类似或相同的波长。可替代地,激光束14和次要光54可以包括不同波长。在再其他的实施例中,次要光54可以是红外光或者其他不可见光波的光,其可以期望用于第二光源52的连续的或依次的闪光。
激光组件10的每一个部件被安装在尺寸稳定的框架60上,该框架由铝或已知的对工作空间中或外壳28内的温度改变不敏感的等效合金机加工或形成。但是,风扇62被附加到外壳以保持框架60的一致温度并且防止与框架60的温度蠕变相关联的膨胀。此外,框架60充当热沉以吸收和消除由激光组件10的部件生成的热能。因此,框架60提供摄影测量组件44和透镜组件15之间的尺寸稳定的位置。这减少了为了计算准确的激光投影而连续地计算摄影测量组件44在三维坐标系内相对于透镜组件15的位置的需要,所述计算进一步增加了投影激光模板56的响应时间。
如上所述,激光源12通过光纤缆线13将激光束14传送到透镜组件15。在一种实施例中,光纤缆线13保持激光束14的极化以促进通过分束器18到光传感器22的有效传输。光缆13用耦合/安装板64互连固定到透镜组件15。耦合/安装板64以尺寸稳定的关系固定到透镜16。因此,激光源12到透镜组件15的位置现在相对于保持准确的投影解除关联,所述保持准确的投影依赖于激光源的准确位置。只要耦合/安装板64安置在相对于透镜16尺寸准确的布置中,那么就不再需要以与摄影测量组件44尺寸准确的关系定位激光源12。照此,激光源12的现场维修或替换可以容易地实现,无需为了实现激光束14的期望的准确投影而必须重校准或验证激光源12相对于摄影测量组件44的尺寸准确的位置。
在一种实施例中,透镜16是电可调的,通过变形来改变焦距用于快速调整激光束14的聚焦以保持工作表面48上的精确模板图案56。当激光组件10扫描模板56的图案用于精确配准时,结合三维工作表面48上激光束14的三维投影来调整透镜16。照此,既在投影在三维工作表面48上时又在投影二维工作表面时实现了快速焦点校正。
本发明的透镜16提供保持工作表面48上激光束14的一致光斑大小,即使具体图案模板56的周期时间包括40Hz或更高的刷新率,因此消除现有技术透镜中常见的可感觉的闪烁。透镜16提供可变的聚焦特征而不是依赖于常规透镜的运动平移(translation)。通过改变透镜16的配置修改透镜16的焦点使得即使在复杂三维工作表面48上也能够快速调整激光束14的激光聚焦。因此,透镜16包括用于改变从所述激光源接收的激光束的聚焦的可配置形状。
在一种实施例中,实现了电湿润(electro-wetting)改变具有不同光密度的两种液体的边界的原理,用于重配置透镜16的形状。通过电流或压力差异的方式划分两种液体的边界提供了如由处理器24基于来自摄影测量组件44或反射光传感器42的反馈所指示的快速响应。具有可重配置属性的替代透镜16提供当对透镜16施加压力时改变形状的聚合物。通过改变透镜16的形状的配置来快速修改透镜16的聚焦已经被证明提高模板图像56的精确度,即使以之前认为不能达到的速率投影到复杂三维工作表面48上。
温度波动被认为影响透镜16的几何配置,使得激光束14的光学质量下降,即使激光束14的聚焦被处理器24中的控制电路系统即时修改。温度变化以若干方式解决。首先,温度被连续地监控并且响应于温度变化向处理器24施加数学校正。为了进一步帮助透镜16配置的快速控制和调整,加速度计66与透镜16集成以检测不仅是由于温度波动而且是由于来自激光投射组件10的动态运动引起的透镜16配置的快速波动。加速度计66识别来自透镜16的运动的加速度并且信号通知主处理器24以快速地响应这种运动。此外,摄影测量组件44提供关于由激光束14生成的激光光斑的质量的额外的感测输入,也信号通知主处理器24修改透镜16的配置,从而提供准确地投影激光模板66的额外能力。为了进一步调整框架60的温度变化,风扇62循环以保持框架60的基本上恒定的温度。因此,框架60对透镜16的收缩和膨胀的效果被最小化。
如在图7中最佳表示的,组件10的外壳28是可以被安装或放置在任何期望位置的完全模块化单元。外壳28被在枢轴70处附加到外壳28的把手68支撑。外壳包括限定输出光阑26和摄影测量开口72的上盖62。主处理器24经由以太网缆线(未示出)、无线系统或其他方法通信到远程计算机74,该计算机在被使用时协调CAD数据并且与多个组件10通信。
参考图2-5,现在将解释准确地将激光模板56投影到工作表面48上的方法。反射目标58被附加到工件38的工作表面48。在一种实施例中,目标58被附加到三维工作表面48的有关基准,使得工作表面48的三维特征可以根据目标58的位置被精确地计算。多个目标58可以以间隔排列的位置被附接到工作表面48。在一种实施例中,四个目标提供准确地计算工作表面48的三维轮廓的足够的反射信息。可以基于具体应用选择更多或更少的目标58。
在对准周期的开始处,次要光源52朝工件38发射次要光54。次要光源闪光次要光54,而不是投射次要光54达延长的时间段。摄影测量组件44接收从工件38的工作表面48反射以及也从目标58反射的次要光54。在相对于工作表面48的已知位置(诸如例如在基准上)定位目标58允许摄影测量组件44使用目标58的配置来定位工件38的三维配置,用于最终确定三维表面48在三维坐标系中的位置。以这样的方式,摄影测量组件44信号通知处理器24计算限定三维工作表面48的轮廓中的改变。
如上所述,摄影测量组件44还检测从目标58反射的次要光54。当由摄影测量组件44信号通知时,处理器24还确定目标58在三维坐标系中的一般位置。基于目标58相距次要光54的坐标,检流计马达30、32定向由激光源12生成的激光束14以用激光束14直接地扫描目标58。由此,处理器24辨别目标54的图案并且计算用激光束14扫描目标58所需的位置,用于计算工作表面48上激光模板56的准确位置。
