CN107952593A - 微细粒级菱铁矿选择性絮凝浮选方法 - Google Patents

微细粒级菱铁矿选择性絮凝浮选方法 Download PDF

Info

Publication number
CN107952593A
CN107952593A CN201711215531.2A CN201711215531A CN107952593A CN 107952593 A CN107952593 A CN 107952593A CN 201711215531 A CN201711215531 A CN 201711215531A CN 107952593 A CN107952593 A CN 107952593A
Authority
CN
China
Prior art keywords
siderite
flotation
micro
size fraction
3min
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711215531.2A
Other languages
English (en)
Other versions
CN107952593B (zh
Inventor
李丽匣
郝海青
袁致涛
卢冀伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201711215531.2A priority Critical patent/CN107952593B/zh
Publication of CN107952593A publication Critical patent/CN107952593A/zh
Application granted granted Critical
Publication of CN107952593B publication Critical patent/CN107952593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D3/00Differential sedimentation
    • B03D3/06Flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B1/00Conditioning for facilitating separation by altering physical properties of the matter to be treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/002Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/007Modifying reagents for adjusting pH or conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/06Depressants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种微细粒级菱铁矿选择性絮凝浮选方法,属于矿物加工技术领域。本发明所述方法将微细粒级菱铁矿进行选择性絮凝,首先加入分散剂柠檬酸,降低菱铁矿与赤铁矿和石英的异相凝聚,再加入选择性絮凝剂α‑淀粉,实现对微细粒级菱铁矿的絮凝以及对赤铁矿的抑制,使用阴离子捕收剂油酸钠进行浮选。本发明的微细粒级菱铁矿选择性絮凝方法,能显著降低微细粒级菱铁矿对赤铁矿反浮选的影响,提高铁精矿中铁的回收率和品位,对有效利用含碳酸盐铁矿石具有重要意义。

