CN107954724A - 一种利用振荡压力烧结法制备氮化硅陶瓷的工艺 - Google Patents
一种利用振荡压力烧结法制备氮化硅陶瓷的工艺 Download PDFInfo
- Publication number
- CN107954724A CN107954724A CN201711389983.2A CN201711389983A CN107954724A CN 107954724 A CN107954724 A CN 107954724A CN 201711389983 A CN201711389983 A CN 201711389983A CN 107954724 A CN107954724 A CN 107954724A
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- pressure
- sintering
- powder
- mixed powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,其工艺步骤包括:a、氮化硅混合粉体填装,氮化硅混合粉体包括重量份为85%‑90%氮化硅粉体、10%‑15%烧结助剂,烧结助剂包括氧化铝粉体、氧化钇粉体;b、抽真空处理后充入保护气体;c、施加30MPa预压力,同时以100℃/h的升温速率的加热升温;d、当烧结炉内腔的温度值达到1780℃时,施加振荡压力,同时保温60min;e、以200℃/min的降温速率降温到900℃,同时缓慢卸压;f、随炉自然冷却到室温。本发明通过施加振荡压力可以有效抑制晶粒生长并能够有效促进晶界处闭气孔的排出,且所制备而成的氮化硅陶瓷致密度高、硬度高、强度高。
Description
技术领域
本发明涉及氮化硅陶瓷制备技术领域,尤其涉及一种利用振荡压力烧结法制备氮化硅陶瓷的工艺。
背景技术
传统压力烧结方法是通过施加压力提高粉料烧结性能的方法,其主要有热压烧结、热等静压烧结、放电等离子烧结三种方法。其中,对于热压烧结方法而言,其是指在烧结的同时对粉末施加单向或双向的压力,压力的范围可以从几十个MPa 到几个GPa;目前热压烧结的压力逐渐提高,当压力超过1GPa 时,又称为超高压热压烧结;由于热压烧结时施加较高的压力,可以有效地促进粉末的致密化并抑制晶粒长大,目前热压烧结方法被广泛地应用于陶瓷、硬质合金、金属间化合物以及复合材料等。对于热等静压烧结方法而言,其是在烧结时用惰性气体、液态或者固态媒介对粉末各个方向施加相等的压力,可以较好地消除粉料中的孔隙并抑制晶粒生长。对于放电等离子烧结方法而言,其是一种快速、节能、环保的材料制备加工技术,在特有的电场、应力场、温度场作用下,实现各种结构与性能新材料的烧结;在场活化烧结时,应力的施加有利于团聚粉末的破碎和颗粒的重排,可以减少团聚体在烧结后引入的大量缺陷和气孔,进而获得致密的材料;在烧结的最后阶段,压力能促进塑性流动和扩散蠕变,提高场活化烧结材料的致密度,且随着施加载荷的增加,压力能提高烧结驱动力,有利于降低最终烧结温度。
具体而言,压力烧结过程中粉体的变形是在应力和温度的同时作用下进行的,物质迁移可以通过位错滑移、攀移、扩散、扩散蠕变等多种机制完成。
上述三种压力烧结方法可以明显降低体系的烧结温度、缩短烧结保温时间并减少或者不使用烧结助剂,同时还可以抑制晶粒粗化并促进坯体致密化,因此所制备的陶瓷构件具有较高的力学性能和可靠性。然而,目前液压系统的限制使得上述烧结方法所施加的压力都是静态压力,表现为压头处恒定的压力值;压力烧结中恒定压力的局限性主要表现在:1、烧结开始前,恒定压力无法充分实现颗粒重排而且颗粒团聚体无法充分解聚;2、烧结后期,恒定压力下晶界处的残留闭气孔无法有效排除,而闭气孔是制约结构陶瓷力学性能的重要因素。
需进一步指出,在将压力烧结技术用于纳米陶瓷的烧结时,发现了许多新的局限,纳米陶瓷烧结时普遍存在“阈值”,即在一定温度下压力必须大于一定值才能促进陶瓷致密化,而低于这一数值压力的作用可以忽略不计;研究表明,阈值与晶粒尺寸有关,晶粒越小,阈值越大。在纳米陶瓷烧结过程中,由于软团聚难以有效破碎,烧结过程中团聚体内部首先出现致密化,与基体之间产生张力,导致裂纹状大气孔的出现;同时因石墨模具的限制,外压不足以克服塑性滑移所产生的阈值,因此大气孔无法压碎,使材料的烧结密度低于相同温度下无压烧结的材料。故而,要提高纳米材料的烧结密度,通常从以下两个方面着手:一是提高初始压力,以彻底破碎粉体中的软团聚;二是提高烧结中的外压力,以促进塑性滑移的进行。但是,目前压力烧结通常采用石墨模具,而石墨模具所能承受的应力有限,进一步提高外压力比较困难。总之,目前的恒定压力烧结设备尚无法充分发挥压力因素对陶瓷烧结过程中致密化和晶粒生长的作用。