一旦计算了目标58的坐标,激光束14如图4所示由激光源12投影到目标58上。图5示出通过输出开口26从目标58朝投影仪组件10反射回的激光束14。通过回射的方式,返回激光束40由第一检流计镜34和第二检流计镜36通过分束器18重定向到反射激光传感器42上。在这时,反射激光传感器42接收反射激光束40,第一检流计马达30和第二检流计马达32信号通知处理器返回激光束40所源自的位置。使用检流计马达30、32的朝向,处理器24计算目标58的确切位置,并且因此能够如图6所示准确地投影激光模板56。
本发明已经以说明性的方式进行描述,并且应当理解的是,术语已经用作旨在是说明性的而不是限制性的。显然的是,本发明的许多修改和变型在上述教导的启示下都是可能的。因此应当理解的是,在说明书中,附图标记仅是为了方便而不是以任何方式限制,因为可以以特定描述的以外的其他方式实践本发明。
Claims (19)
1.一种用于将模板投影到物体上的激光投影仪组件,包括:
框架;
附加到所述框架的用于生成激光束的激光源;
用于改变从所述激光源接收的激光束的聚焦的透镜组件,包括具有可重配置的形状的透镜;
用于感测三维物体的表面位置的传感器组件;
用于沿着扫描路径重定向从所述透镜组件接收的激光束的检流计组件;以及
所述透镜放置在相对于所述检流计组件的固定位置,并且所述传感器组件可与所述检流计组件合作用于沿着激光束的扫描路径感测表面位置,以及响应于由所述传感器组件沿着激光束的扫描路径识别的三维物体的表面配置,所述透镜的形状被重配置,由此当所述表面位置沿激光束的扫描路径发生三维尺寸变化时调整所述激光束的聚集。
2.如权利要求1所述的组件,还包括附加到所述框架的摄影测量组件,用于识别三维物体的表面位置。
3.如权利要求1所述的组件,其中所述激光束通过光缆从所述激光源传输到所述透镜组件。
4.如权利要求1所述的组件,其中激光光缆用缆线配件互连到所述激光源。
5.如权利要求1所述的组件,其中透镜组件包括分束器并且所述传感器组件包括光传感器,所述分束器将激光束的一部分定向到所述光传感器,用于确定所述激光源的输出水平。
6.如权利要求2所述的组件,其中响应于由所述摄影测量组件沿着激光束的扫描路径识别的三维物体的表面位置,所述透镜进行几何形状修改。
7.如权利要求2所述的组件,其中所述摄影测量组件包括互连到第一处理器的第一相机和互连到第二处理器的第二相机,其中所述第一处理器和所述第二处理器互连并固定地附接到所述框架。
8.如权利要求7所述的组件,其中还包括电互连到所述第一处理器和所述第二处理器的主处理器,用于提供三维列表显示以及与主计算机的电通信。
9.如权利要求7所述的组件,其中所述第一相机和所述第二相机相对于所述透镜组件准确地定位。
10.如权利要求7所述的组件,还包括LED闪光阵列,可与所述第一相机和所述第二相机合作用于提供由所述第一相机和所述第二相机可检测的光。
11.如权利要求1所述的组件,其中所述传感器组件包括用于感测从三维物体的方向反射的激光束的反射激光传感器,用于检测沿着激光束的扫描路径识别的三维物体的表面位置。
12.一种用于将模板投影到工件的工作表面上的激光投影仪组件,包括:
尺寸稳定的框架;
附加到所述框架的用于从激光束生成模板的激光源;
在固定位置安装到所述框架的检流计组件,用于沿着工作表面上的扫描路径重定位激光束,从而生成模板;
透镜组件,所述透镜组件从所述激光源接收激光束并且包括用于将激光束聚焦到所述检流计组件上的聚焦透镜,其中所述聚焦透镜和所述检流计组件响应于工作表面沿激光束的扫描路径的三维几何配置的变化合作地聚焦和重定向激光束,由此响应于工作表面的三维几何配置的变化而调整激光束的聚集;以及
所述透镜组件和所述检流计组件以尺寸准确的布置附加到所述框架,并且所述激光源的位置与所述透镜组件和所述检流计组件的所述尺寸准确的布置解除关联。
13.如权利要求12所述的组件,还包括摄影测量组件,所述摄影测量组件包括以相对于所述检流计组件的尺寸准确的固定位置安装到所述框架的相机。
14.如权利要求12所述的组件,其中所述透镜组件的所述聚焦透镜包括可调透镜。
15.如权利要求14所述的组件,其中所述可调透镜包括用于提供激光束的聚焦的快速调整的可变形透镜。
16.如权利要求13所述的组件,其中所述摄影测量组件包括用于生成工件的工作表面的立体图像的第一相机和第二相机。
17.如权利要求12所述的组件,其中激光束通过光纤缆线从所述激光源定向到所述透镜组件。
18.如权利要求16所述的组件,其中所述第一相机电连接到第一处理器并且所述第二相机电连接到第二处理器,其中所述第一处理器和所述第二处理器固定地附接到所述框架。
19.如权利要求18所述的组件,其中所述第一处理器和所述第二处理器电连接到主处理器,所述主处理器用于根据从所述第一处理器和所述第二处理器接收的成像数据计算激光束投影位置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662408944P | 2016-10-17 | 2016-10-17 | |
US62/408,944 | 2016-10-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107957652A CN107957652A (zh) | 2018-04-24 |
CN107957652B true CN107957652B (zh) | 2021-08-20 |
Family
ID=61765010
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710964912.4A Active CN107957237B (zh) | 2016-10-17 | 2017-10-17 | 具有闪光对准的激光投影仪 |
CN201710964914.3A Active CN107957652B (zh) | 2016-10-17 | 2017-10-17 | 具有动态自适应聚焦的激光投影仪 |