Description

微细粒级菱铁矿选择性絮凝浮选方法
技术领域
本发明涉及一种微细粒级菱铁矿选择性絮凝浮选方法,属于矿物加工技术领域。
背景技术
随着世界经济进入深入调整期,中国矿业发展面临着新的挑战和机遇,铁矿石产业也面临经济新常态下的挑战。受“贫、细、杂、散”特点和较低利用水平的限制,我国铁矿资源的供给量远无法满足钢铁工业发展和资源储备的要求。为保障我国钢铁企业生存和发展,降低对进口铁矿石的依赖,结合国家“矿产资源高效开采、绿色选冶、高效利用”的方针政策,开展高效环保的贫、细、杂铁矿利用研究,加强微细粒赤铁矿、菱铁矿、褐铁矿等复杂难采选铁矿石的高效低耗综合利用,是资源可持续发展战略部署的必然要求。
我国鞍山地区约10亿吨的含碳酸盐铁矿石随着铁矿石资源的逐年开采,菱铁矿的含量也逐年增加。菱铁矿在磨矿过程中易形成微细粒矿泥,并粘附于有用矿物和脉石矿物表面,使有用矿物和脉石矿物的分离难以实现,并且使得浮选药剂用量增大。微细粒级菱铁矿严重影响铁矿石的浮选,恶化浮选指标,甚至会导致“精尾不分”。从菱铁矿分散、絮凝角度降低微细粒菱铁矿对赤铁矿和石英的罩盖,减小微细粒菱铁矿对浮选的不利影响,高效回收微细粒级菱铁矿,进而提高铁回收率,使含碳酸盐铁矿石资源得到有效利用。
发明内容
针对现有“分步浮选”工艺难处理微细粒级菱铁矿在赤铁矿和石英矿物表面吸附的问题,本发明提供一种微细粒级菱铁矿选择性絮凝方法,旨在通过控制分散和选择性絮凝,降低菱铁矿与赤铁矿和石英的异相凝聚,进而降低微细粒级菱铁矿对赤铁矿反浮选的不利影响,提高赤铁矿反浮选精矿品位和回收率。
一种微细粒级菱铁矿选择性絮凝浮选方法,所述方法包括下述工艺步骤:
(1)将含有微细粒级菱铁矿的待处理矿样与水混合,采用XFD型挂槽式浮选机在搅拌转速为1200~1600rpm条件下对浮选矿浆搅拌2~3min,矿浆浓度为10~20%;调整矿浆pH值至中性,搅拌2~3min,加入柠檬酸作用2~3min,柠檬酸加入量为2~6mg/L;
(2)向步骤(1)所得矿浆中加入α-淀粉,在搅拌转速为1662~1992rpm条件下搅拌2~3min,α-淀粉加入量为8~12mg/L,最后加入油酸钠并搅拌2~3min,油酸钠加入量为30~70mg/L,之后进行正浮选,浮选3~4min;
(3)反浮选赤铁矿:将步骤(2)中的正浮选尾矿矿浆pH值调至10.5~11.9,加入α-淀粉搅拌2~3min,α-淀粉用量为4~10mg/L,之后加入氯化钙搅拌2~3min,氯化钙加入量为40~80mg/L,最后加入140~180m/L油酸钠并搅拌2~3min,加入挡板充气,浮选3~4min获得赤铁矿精矿。
上述技术方案中,所述步骤(1)中,所述调整矿浆pH值至中性指调整矿浆pH值在6.9~7.0;所用pH调整剂可为浓度为0.1~1%的盐酸溶液和/或浓度为0.1~1%的氢氧化钠溶液。
上述技术方案中,所述“微细粒级”指物料的颗粒粒度为-0.001mm。
本发明所述待处理矿样可为自然界获得天然矿物,也可为人工混合矿。
进一步地,优选所述待处理矿样按质量百分比,由下述组分组成:石英50%、赤铁矿40%、微细粒级菱铁矿10%。
更进一步地,所述矿样按下述方法制得:分别选取块矿纯度为80~87%的菱铁矿、纯度为97~99%赤铁矿和纯度为98%~99%石英,采用陶瓷磨将赤铁矿和石英分别磨至-0.074mm;并采用搅拌磨将菱铁矿磨至-0.001mm,混合,既得。
本发明的有益效果为:本发明所提供的方法对人工混合矿进行控制分散和选择性絮凝之后进行正浮选,抑制赤铁矿,浮选菱铁矿絮团,控制分散是为了降低菱铁矿与赤铁矿和石英的异相凝聚,对正浮选尾矿进行反浮选,采用抑制效果较好的α-淀粉作为赤铁矿抑制剂,用氯化钙溶液浮选石英,并用阴离子捕收剂油酸钠进行捕收,最终从含微细粒级菱铁矿的碳酸盐铁矿石中分离出赤铁矿。本发明的微细粒级菱铁矿选择性絮凝与常规分步浮选工艺相比,精矿品位和回收率均有提高,可有效降低微细粒级菱铁矿对赤铁矿反浮选的影响,对含碳酸盐铁矿石资源的有效利用具有重要意义。
附图说明
图1是本发明实施例1的含微细粒级菱铁矿铁矿选择性絮凝分选流程图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
下述实施例采用的分散剂柠檬酸为分析纯。
本发明实施例采用的选择性絮凝剂和抑制剂均为α-淀粉。
本发明实施例采用的活化剂为氯化钙为分析纯。
本发明实施例采用的捕收剂均为阴离子捕收剂油酸钠,分析纯。
本发明实施例采用0.5%盐酸和0.5%氢氧化钠调节矿浆pH,均为分析纯。
实施例1
本发明实施例中纯矿物选自辽宁鞍山地区含碳酸盐赤铁矿石,经过手选得到块矿纯度为85%的菱铁矿、纯度为98%赤铁矿和纯度为99%石英,破碎,磨矿,赤铁矿经摇床分选并筛分得到-0.074mm粒级纯矿物,菱铁矿经搅拌磨磨至-0.010mm,石英经陶瓷磨磨至-0.074mm。人工混合矿配比为石英50%、赤铁矿40%、微细粒级菱铁矿10%,获得原矿TFe含量为30.05%、FeO含量为5.15%,其中菱铁矿含量用FeO含量相对表示。