除了晶粒尺寸和形状,材料的致密度也是决定其力学性能的重要参数;在陶瓷材料烧结过程中,晶界处的残余闭气孔往往难以排出,因此陶瓷材料无法实现完全致密化,且残余闭气孔的负面作用主要表现为:1、成为应力集中点而降低材料强度;2、成为光散射中心而降低材料的致密度;3、阻碍畴壁运动而影响材料的铁电性和磁性。在多晶陶瓷制备过程中,气孔存在于流程的各个环节,它最初存在于素坯颗粒间,是由原始粉料压块时颗粒间的孔隙遗留的;烧结初期,当界面曲率和界面迁移驱动力较高时,晶界以比较高的速率运动,气孔往往无法停留在晶界处而进入晶粒内部,因此能够观察到许多晶粒内存在小气孔;随着烧结的进行晶粒长大,晶界的曲率和晶界运动的驱动力逐渐减小,于是坯体内的气孔通常可以抵达晶界并随晶界一起运动,并逐渐聚集到晶粒角落上,如三叉晶界或四叉晶界;对于这部分气孔,通常的压力烧结方法往往难以排除。
发明内容
本发明的目的在于针对现有技术的不足而提供一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,该利用振荡压力烧结法制备氮化硅陶瓷的工艺能够有效地生产制备氮化硅陶瓷,且通过施加振荡压力可以有效抑制晶粒生长并将晶粒尺寸控制在较窄的尺寸区间内,还能够有效促进晶界处闭气孔的排出,且所制备而成的氮化硅陶瓷致密度高、硬度高、强度高。
为达到上述目的,本发明通过以下技术方案来实现。
一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,包括有以下工艺步骤,具体的:
a、将氮化硅混合粉体装入至烧结炉内的石墨模具内,石墨模具通过填装孔填装氮化硅混合粉体,石墨模具的填装孔为圆形孔且填装孔的内径值为30mm;其中,氮化硅混合粉体包括有以下重量份的物料:氮化硅粉体85%-90%、烧结助剂10%-15%,烧结助剂包括有氧化铝粉体、氧化钇粉体;
b、待氮化硅混合粉体填装完毕后,关闭烧结炉的炉盖,而后通过真空泵先对烧结炉的内腔进行抽真空处理,抽真空完毕后往烧结炉的内腔充入保护气体;
c、通过压头对氮化硅混合粉体施加为恒定压力的预压力,预压力的压力值为30MPa,同时启动烧结炉的加热装置进行加热,缓慢升温且升温速率100℃/h;
d、当烧结炉内腔的温度值达到1780℃时,在保持压头对氮化硅混合粉体的压力为30MPa的情况下,对压头施加振荡压力,该振荡压力与上述30MPa耦合并共同作用于氮化硅混合粉体,耦合后的振荡压力变化范围为27.5MPa-32.5MPa;在施加振荡压力的过程中,进行保温且保温时间为60min;
e、待保温结束后,烧结炉内腔开始以200℃/min的降温速率进行降温,直至降温到900℃,同时缓慢卸去压头对氮化硅陶瓷的压力;
f、当烧结炉的内腔降温至900℃时,将氮化硅陶瓷保持与烧结炉的内腔并随炉自然冷却到室温。
其中,所述保护气体为高纯氮气。
其中,所述氮化硅混合粉体包括有以下重量份的物料:氮化硅粉体86.19%、氧化铝粉体3.07%、氧化钇粉体8.34%。
其中,于所述氮化硅混合粉体中,所述氮化硅粉体的平均粒径为2.0μm。
本发明的有益效果为:本发明所述的一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,其包括有以下工艺步骤,具体的:a、将氮化硅混合粉体装入至烧结炉内的石墨模具内,石墨模具通过填装孔填装氮化硅混合粉体,石墨模具的填装孔为圆形孔且填装孔的内径值为30mm;其中,氮化硅混合粉体包括有以下重量份的物料:氮化硅粉体85%-90%、烧结助剂10%-15%,烧结助剂包括有氧化铝粉体、氧化钇粉体;b、待氮化硅混合粉体填装完毕后,关闭烧结炉的炉盖,而后通过真空泵先对烧结炉的内腔进行抽真空处理,抽真空完毕后往烧结炉的内腔充入保护气体;c、通过压头对氮化硅混合粉体施加为恒定压力的预压力,预压力的压力值为30MPa,同时启动烧结炉的加热装置进行加热,缓慢升温且升温速率100℃/h;d、当烧结炉内腔的温度值达到1780℃时,在保持压头对氮化硅混合粉体的压力为30MPa的情况下,对压头施加振荡压力,该振荡压力与上述30MPa耦合并共同作用于氮化硅混合粉体,耦合后的振荡压力变化范围为27.5MPa-32.5MPa;在施加振荡压力的过程中,进行保温且保温时间为60min;e、待保温结束后,烧结炉内腔开始以200℃/min的降温速率进行降温,直至降温到900℃,同时缓慢卸去压头对氮化硅陶瓷的压力; f、当烧结炉的内腔降温至900℃时,将氮化硅陶瓷保持与烧结炉的内腔并随炉自然冷却到室温。通过上述工艺步骤设计,本发明能够有效地生产制备氮化硅陶瓷,且通过施加振荡压力可以有效抑制晶粒生长并将晶粒尺寸控制在较窄的尺寸区间内,还能够有效促进晶界处闭气孔的排出,且所制备而成的氮化硅陶瓷致密度高、硬度高、强度高。