CN202110342082.8A Active CN113074669B (zh) | 2016-10-17 | 2017-10-17 | 具有闪光对准的激光投影仪 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710964912.4A Active CN107957237B (zh) | 2016-10-17 | 2017-10-17 | 具有闪光对准的激光投影仪 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110342082.8A Active CN113074669B (zh) | 2016-10-17 | 2017-10-17 | 具有闪光对准的激光投影仪 |
Country Status (3)
Country | Link |
---|---|
US (3) | US10799998B2 (zh) |
CN (3) | CN107957237B (zh) |
DE (3) | DE102017012309B3 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10210607B1 (en) | 2015-04-08 | 2019-02-19 | Wein Holding LLC | Digital projection system and method for workpiece assembly |
US10799998B2 (en) * | 2016-10-17 | 2020-10-13 | Virtek Vision International Ulc | Laser projector with flash alignment |
CN109141236A (zh) * | 2018-08-17 | 2019-01-04 | 上海交通大学 | 基于振镜扫描的激光频闪三维视觉测量系统及方法 |
US10481379B1 (en) | 2018-10-19 | 2019-11-19 | Nanotronics Imaging, Inc. | Method and system for automatically mapping fluid objects on a substrate |
US11402627B2 (en) * | 2018-11-19 | 2022-08-02 | Virtek Vision International Inc. | System and method for limiting laser exposure of arbitrary laser template projection |
DE102018219902A1 (de) * | 2018-11-21 | 2020-05-28 | Carl Zeiss Meditec Ag | Anordnung und Verfahren zur Kompensation der Temperaturabhängigkeit einer Facettenlinse für die Bestimmung der Topographie eines Auges |
CN111578908A (zh) * | 2019-02-15 | 2020-08-25 | 维蒂克影像国际无限责任公司 | 检测材料贴花的正确朝向的方法 |
US11345014B2 (en) * | 2019-02-15 | 2022-05-31 | Virtek Vision International Inc | Method of detecting proper orientation of material applique |
US11988889B2 (en) * | 2019-11-15 | 2024-05-21 | Faro Technologies, Inc. | Laser projector system |
CN110763139B (zh) * | 2019-11-22 | 2021-04-20 | 北京理工大学 | 结合可变形镜共焦定位的非球面误差干涉测量方法及系统 |
CN111412835B (zh) * | 2020-04-14 | 2021-04-30 | 长春理工大学 | 一种新型激光扫描投影方法 |
KR102393855B1 (ko) * | 2020-08-19 | 2022-05-04 | 국방과학연구소 | 광선 살균 로봇 및 시스템 |
US12025442B2 (en) | 2020-10-09 | 2024-07-02 | Virtek Vision International Inc. | Control of an optical indicator system through manipulation of physical objects |
DE102021211376A1 (de) | 2020-10-09 | 2022-04-14 | Virtek Vision International, Inc. | Verfahren und system zum überprüfen vonreparatur- oder montagevorgängen |
DE102022204320A1 (de) | 2021-05-03 | 2022-11-03 | Virtek Vision International, Inc. | Optische schablonenprojektion unter verwendung von positionsreferenz |
US11828596B2 (en) * | 2021-05-03 | 2023-11-28 | Virtek Vision International Inc | Optical template projection using positional reference |