本实施例对混合矿进行浮选,按照以下步骤进行:
向浮选槽加入混合矿和水制成浓度为20%的矿浆,在搅拌转速为1400rpm条件下搅拌2min,调整矿浆pH至6.9,搅拌2min,加入分散剂柠檬酸搅拌2min,柠檬酸加入量为4mg/L,再加入絮凝剂α-淀粉8mg/L,在搅拌转速为1662rpm条件下搅拌2min,最后加入捕收剂油酸钠,加入量为50mg/L,正浮选4min,可得到菱铁矿精矿TFe和FeO含量分别为53.07%和12.63%,回收率分别为41.42%和57.52%。
对正浮选尾矿进行调浆,将矿浆pH调至11.5,搅拌2min,加入抑制剂α-淀粉搅拌2min,α-淀粉用量为6mg/L,再加入氯化钙搅拌2min,加入量为60mg/L,最后加入捕收剂油酸钠搅拌2min,捕收剂用量为160mg/L,反浮选4min,得到赤铁矿精矿,赤铁矿精矿TFe和FeO含量分别为48.89%和2.67%、回收率分别为56.54%和18.02%。
实施例2
本发明实施例中纯矿物选自辽宁鞍山地区含碳酸盐赤铁矿石,经过手选得到块矿纯度为85%的菱铁矿、纯度为98%赤铁矿和纯度为99%石英,破碎,磨矿,赤铁矿经摇床分选并筛分得到-0.074mm粒级纯矿物,菱铁矿经搅拌磨磨至-0.010mm,石英经陶瓷磨磨至-0.074mm。人工混合矿配比为石英50%、赤铁矿40%、微细粒级菱铁矿10%,获得原矿TFe含量为30.05%、FeO含量为5.15%,其中菱铁矿含量用FeO含量相对表示。
本实施例对混合矿进行浮选,按照以下步骤进行:
向浮选槽加入混合矿和水制成浓度为20%的矿浆,在搅拌转速为1400rpm条件下搅拌2min,调整矿浆pH至6.9,搅拌2min,加入分散剂柠檬酸搅拌2min,柠檬酸加入量为4mg/L,再加入絮凝剂α-淀粉10mg/L,在搅拌转速为1662rpm条件下搅拌2min,最后加入捕收剂油酸钠,加入量为50mg/L,正浮选4min,可得到菱铁矿精矿TFe和FeO含量分别为52.07%和21.05%,回收率分别为14.80%和34.25%。
对正浮选尾矿进行调浆,将矿浆pH调至11.5,搅拌2min,加入抑制剂α-淀粉搅拌2min,α-淀粉用量为6mg/L,再加入氯化钙搅拌2min,加入量为60mg/L,最后加入捕收剂油酸钠搅拌2min,捕收剂用量为160mg/L,反浮选4min,得到赤铁矿精矿,赤铁矿精矿TFe和FeO含量分别为57.46%和6.23%、回收率分别为83.86%和54.32%。
实施例3
本发明实施例中纯矿物选自辽宁鞍山地区含碳酸盐赤铁矿石,经过手选得到块矿纯度为85%的菱铁矿、纯度为98%赤铁矿和纯度为99%石英,破碎,磨矿,赤铁矿经摇床分选并筛分得到-0.074mm粒级纯矿物,菱铁矿经搅拌磨磨至-0.010mm,石英经陶瓷磨磨至-0.074mm。人工混合矿配比为石英50%、赤铁矿40%、微细粒级菱铁矿10%,获得原矿TFe含量为30.05%、FeO含量为5.15%,其中菱铁矿含量用FeO含量相对表示。
本实施例对混合矿进行浮选,按照以下步骤进行:
向浮选槽加入混合矿和水制成浓度为20%的矿浆,在搅拌转速为1400rpm条件下搅拌2min,调整矿浆pH至6.9,搅拌2min,加入分散剂柠檬酸搅拌2min,柠檬酸加入量为4mg/L,再加入絮凝剂α-淀粉12mg/L,在搅拌转速为1662rpm条件下搅拌2min,最后加入捕收剂油酸钠,加入量为50mg/L,正浮选4min,可得到菱铁矿精矿TFe和FeO含量分别为50.39%和17.86%,回收率分别为14.17%和31.36%。
对正浮选尾矿进行调浆,将矿浆pH调至11.5,搅拌2min,加入抑制剂α-淀粉搅拌2min,α-淀粉用量为6mg/L,再加入氯化钙搅拌2min,加入量为60mg/L,最后加入捕收剂油酸钠搅拌2min,捕收剂用量为160mg/L,反浮选4min,得到赤铁矿精矿,赤铁矿精矿TFe和FeO含量分别为58.66%和5.42%、回收率分别为84.80%和45.72%。
对比例1
常规分步浮选工艺包含步骤如下:向浮选槽加入混合矿和水制成浓度为20%的矿浆在搅拌转速为1662rpm条件下搅拌2min,加入抑制剂普通淀粉搅拌2min,普通淀粉用量为6mg/L,最后加入捕收剂油酸钠,加入量为50mg/L,作用2min后正浮选4min,可得到菱铁矿精矿TFe和FeO含量分别为54.82%和11.83%,回收率分别为61.96%和78%;对正浮选尾矿进行调浆,将矿浆pH调至11.5,搅拌2min,加入抑制剂普通淀粉搅拌2min,普通淀粉用量为6mg/L,再加入氯化钙搅拌2min,加入量为60mg/L,最后加入捕收剂油酸钠搅拌2min,捕收剂用量为160mg/L,反浮选4min,得到赤铁矿精矿,赤铁矿精矿TFe和FeO含量分别为42.62%和1.84%,回收率分别为22.96%和5.78%。其中,菱铁矿在赤铁矿表面的吸附使得正浮选中赤铁矿难以抑制并上浮,菱铁矿在石英表面的吸附使得反浮选中石英上浮,赤铁矿精矿品位较低。