附图说明
下面结合附图来对本发明进行说明,但是附图中的实施例并不构成对本发明的限制。
图1为振荡压力耦合示意图。
图2为本发明所制备的氮化硅陶瓷的微观抛面形貌图。
图3为本发明所制备的氮化硅陶瓷的微观断面形貌图。
具体实施方式
下面结合具体的实施方式来对本发明进行说明。
一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,包括有以下工艺步骤,具体的:
a、将氮化硅混合粉体装入至烧结炉内的石墨模具内,石墨模具通过填装孔填装氮化硅混合粉体,石墨模具的填装孔为圆形孔且填装孔的内径值为30mm;其中,氮化硅混合粉体包括有以下重量份的物料:氮化硅粉体85%-90%、烧结助剂10%-15%,烧结助剂包括有氧化铝粉体、氧化钇粉体;
b、待氮化硅混合粉体填装完毕后,关闭烧结炉的炉盖,而后通过真空泵先对烧结炉的内腔进行抽真空处理,抽真空完毕后往烧结炉的内腔充入保护气体;
c、通过压头对氮化硅混合粉体施加为恒定压力的预压力,预压力的压力值为30MPa,同时启动烧结炉的加热装置进行加热,缓慢升温且升温速率100℃/h;
d、当烧结炉内腔的温度值达到1780℃时,在保持压头对氮化硅混合粉体的压力为30MPa的情况下,对压头施加振荡压力,该振荡压力与上述30MPa耦合并共同作用于氮化硅混合粉体,耦合后的振荡压力变化范围为27.5MPa-32.5MPa;在施加振荡压力的过程中,进行保温且保温时间为60min;
e、待保温结束后,烧结炉内腔开始以200℃/min的降温速率进行降温,直至降温到900℃,同时缓慢卸去压头对氮化硅陶瓷的压力;
f、当烧结炉的内腔降温至900℃时,将氮化硅陶瓷保持与烧结炉的内腔并随炉自然冷却到室温。
其中,保护气体为高纯氮气。
需进一步指出,氮化硅混合粉体包括有以下重量份的物料:氮化硅粉体86.19%、氧化铝粉体3.07%、氧化钇粉体8.34%,其余为其他助剂。
需强调的是,于氮化硅混合粉体中,氮化硅粉体的平均粒径为2.0μm。
通过上述工艺步骤设计,本发明能够有效地生产制备氮化硅陶瓷,且通过施加振荡压力可以有效抑制晶粒生长并将晶粒尺寸控制在较窄的尺寸区间内,还能够有效促进晶界处闭气孔的排出,且所制备而成的氮化硅陶瓷致密度高、硬度高、强度高。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。
Claims (4)
1.一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,其特征在于,包括有以下工艺步骤,具体的:
a、将氮化硅混合粉体装入至烧结炉内的石墨模具内,石墨模具通过填装孔填装氮化硅混合粉体,石墨模具的填装孔为圆形孔且填装孔的内径值为30mm;其中,氮化硅混合粉体包括有以下重量份的物料:氮化硅粉体85%-90%、烧结助剂10%-15%,烧结助剂包括有氧化铝粉体、氧化钇粉体;
b、待氮化硅混合粉体填装完毕后,关闭烧结炉的炉盖,而后通过真空泵先对烧结炉的内腔进行抽真空处理,抽真空完毕后往烧结炉的内腔充入保护气体;
c、通过压头对氮化硅混合粉体施加为恒定压力的预压力,预压力的压力值为30MPa,同时启动烧结炉的加热装置进行加热,缓慢升温且升温速率100℃/h;
d、当烧结炉内腔的温度值达到1780℃时,在保持压头对氮化硅混合粉体的压力为30MPa的情况下,对压头施加振荡压力,该振荡压力与上述30MPa耦合并共同作用于氮化硅混合粉体,耦合后的振荡压力变化范围为27.5MPa-32.5MPa;在施加振荡压力的过程中,进行保温且保温时间为60min;
e、待保温结束后,烧结炉内腔开始以200℃/min的降温速率进行降温,直至降温到900℃,同时缓慢卸去压头对氮化硅陶瓷的压力;
f、当烧结炉的内腔降温至900℃时,将氮化硅陶瓷保持与烧结炉的内腔并随炉自然冷却到室温。