US20230333028A1 (en) | 2022-04-14 | 2023-10-19 | Virtek Vision International Inc | Method and system for inspecting a surface with artifical intelligence assist |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6765606B1 (en) * | 1997-11-13 | 2004-07-20 | 3Dv Systems, Ltd. | Three dimension imaging by dual wavelength triangulation |
CN101229053A (zh) * | 2007-01-26 | 2008-07-30 | 株式会社拓普康 | 光图像计测装置 |
WO2011145799A1 (ko) * | 2010-05-20 | 2011-11-24 | Lim Yong Geun | 3차원 스캐너용 측정 장치 |
CN103180689A (zh) * | 2010-09-15 | 2013-06-26 | 视感控器有限公司 | 具有基于mems的光源的非接触式传感系统 |
US8582087B2 (en) * | 2005-02-01 | 2013-11-12 | Laser Projection Technologies, Inc. | Laser radar projection with object feature detection and ranging |
CN104034258A (zh) * | 2013-03-08 | 2014-09-10 | 维蒂克影像国际公司 | 具有可变焦距的检流计扫描相机及方法 |
CN104350356A (zh) * | 2012-06-11 | 2015-02-11 | 法罗技术股份有限公司 | 具有可拆卸附件的坐标测量机 |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2339880C (en) * | 1989-02-06 | 2004-11-30 | Stewart A. Brown | Method and apparatus for precision laser surgery |
JPH06137828A (ja) * | 1992-10-29 | 1994-05-20 | Kajima Corp | 障害物位置検出方法 |
SE9800665D0 (sv) * | 1998-03-02 | 1998-03-02 | Micronic Laser Systems Ab | Improved method for projection printing using a micromirror SLM |
US20020133144A1 (en) * | 2001-03-19 | 2002-09-19 | Ball Semiconductor, Inc. | Laser irradiation mapping system |
US7463368B2 (en) | 2003-09-10 | 2008-12-09 | Metris Canada Inc | Laser projection system, intelligent data correction system and method |
CA2536232A1 (en) | 2003-09-10 | 2005-03-17 | Virtek Laser Systems, Inc. | Laser projection systems and methods |
US8082120B2 (en) | 2005-03-11 | 2011-12-20 | Creaform Inc. | Hand-held self-referenced apparatus for three-dimensional scanning |
CA2656163C (en) | 2005-03-11 | 2011-07-19 | Creaform Inc. | Auto-referenced system and apparatus for three-dimensional scanning |
US7488107B2 (en) * | 2005-08-18 | 2009-02-10 | General Electric Company | Method and apparatus to detect and correct alignment errors in x-ray systems used to generate 3D volumetric images |
JP2007114071A (ja) * | 2005-10-20 | 2007-05-10 | Omron Corp | 三次元形状計測装置、プログラム、コンピュータ読み取り可能な記録媒体、及び三次元形状計測方法 |
US7480037B2 (en) | 2005-12-02 | 2009-01-20 | The Boeing Company | System for projecting flaws and inspection locations and associated method |
CN101178544A (zh) * | 2006-04-12 | 2008-05-14 | 富士胶片株式会社 | 对准单元及使用该对准单元的图像记录装置 |
US7587258B2 (en) | 2006-05-10 | 2009-09-08 | The Boeing Company | Merged laser and photogrammetry measurement using precise camera placement |
US20070269098A1 (en) | 2006-05-19 | 2007-11-22 | Marsh Bobby J | Combination laser and photogrammetry target |
US7626692B2 (en) | 2006-12-18 | 2009-12-01 | The Boeing Company | Automated imaging of part inconsistencies |