Claims (3)

1.一种微细粒级菱铁矿选择性絮凝浮选方法,其特征在于:所述方法包括下述工艺步骤:
(1)将含有微细粒级菱铁矿的待处理矿样与水混合,采用XFD型挂槽式浮选机在搅拌转速为1200~1600rpm条件下对浮选矿浆搅拌2~3min,矿浆浓度为10~20%;调整矿浆pH值至中性,搅拌2~3min,加入柠檬酸作用2~3min,柠檬酸加入量为2~6mg/L;
(2)向步骤(1)所得矿浆中加入α-淀粉,在搅拌转速为1662~1992rpm条件下搅拌2~3min,α-淀粉加入量为8~12mg/L,最后加入油酸钠并搅拌2~3min,油酸钠加入量为30~70mg/L,之后进行正浮选,浮选3~4min;
(3)反浮选赤铁矿:将步骤(2)中的正浮选尾矿矿浆pH值调至10.5~11.9,加入α-淀粉搅拌2~3min,α-淀粉用量为4~10mg/L,之后加入氯化钙搅拌2~3min,氯化钙加入量为40~80mg/L,最后加入140~180m/L油酸钠并搅拌2~3min,加入挡板充气,浮选3~4min获得赤铁矿精矿。
2.根据权利1所述的方法,其特征在于:所述含有微细粒级菱铁矿的待处理矿样按质量百分比,由下述组分组成:石英50%、赤铁矿40%、微细粒级菱铁矿10%。
3.根据权利2所述的方法,其特征在于:所述矿样按下述方法制得:分别选取块矿纯度为80~87%的菱铁矿、纯度为97~99%赤铁矿和纯度为98%~99%石英,采用陶瓷磨将赤铁矿和石英分别磨至-0.074mm;并采用搅拌磨将菱铁矿磨至-0.001mm,混合,既得。
CN201711215531.2A 2017-11-28 2017-11-28 微细粒级菱铁矿选择性絮凝浮选方法 Active CN107952593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711215531.2A CN107952593B (zh) 2017-11-28 2017-11-28 微细粒级菱铁矿选择性絮凝浮选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711215531.2A CN107952593B (zh) 2017-11-28 2017-11-28 微细粒级菱铁矿选择性絮凝浮选方法

Publications (2)

Publication Number Publication Date
CN107952593A true CN107952593A (zh) 2018-04-24
CN107952593B CN107952593B (zh) 2019-10-11

Family

ID=61962442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711215531.2A Active CN107952593B (zh) 2017-11-28 2017-11-28 微细粒级菱铁矿选择性絮凝浮选方法

Country Status (1)