2.根据权利要求1所述的一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,其特征在于:所述保护气体为高纯氮气。
3.根据权利要求1所述的一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,其特征在于:所述氮化硅混合粉体包括有以下重量份的物料:氮化硅粉体86.19%、氧化铝粉体3.07%、氧化钇粉体8.34%。
4.根据权利要求1所述的一种利用振荡压力烧结法制备氮化硅陶瓷的工艺,其特征在于:于所述氮化硅混合粉体中,所述氮化硅粉体的平均粒径为2.0μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711389983.2A CN107954724A (zh) | 2017-12-21 | 2017-12-21 | 一种利用振荡压力烧结法制备氮化硅陶瓷的工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711389983.2A CN107954724A (zh) | 2017-12-21 | 2017-12-21 | 一种利用振荡压力烧结法制备氮化硅陶瓷的工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107954724A true CN107954724A (zh) | 2018-04-24 |
Family
ID=61955813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711389983.2A Pending CN107954724A (zh) | 2017-12-21 | 2017-12-21 | 一种利用振荡压力烧结法制备氮化硅陶瓷的工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107954724A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108418937A (zh) * | 2018-05-10 | 2018-08-17 | 深圳初上科技有限公司 | 具有作画层的素烧、上釉式陶瓷手机壳生产方法及手机壳 |
CN110102756A (zh) * | 2019-05-28 | 2019-08-09 | 株洲万融新材科技有限公司 | 一种高强度高耐磨金属陶瓷及其制备方法 |
CN111892415A (zh) * | 2020-07-28 | 2020-11-06 | 郑州航空工业管理学院 | 一种碳化硅晶须/氧化铝陶瓷复合材料及其制备方法 |
CN115677353A (zh) * | 2022-11-02 | 2023-02-03 | 无锡海古德新技术有限公司 | 一种氮化铝基导电陶瓷及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85100510A (zh) * | 1985-04-01 | 1986-08-13 | 中国科学院上海硅酸盐研究所 | 含有氧化钇、氧化镧和氧化铝的氮化硅陶瓷及制造方法 |
JP2012117125A (ja) * | 2010-12-02 | 2012-06-21 | Institute Of National Colleges Of Technology Japan | 粉末焼結体の製造方法および製造装置 |
-
2017
- 2017-12-21 CN CN201711389983.2A patent/CN107954724A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85100510A (zh) * | 1985-04-01 | 1986-08-13 | 中国科学院上海硅酸盐研究所 | 含有氧化钇、氧化镧和氧化铝的氮化硅陶瓷及制造方法 |
JP2012117125A (ja) * | 2010-12-02 | 2012-06-21 | Institute Of National Colleges Of Technology Japan | 粉末焼結体の製造方法および製造装置 |
Non-Patent Citations (1)
Title |
---|
李双 等: "振荡压力烧结法制备高致密度细晶粒氧化锆陶瓷", 《无机材料学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108418937A (zh) * | 2018-05-10 | 2018-08-17 | 深圳初上科技有限公司 | 具有作画层的素烧、上釉式陶瓷手机壳生产方法及手机壳 |
CN110102756A (zh) * | 2019-05-28 | 2019-08-09 | 株洲万融新材科技有限公司 | 一种高强度高耐磨金属陶瓷及其制备方法 |
CN110102756B (zh) * | 2019-05-28 | 2021-01-29 | 株洲万融新材科技有限公司 | 一种高强度高耐磨金属陶瓷及其制备方法 |
CN111892415A (zh) * | 2020-07-28 | 2020-11-06 | 郑州航空工业管理学院 | 一种碳化硅晶须/氧化铝陶瓷复合材料及其制备方法 |
CN115677353A (zh) * | 2022-11-02 | 2023-02-03 | 无锡海古德新技术有限公司 | 一种氮化铝基导电陶瓷及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108017395A (zh) | 一种超声波辅助振荡压力烧结氮化硅陶瓷的方法 | |
CN107954724A (zh) | 一种利用振荡压力烧结法制备氮化硅陶瓷的工艺 | |
CN107827458A (zh) | 一种利用振荡压力烧结法制备氧化锆陶瓷的工艺 | |
CN107034378B (zh) | 一种空心氧化铝球/碳化硅协同增强铝基复合材料的制备方法 | |
CN109439940B (zh) | 一种大气气氛下热压烧结制备颗粒增强铝基复合材料的方法 | |
CN108838404B (zh) | 钛合金低成本近净成形方法 | |
CN108070832A (zh) | 钼铌靶坯的制造方法 | |
CN104313380A (zh) | 一种分步烧结制备高致密度纳米晶硬质合金的方法 | |
CN108751996A (zh) | 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺 | |
CN107032826A (zh) | 一种空心氧化铝球/碳化硅增强铜基复合材料的制备方法 | |
CN107954714A (zh) | 一种超声波辅助振荡压力烧结氧化锆陶瓷的方法 | |
US20210023625A1 (en) | Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption | |
CN114213131A (zh) | 一种辊道窑用碳化硅辊棒材料及其制备方法 | |
CN110791674B (zh) | 一种难熔碳化物颗粒增强钨渗铜复合材料的制备方法 | |
CN116535218B (zh) | 一种高纯致密碳化硅陶瓷材料及其固相烧结方法和应用 | |
JP2008274351A (ja) | カーボンナノ複合金属材料の製造方法 | |
CN111041261B (zh) | 颗粒增强钼/钨基复合材料的压制、烧结方法 | |
CN108486422A (zh) | 一种铝基碳化硅颗粒增强复合材料及制备方法 | |
CN113649571A (zh) | 一种高硬度粉末高熵合金的制备方法 | |
CN113444949A (zh) | 一种高密度W-Ta-Nb系难熔固溶体合金及其制备方法 | |
CN108396174B (zh) | Ti-22Al-25Nb/Al2O3复合材料的制备方法 | |
CN113045311A (zh) | 彩色氧化锆义齿烧结方法及彩色氧化锆义齿 | |
CN111593221A (zh) | 一种高性能钼钪合金的制备方法及高性能钼钪合金 | |
CN111215623A (zh) | 一种Ti-Al系合金的粉末冶金致密化无压烧结方法 | |
CN110551923B (zh) | 一种铝基复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180424 |
|
RJ01 | Rejection of invention patent application after publication |