JP2009193008A (ja) | 2008-02-18 | 2009-08-27 | Sharp Corp | 画像表示装置 |
JP5072688B2 (ja) * | 2008-04-02 | 2012-11-14 | キヤノン株式会社 | 走査型撮像装置 |
US8094921B2 (en) | 2008-04-15 | 2012-01-10 | The Boeing Company | Method and system for remote rework imaging for part inconsistencies |
US9304305B1 (en) * | 2008-04-30 | 2016-04-05 | Arete Associates | Electrooptical sensor technology with actively controllable optics, for imaging |
DE102008041821A1 (de) * | 2008-09-04 | 2010-03-11 | Leica Microsystems (Schweiz) Ag | Videoadapter für eine Mikroskopkamera |
CA2686904C (en) | 2009-12-02 | 2012-04-24 | Creaform Inc. | Hand-held self-referenced apparatus for three-dimensional scanning |
JP2011209064A (ja) * | 2010-03-29 | 2011-10-20 | Fuji Xerox Co Ltd | 物品認識装置及びこれを用いた物品処理装置 |
US9377885B2 (en) | 2010-04-21 | 2016-06-28 | Faro Technologies, Inc. | Method and apparatus for locking onto a retroreflector with a laser tracker |
US8358333B2 (en) * | 2011-03-04 | 2013-01-22 | The Boeing Company | Photogrammetry measurement system |
US9686532B2 (en) | 2011-04-15 | 2017-06-20 | Faro Technologies, Inc. | System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices |
CN102353346B (zh) * | 2011-06-23 | 2013-05-08 | 东华大学 | 自动寻边激光切割机ccd安装垂直度的检测方法和系统 |
DE102011079985A1 (de) | 2011-07-28 | 2013-01-31 | Osram Ag | Projektionsvorrichtung |
EP2602641B1 (de) | 2011-12-06 | 2014-02-26 | Leica Geosystems AG | Lasertracker mit positionssensitiven Detektoren zur Suche eines Ziels |
US8780361B2 (en) * | 2012-02-03 | 2014-07-15 | The Boeing Company | Apparatus and method for calibrating laser projection system |
JP6127366B2 (ja) * | 2012-03-07 | 2017-05-17 | セイコーエプソン株式会社 | プロジェクター、及び、プロジェクターの制御方法 |
US9245062B2 (en) * | 2012-03-22 | 2016-01-26 | Virtek Vision International Inc. | Laser projection system using variable part alignment |
US9200899B2 (en) * | 2012-03-22 | 2015-12-01 | Virtek Vision International, Inc. | Laser projection system and method |
US20130329012A1 (en) * | 2012-06-07 | 2013-12-12 | Liberty Reach Inc. | 3-d imaging and processing system including at least one 3-d or depth sensor which is continually calibrated during use |
CN102997771B (zh) * | 2012-12-04 | 2015-06-17 | 二重集团(德阳)重型装备股份有限公司 | 数字摄影测量系统的基准尺长度标定方法 |
CN103115566B (zh) * | 2013-01-21 | 2015-09-09 | 苏州富强科技有限公司 | 一种线激光和影像检测装置 |
DE102013201061A1 (de) * | 2013-01-23 | 2014-07-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Bestimmen räumlicher Koordinaten von Oberflächen makroskopischer Objekte |
US9881383B2 (en) * | 2013-01-28 | 2018-01-30 | Virtek Vision International Ulc | Laser projection system with motion compensation and method |
US9121692B2 (en) | 2013-03-13 | 2015-09-01 | Trimble Navigation Limited | Method and apparatus for projection of BIM information |
US9491448B2 (en) | 2013-04-01 | 2016-11-08 | The Boeing Company | Laser videogrammetry |
JP6171502B2 (ja) * | 2013-04-04 | 2017-08-02 | 船井電機株式会社 | プロジェクタおよびプロジェクタ機能を有する電子機器 |
US9410793B2 (en) | 2013-08-06 | 2016-08-09 | Laser Projection Technologies, Inc. | Virtual laser projection system and method |
DE102013114707A1 (de) | 2013-12-20 | 2015-06-25 | EXTEND3D GmbH | Verfahren zur Durchführung und Kontrolle eines Bearbeitungsschritts an einem Werkstück |
US9606235B2 (en) | 2014-01-16 | 2017-03-28 | The Boeing Company | Laser metrology system and method |
CN104199257B (zh) * | 2014-08-26 | 2016-08-24 | 合肥芯硕半导体有限公司 | 一种精密定位平台绝对定位精度的测量及补偿方法 |
EP3045936A1 (en) * | 2015-01-13 | 2016-07-20 | XenomatiX BVBA | Surround sensing system with telecentric optics |
US10048064B2 (en) * | 2015-01-30 | 2018-08-14 | Adcole Corporation | Optical three dimensional scanners and methods of use thereof |
US10359277B2 (en) * | 2015-02-13 | 2019-07-23 | Carnegie Mellon University | Imaging system with synchronized dynamic control of directable beam light source and reconfigurably masked photo-sensor |
US10557701B2 (en) * | 2016-03-25 | 2020-02-11 | Thorlabs, Inc. | MEMS tunable VCSEL powered swept source OCT for 3D metrology applications |
US10414048B2 (en) * | 2016-09-14 | 2019-09-17 | Faro Technologies, Inc. | Noncontact safety sensor and method of operation |
US10799998B2 (en) * | 2016-10-17 | 2020-10-13 | Virtek Vision International Ulc | Laser projector with flash alignment |
-
2017
- 2017-10-16 US US15/784,387 patent/US10799998B2/en active Active
- 2017-10-16 US US15/784,720 patent/US10239178B2/en active Active
- 2017-10-17 DE DE102017012309.8A patent/DE102017012309B3/de active Active
- 2017-10-17 DE DE102017218505.8A patent/DE102017218505A1/de active Pending
- 2017-10-17 CN CN201710964912.4A patent/CN107957237B/zh active Active
- 2017-10-17 CN CN201710964914.3A patent/CN107957652B/zh active Active
- 2017-10-17 DE DE102017218503.1A patent/DE102017218503B4/de active Active
- 2017-10-17 CN CN202110342082.8A patent/CN113074669B/zh active Active
- 2017-11-29 US US15/826,060 patent/US10052734B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6765606B1 (en) * | 1997-11-13 | 2004-07-20 | 3Dv Systems, Ltd. | Three dimension imaging by dual wavelength triangulation |
US8582087B2 (en) * | 2005-02-01 | 2013-11-12 | Laser Projection Technologies, Inc. | Laser radar projection with object feature detection and ranging |
CN101229053A (zh) * | 2007-01-26 | 2008-07-30 | 株式会社拓普康 | 光图像计测装置 |
WO2011145799A1 (ko) * | 2010-05-20 | 2011-11-24 | Lim Yong Geun | 3차원 스캐너용 측정 장치 |
CN103180689A (zh) * | 2010-09-15 | 2013-06-26 | 视感控器有限公司 | 具有基于mems的光源的非接触式传感系统 |
CN104350356A (zh) * | 2012-06-11 | 2015-02-11 | 法罗技术股份有限公司 | 具有可拆卸附件的坐标测量机 |
CN104034258A (zh) * | 2013-03-08 | 2014-09-10 | 维蒂克影像国际公司 | 具有可变焦距的检流计扫描相机及方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102017218503A1 (de) | 2018-04-19 |
US10239178B2 (en) | 2019-03-26 |
CN107957652A (zh) | 2018-04-24 |
DE102017218505A1 (de) | 2018-04-19 |
CN107957237A (zh) | 2018-04-24 |
US10052734B2 (en) | 2018-08-21 |
CN113074669A (zh) | 2021-07-06 |
US20180104789A1 (en) | 2018-04-19 |
DE102017218503B4 (de) | 2022-09-22 |
CN113074669B (zh) | 2023-02-14 |
US20180109770A1 (en) | 2018-04-19 |
DE102017012309B3 (de) | 2021-04-08 |
US10799998B2 (en) | 2020-10-13 |
US20180104788A1 (en) | 2018-04-19 |
CN107957237B (zh) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107957652B (zh) | 具有动态自适应聚焦的激光投影仪 | |
US9442075B2 (en) | Galvanometer scanned camera with variable focus and method | |
US9880265B2 (en) | Optoelectronic apparatus and method for the detection of object information | |
CN108718406B (zh) | 一种可变焦3d深度相机及其成像方法 | |
KR20140075163A (ko) | 구조광 방식을 활용한 패턴 프로젝팅 방법 및 장치 | |
US11102459B2 (en) | 3D machine-vision system | |
CN112565568A (zh) | 动态监控摄像装置和动态监控方法 | |
CN111725142A (zh) | 用于3d感测应用的集成电子模块以及包括集成电子模块的3d扫描设备 | |
JP2021089288A (ja) | ライダシステム用光学装置、ライダシステムおよび作業装置 | |
KR20150087538A (ko) | 카메라 모듈 초점 조정 장치 및 방법 | |
EP3988895B1 (en) | Compensation of three-dimensional measuring instrument having an autofocus camera | |
TW201804366A (zh) | 圖像處理裝置、相關的深度估計系統及深度估計方法 | |
KR102019488B1 (ko) | 레이저 가공 장치 및 레이저 가공 방법 | |
CN213091888U (zh) | 深度测量系统及电子设备 | |
KR20210151000A (ko) | 거리측정장치 및 거리측정장치의 화각 동기화 방법 | |
CN113126413A (zh) | 一种单色激光投影系统及3d相机 | |
KR20200005932A (ko) | 구조광 기반 3차원 카메라 시스템 | |
KR20200049654A (ko) | 간단한 대물렌즈위치 순차제어를 통한 2차원 주사광학시스템 | |
US20240210795A1 (en) | Camera module | |
JP7123452B2 (ja) | 画像投影装置 | |
JP2023534185A (ja) | 移動物体の存在下で2d視覚システムのカメラの被写界深度を広げるためのシステム及び方法 | |
CN110809151A (zh) | 一种模组对准装置及其方法 | |
JP2741129B2 (ja) | 二次元コード読取器 | |
CN116235491A (zh) | 三维图像获取装置 | |
KR20210141208A (ko) | 카메라 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240428 Address after: Canada Patentee after: Veltec Vision International Ltd. Country or region after: Canada Address before: Rika University Patentee before: Virtek Vision International ULC Country or region before: Canada |