Country Link
CN (1) CN107952593B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530097A (zh) * 2018-11-14 2019-03-29 安徽工业大学 一种微细粒赤铁矿选择性絮凝浮选方法
CN112934477A (zh) * 2021-02-22 2021-06-11 郑州大学 一种铝土矿处理方法
CN114939483A (zh) * 2022-06-17 2022-08-26 鞍钢集团北京研究院有限公司 一种微细粒赤铁矿选矿方法
CN117797764A (zh) * 2024-02-28 2024-04-02 广东顺控自华科技有限公司 钙基菱铁矿及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529507A (en) * 1984-04-16 1985-07-16 Union Camp Corporation Capryl alcohol frother in iron ore flotation process
CN101274302A (zh) * 2008-05-16 2008-10-01 东北大学 一种含碳酸盐铁矿石的分步浮选分离方法
CN102274797A (zh) * 2011-08-16 2011-12-14 鞍钢集团矿业公司 一种提高含菱铁矿石分选指标的分选工艺
CN103555790A (zh) * 2013-10-14 2014-02-05 昆明理工大学 一种选择性絮凝微细氧化铁矿的淀粉生化配制方法
CN104998759A (zh) * 2015-07-29 2015-10-28 昆明理工大学 一种微细粒铁矿石磁选精矿反浮选组合药剂及其应用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529507A (en) * 1984-04-16 1985-07-16 Union Camp Corporation Capryl alcohol frother in iron ore flotation process
CN101274302A (zh) * 2008-05-16 2008-10-01 东北大学 一种含碳酸盐铁矿石的分步浮选分离方法
CN102274797A (zh) * 2011-08-16 2011-12-14 鞍钢集团矿业公司 一种提高含菱铁矿石分选指标的分选工艺
CN103555790A (zh) * 2013-10-14 2014-02-05 昆明理工大学 一种选择性絮凝微细氧化铁矿的淀粉生化配制方法
CN104998759A (zh) * 2015-07-29 2015-10-28 昆明理工大学 一种微细粒铁矿石磁选精矿反浮选组合药剂及其应用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨斌等: "α-淀粉在菱铁矿与赤铁矿分离中的应用", 《矿冶工程》 *
罗溪梅: "含碳酸盐铁矿石浮选体系中矿物的交互影响研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530097A (zh) * 2018-11-14 2019-03-29 安徽工业大学 一种微细粒赤铁矿选择性絮凝浮选方法
CN112934477A (zh) * 2021-02-22 2021-06-11 郑州大学 一种铝土矿处理方法
CN112934477B (zh) * 2021-02-22 2023-08-25 郑州大学 一种铝土矿处理方法
CN114939483A (zh) * 2022-06-17 2022-08-26 鞍钢集团北京研究院有限公司 一种微细粒赤铁矿选矿方法
CN117797764A (zh) * 2024-02-28 2024-04-02 广东顺控自华科技有限公司 钙基菱铁矿及其制备方法和用途

Also Published As

Publication number Publication date
CN107952593B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN107952593B (zh) 微细粒级菱铁矿选择性絮凝浮选方法
CN102189040B (zh) 一种高硅高钙低品级菱镁矿的分步浮选方法
CN101234366A (zh) 一种难选褐铁矿的反浮选提铁脱硅方法
CN102896050B (zh) 磁黄铁矿浮选抑制剂及制备、应用和硫化铜镍矿选矿方法
CN101274302A (zh) 一种含碳酸盐铁矿石的分步浮选分离方法
CN102688806A (zh) 一种含碳酸盐铁矿石的分散浮选分离方法
CN106000655A (zh) 一种常温下精选白钨矿的方法
CN112642575A (zh) 一种含碳酸盐贫磁赤混合铁矿石磁浮联合分选方法
CN109382213A (zh) 一种三水铝石型铝土矿的选矿方法
CN108380397A (zh) 一种低浓度含云母方解石型萤石尾矿的回收方法
CN101371998A (zh) 一种低品位碳酸锰矿石浮选方法
CN106622634A (zh) 一种铜钴矿的选矿方法
CN105268542B (zh) 微细粒嵌布含碳酸盐赤铁矿石分步分散协同浮选分离方法
CN106583051B (zh) 一种锂铌钽多金属资源全泥浮选共富集回收的方法
CN103977905A (zh) 锂辉石矿的选矿方法
CN101733194A (zh) 一种低品位碳酸锰矿石的选矿方法
CN109465114A (zh) 一种重晶石与白云石的浮选分离方法
CN110369152A (zh) 一种微细粒磷矿浮选工艺
CN100393421C (zh) 一种铝土矿反浮选脱泥方法
CN104525384B (zh) 一种褐铁矿抑制剂的制备方法
CN108580031A (zh) 一种对多金属伴生选铁尾矿预先焙烧的选矿方法
CN102489415A (zh) 红城红球菌在赤铁矿分离中的应用及分离方法
CN105413857A (zh) 一种用于超细粒级低品位赤褐铁矿强磁选回收的选矿工艺
CN104998763A (zh) 一种微细粒嵌布赤铁矿矿石絮凝浮选粒度的确定方法
CN106824546A (zh) 一种菱镁矿矿石提镁降硅的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant