CN107952481A - 一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法 - Google Patents

一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法 Download PDF

Info

Publication number
CN107952481A
CN107952481A CN201711097088.3A CN201711097088A CN107952481A CN 107952481 A CN107952481 A CN 107952481A CN 201711097088 A CN201711097088 A CN 201711097088A CN 107952481 A CN107952481 A CN 107952481A
Authority
CN
China
Prior art keywords
metal nano
catalyst
particle
nano
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711097088.3A
Other languages
English (en)
Other versions
CN107952481B (zh
Inventor
万德成
潘海燕
金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201711097088.3A priority Critical patent/CN107952481B/zh
Publication of CN107952481A publication Critical patent/CN107952481A/zh
Application granted granted Critical
Publication of CN107952481B publication Critical patent/CN107952481B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/123Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
    • B01J31/124Silicones or siloxanes or comprising such units
    • B01J31/127Silicones or siloxanes or comprising such units the siloxane units, e.g. silsesquioxane units, being grafted onto other polymers or inorganic supports, e.g. via an organic linker
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法,催化剂包括多孔载体基质以及负载在多孔载体基质上的纳米复合粒子,多孔载体基质由柔性聚合物及刚性聚合物交联而成,纳米复合粒子包括负载在多孔载体基质的孔表面上的树状两亲体以及负载在树状两亲体上的贵金属纳米粒子;制备时,将纳米复合粒子作为稳定剂,以柔性聚合物、刚性聚合物及有机溶剂的混合油相作为连续相,以水作为分散相,形成浓乳液,后经固化、洗涤即可。与现有技术相比,本发明充分利用了树状两亲体与贵金属纳米粒子的杂化体的两亲性,通过浓乳液聚合法,一釜反应即可制得多孔材料催化剂,该类催化剂尺寸大,表面积高,力学强度较好,易于分离回收。

Description

一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法
技术领域
本发明属于催化材料技术领域,涉及一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法。
背景技术
世界上大部分化学产品在生产过程中,都会涉及到催化反应,重金属催化剂是催化反应中常用的催化剂。由于重金属催化剂本身较为昂贵,且重金属催化剂的泄漏会影响产品纯度,并对环境造成污染,因此,有必要对重金属催化剂进行回收。近年来,零价贵金属纳米粒子因其突出的催化性能而备受关注,但由于其尺寸较小,不便回收,限制了其进一步应用。为了便于零价贵金属纳米粒子的回收,一些学者采用负载法制备催化剂,取得了较好的效果。
浓乳液又称为高内相比乳液,是指分散相体积分数在74.05%以上的一类乳液。利用浓乳液聚合法,能够通过简单方便的路径形成多孔材料。多孔材料是负载贵金属纳米粒子较为理想的载体,但主要问题是多孔材料表面的化学结构是否适合负载。一般的浓乳液采用小分子表面活性剂进行稳定,不适合作为载体。近年来,两嵌段共聚物和树状两亲体成功代替了小分子表面活性剂,使多孔材料的孔表面实现了牢固的功能化。
申请公布号为CN104815693A的中国发明专利公开了一种贵金属纳米粒子修饰多孔载体催化材料及其制备方法,该专利技术利用负载有贵金属纳米颗粒的两亲复合粒子稳定浓乳液,获得了表面由催化性纳米金属颗粒表达的催化材料。该多孔催化材料虽然能提供较大的催化面积,但该材料的力学强度不足,在搅拌作用下会有部分细小块体脆断脱落形成粉状悬浮物,不利于回收。因此,有必要开发出一种能耐酸碱且力学强度高的多孔材料催化剂。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种负载贵金属纳米粒子的多孔材料催化剂,该催化剂包括多孔载体基质以及负载在多孔载体基质上的纳米复合粒子,所述的多孔载体基质由柔性聚合物及刚性聚合物交联而成,所述的纳米复合粒子包括负载在多孔载体基质的孔表面上的树状两亲体以及负载在树状两亲体上的贵金属纳米粒子。
进一步地,所述的柔性聚合物为氨基封端的聚硅氧烷或氨基封端的聚二甲基硅氧烷。
进一步地,所述的刚性聚合物为缩水甘油醚封端的聚(双酚A-co-表氯醇)或聚[(苯基缩水甘油醚)-co-甲醛]。
进一步地,所述的多孔载体基质中,脂肪氨基官能团中的氢与甘油醚官能团的摩尔比为0.5-2:1。
进一步地,所述的树状两亲体为多胺类树状两亲体,该多胺类树状两亲体由亲水核及包覆在亲水核外部的亲油壳构成,所述的亲水核为聚乙撑亚胺,所述的亲油壳为聚苯乙烯、聚丙二醇、聚丙烯酰胺、聚硅氧烷或十六烷基甘油醚。
作为优选的技术方案,所述的聚乙撑亚胺为超支化聚乙撑亚胺。
作为优选的技术方案,所述的聚丙烯酰胺为N,N二取代聚丙烯酰胺,且取代基的碳原子数之和大于6。
作为优选的技术方案,所述的树状两亲体中,残留氨基以环氧乙烷或环氧丙烷处理。其中,聚乙撑亚胺在树状两亲体中的质量百分含量为0.5-18%。
进一步地,所述的贵金属纳米粒子为Au、Pt、Ag或Pd。
进一步地,所述的纳米复合粒子中,聚乙撑亚胺中的N原子数与贵金属纳米粒子的原子数之比为16-200:1。
进一步地,该多孔催化剂中,贵金属纳米粒子的负载量为0.014-0.5wt%。
一种负载贵金属纳米粒子的多孔材料催化剂的制备方法,该方法是将纳米复合粒子作为乳液稳定剂,以柔性聚合物、刚性聚合物及有机溶剂的混合油相作为连续相,以水作为分散相,形成浓乳液,后经固化、洗涤,即得到所述的催化剂。
其中,连续相与分散相搅拌混合后形成的油包水型浓乳液在室温下孵化固化,油相中的氨基官能团和甘油醚官能团进行类点击反应而交联固化,之后用乙醇洗涤,即得到所述的催化剂。
所述的有机溶剂与水不互溶,有机溶剂优选为氯仿。
进一步地,所述的纳米复合粒子的质量为混合油相质量的5-20%;所述的浓乳液中,分散相的体积百分含量为75-90%。
本发明中,以聚乙撑亚胺为核的反胶束状树状两亲体作为配体,络合贵金属盐并原位生成纳米复合粒子,这类纳米复合粒子仍具有两亲性,可以作为油包水型浓乳液的油水界面稳定剂。浓乳液缩聚固化后形成多孔材料催化剂,多孔载体基质由柔性聚合物及刚性聚合物缩聚而成,其孔表面由金属纳米粒子表达。纳米复合粒子因其两亲性分布在油水界面,并在油相缩聚固化后表达在多孔载体基质的孔表面。
本发明中,聚乙撑亚胺(PEI)经亲油链改性形成反胶束状树状两亲体,进一步通过络合金属前体并原位还原形成两亲金属纳米复合粒子。其中,树状两亲体按已公开的技术制备,可参考文献Wan D.C,Yuan J.J.,Pu H.T.Macromolecular Nancapsule Derivedfrom Hyperbranched Polyethylenimine(HPEI):Mechanism of Guest Encapsulationversus Molecular Parameters[J].Macromolecules.2009,42(5),1533-1540或类似方法合成;纳米复合粒子的制备方法可参考文献Liu H.H.,Wan D.C.,Du J.,Jin M.DendriticAmphiphile Mediated One-pot Preparation of 3D Pt Nanoparticles-DecoratedPolyHIPE as a Durable and well Recyclable Catalyst[J].ACSAppl.Mater.Interfaces.2015,7,20885–20892.以及Ye YL,Jin M.,Wan D.C..One-Pot toPorous Monolith-Supported Gold Nanoparticles as a Well Recyclable Catalyst[J].J.Mater.Chem.A.2015,3,13519-13525进行类似制备。
为了使贵金属纳米粒子催化剂具有较好的力学强度,本发明同时使用甘油醚封端的刚性聚合物和氨基封端的柔性聚合物来构建多孔载体基质,最终制得的催化剂具有多孔、轻质、力学性能好、耐酸碱等优势。
本发明制得的催化剂能催化有机反应,降低金属泄漏和污染。催化剂在应用时,直接将催化剂投入水相或油相反应体系中,作为异相催件剂;反应结束后,直接将催化剂捞出或过滤出,之后可直接投入新反应体系中继续使用。
与现有技术相比,本发明具有以下特点:
1)针对目前贵金属纳米粒子催化剂不易回收的弊端,本发明充分利用了树状两亲体与贵金属纳米粒子的杂化体的两亲性,通过浓乳液聚合法,一釜反应即可制得多孔材料催化剂,该类催化剂尺寸大(厘米到分米级),表面积高(20-50m2/g),易于分离回收;
2)催化剂不易脱落,可直接捞出或过滤收集并再次使用,贵金属纳米粒子不易熟化,活性高,能反复使用多次,不易在催化反应中流失,且因泄漏量低还能减少环境污染、提高产品质量;
3)催化剂的制备方法简单,适于规模化生产。
附图说明
图1为实施例1中制备得到的催化剂的扫描电镜(SEM)谱图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
将PEI(聚乙撑亚胺,1g,Aldrich公司产品,分子量10000)和单甘油醚封端的聚苯乙烯(PS,8g,分子量8000)在氯仿中混合,室温下反应2天,形成树状两亲体(参考文献WanD.C,Yuan J.J.,Pu H.T.Macromolecular Nancapsule Derived from HyperbranchedPolyethylenimine(HPEI):Mechanism of Guest Encapsulation versus MolecularParameters[J].Macromolecules.2009,42(5),1533-1540进行)。然后在该树状两亲体的氯仿溶液中加入环氧丙烷(1mL)并继续保持5h,得到PEI@PS(9g)。将PEI@PS(2.25g)溶于氯仿(20mL)中,加入氯金酸(0.08g)和水(2mL)并搅拌12h。之后用食盐水洗涤,将氯仿相分出后旋蒸除去氯仿,得到PEI@PS的金纳米复合粒子。
取双3-丙胺封端的聚二甲基硅氧烷(2.4mmol,6g,分子量2500)、双甘油醚封端的聚(双酚A-co-表氯醇)(4.8mmol,5.16g,分子量1075)溶于氯仿(5mL)中,然后加入PEI@PS的金纳米复合粒子,并立即在快速搅拌下滴入水(64mL)。将所形成的浓乳液转入带塑料衬底的烧杯状容器中,静置孵化2天得弹性固体,最后用乙醇洗涤数次即得到负载金纳米粒子的多孔材料催化剂。该催化剂的吸水率在2.6g/g,压汞法测定其表面积为38m2/g。如图1所示,由扫描电镜谱图可以看出,该催化剂呈多孔结构。
将硼氢化钠水溶液(0.2mL,0.2M)和4-硝基酚(5mL,1.0×10-4M)分别除氧后混合,并加入负载金纳米粒子的多孔材料催化剂(0.1g),每隔约3分钟记录一次紫外-可见光光谱。约25分钟后,400nm的光谱吸水已基本消失,表明4-硝基酚已被充分还原;而在300nm处出现了还原产物的特征峰。捞出该催化剂并重新使用,经多次实验表明,该催化剂的催化性能在至少15次循环内没有明显降低。
实施例2:
用硝酸银代替氯金酸,其余同实施例1,制得负载银纳米粒子的多孔材料催化剂。该催化剂用于催化4-硝基酚的还原,重复利用7次未见活性降低。
实施例3:
以PEI(聚乙撑亚胺,0.4g,9.3mmol氨基氢)和十六烷基甘油醚(1.38g,0.5氨基氢当量)在氯仿中混合,并在室温下反应24h,形成树状两亲体(1.58g)(参考文献Wan D.C,Yuan J.J.,Pu H.T.Macromolecular Nancapsule Derived from HyperbranchedPolyethylenimine(HPEI):Mechanism of Guest Encapsulation versus MolecularParameters[J].Macromolecules.2009,42(5),1533-1540进行)。取树状两亲体0.79g,依次以环氧丙烷和乙酸酐处理(具体参见Feng Y.Y.,Zhang X.X.,Jin M.,Wan D.C.DendriticAmphiphile-Decorated PolyHIPE as a Highly Efficient and Well RecyclableScavenger of Micropollutants in Water:Topological Effect[J].J.Poly.Sci.,PartA:Poly.Chem.,2017,55(8),1294–1302),然后将产物溶于氯仿(40mL)中,加入四氯铂酸钾(0.12g)和水(2mL)并搅拌0.5h。在搅拌下滴加硼氢化钠水溶液(10ml,0.06M),之后继续搅拌2h。以食盐水破乳,分出氯仿相,并旋蒸除去氯仿,得到铂纳米复合粒子。
取双3-丙胺封端的聚二甲基硅氧烷(1.2mmol,3g,分子量2500)、聚[(苯基缩水甘油醚)-co-甲醛](3.5mmol,2g,分子量570)溶于氯仿(5mL)中,然后加入上述铂纳米复合粒子(0.5g),之后立即在快速搅拌下滴入水(32mL)。将所形成的浓乳液转入带塑料衬底的烧杯状容器,静置孵化2天得弹性固体,最后用乙醇洗涤数次即得到负载铂纳米粒子的多孔材料催化剂。
实施例4:
用四氯钯酸钾代替四氯铂酸钾,其余同实施例3,制得负载钯纳米粒子的多孔材料催化剂。
实施例5:
一种负载贵金属纳米粒子的多孔材料催化剂,该催化剂包括多孔载体基质以及负载在多孔载体基质上的纳米复合粒子,多孔载体基质由柔性聚合物及刚性聚合物交联而成,纳米复合粒子包括负载在多孔载体基质的孔表面上的树状两亲体以及负载在树状两亲体上的贵金属纳米粒子。
其中,柔性聚合物为氨基封端的聚硅氧烷;刚性聚合物为缩水甘油醚封端的聚(双酚A-co-表氯醇);多孔载体基质中,脂肪氨基官能团中的氢与甘油醚官能团的摩尔比为0.5:1;树状两亲体为多胺类树状两亲体,该多胺类树状两亲体由亲水核及包覆在亲水核外部的亲油壳构成,亲水核为聚乙撑亚胺,亲油壳为聚苯乙烯;贵金属纳米粒子为Au;聚乙撑亚胺中的N原子数与贵金属纳米粒子的原子数之比为16:1;贵金属纳米粒子的负载量为0.014wt%。
该催化剂的制备方法是将纳米复合粒子作为稳定剂,以柔性聚合物、刚性聚合物及有机溶剂的混合油相作为连续相,以水作为分散相,形成浓乳液,后经固化、洗涤即可。
其中,纳米复合粒子的质量为混合油相质量的5%;浓乳液中,分散相的体积百分含量为75%。
实施例6:
一种负载贵金属纳米粒子的多孔材料催化剂,该催化剂包括多孔载体基质以及负载在多孔载体基质上的纳米复合粒子,多孔载体基质由柔性聚合物及刚性聚合物交联而成,纳米复合粒子包括负载在多孔载体基质的孔表面上的树状两亲体以及负载在树状两亲体上的贵金属纳米粒子。
其中,柔性聚合物为氨基封端的聚二甲基硅氧烷;刚性聚合物为聚[(苯基缩水甘油醚)-co-甲醛];多孔载体基质中,脂肪氨基官能团中的氢与甘油醚官能团的摩尔比为2:1;树状两亲体为多胺类树状两亲体,该多胺类树状两亲体由亲水核及包覆在亲水核外部的亲油壳构成,亲水核为聚乙撑亚胺,亲油壳为聚丙二醇;贵金属纳米粒子为Pt;聚乙撑亚胺中的N原子数与贵金属纳米粒子的原子数之比为200:1;贵金属纳米粒子的负载量为0.5wt%。
该催化剂的制备方法是将纳米复合粒子作为稳定剂,以柔性聚合物、刚性聚合物及有机溶剂的混合油相作为连续相,以水作为分散相,形成浓乳液,后经固化、洗涤即可。
其中,纳米复合粒子的质量为混合油相质量的20%;浓乳液中,分散相的体积百分含量为90%。
实施例7:
一种负载贵金属纳米粒子的多孔材料催化剂,该催化剂包括多孔载体基质以及负载在多孔载体基质上的纳米复合粒子,多孔载体基质由柔性聚合物及刚性聚合物交联而成,纳米复合粒子包括负载在多孔载体基质的孔表面上的树状两亲体以及负载在树状两亲体上的贵金属纳米粒子。
其中,柔性聚合物为氨基封端的聚硅氧烷;刚性聚合物为缩水甘油醚封端的聚(双酚A-co-表氯醇);多孔载体基质中,脂肪氨基官能团中的氢与甘油醚官能团的摩尔比为1:1;树状两亲体为多胺类树状两亲体,该多胺类树状两亲体由亲水核及包覆在亲水核外部的亲油壳构成,亲水核为聚乙撑亚胺,亲油壳为聚丙烯酰胺;贵金属纳米粒子为Ag;聚乙撑亚胺中的N原子数与贵金属纳米粒子的原子数之比为100:1;贵金属纳米粒子的负载量为0.2wt%。
该催化剂的制备方法是将纳米复合粒子作为稳定剂,以柔性聚合物、刚性聚合物及有机溶剂的混合油相作为连续相,以水作为分散相,形成浓乳液,后经固化、洗涤即可。
其中,纳米复合粒子的质量为混合油相质量的10%;浓乳液中,分散相的体积百分含量为82%。
实施例8:
本实施例中,亲油壳为聚硅氧烷;贵金属纳米粒子为Pd,其余同实施例5。
实施例9:
本实施例中,亲油壳为十六烷基甘油醚,其余同实施例5。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,该催化剂包括多孔载体基质以及负载在多孔载体基质上的纳米复合粒子,所述的多孔载体基质由柔性聚合物及刚性聚合物交联而成,所述的纳米复合粒子包括负载在多孔载体基质的孔表面上的树状两亲体以及负载在树状两亲体上的贵金属纳米粒子。
2.根据权利要求1所述的一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,所述的柔性聚合物为氨基封端的聚硅氧烷或氨基封端的聚二甲基硅氧烷。
3.根据权利要求2所述的一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,所述的刚性聚合物为缩水甘油醚封端的聚(双酚A-co-表氯醇)或聚[(苯基缩水甘油醚)-co-甲醛]。
4.根据权利要求3所述的一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,所述的多孔载体基质中,脂肪氨基官能团中的氢与甘油醚官能团的摩尔比为0.5-2:1。
5.根据权利要求1所述的一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,所述的树状两亲体为多胺类树状两亲体,该多胺类树状两亲体由亲水核及包覆在亲水核外部的亲油壳构成,所述的亲水核为聚乙撑亚胺,所述的亲油壳为聚苯乙烯、聚丙二醇、聚丙烯酰胺、聚硅氧烷或十六烷基甘油醚。
6.根据权利要求5所述的一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,所述的贵金属纳米粒子为Au、Pt、Ag或Pd。
7.根据权利要求6所述的一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,所述的纳米复合粒子中,聚乙撑亚胺中的N原子数与贵金属纳米粒子的原子数之比为16-200:1。
8.根据权利要求1所述的一种负载贵金属纳米粒子的多孔材料催化剂,其特征在于,该催化剂材料中,贵金属纳米粒子的负载量为0.014-0.5wt%。
9.一种如权利要求1至8任一项所述的负载贵金属纳米粒子的多孔材料催化剂的制备方法,其特征在于,该方法是将纳米复合粒子作为稳定剂,以柔性聚合物、刚性聚合物及有机溶剂的混合油相作为连续相,以水作为分散相,形成浓乳液,后经固化、洗涤,即得到所述的催化剂。
10.根据权利要求9所述的一种负载贵金属纳米粒子的多孔材料催化剂的制备方法,其特征在于,所述的纳米复合粒子的质量为混合油相质量的5-20%;所述的浓乳液中,分散相的体积百分含量为75-90%。
CN201711097088.3A 2017-11-09 2017-11-09 一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法 Expired - Fee Related CN107952481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711097088.3A CN107952481B (zh) 2017-11-09 2017-11-09 一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711097088.3A CN107952481B (zh) 2017-11-09 2017-11-09 一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107952481A true CN107952481A (zh) 2018-04-24
CN107952481B CN107952481B (zh) 2020-07-28

Family

ID=61964469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711097088.3A Expired - Fee Related CN107952481B (zh) 2017-11-09 2017-11-09 一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107952481B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927216A (zh) * 2018-06-29 2018-12-04 同济大学 一种补丁约束的多孔载体催化材料及其制备方法与应用
CN109621918A (zh) * 2018-12-17 2019-04-16 同济大学 一种氨基功能化多孔材料及其制备方法和应用
CN112808309A (zh) * 2020-12-25 2021-05-18 同济大学 一种多孔催化微球的制备及其底物尺寸选择性催化应用
CN113042100A (zh) * 2021-03-23 2021-06-29 同济大学 配体补丁调制的负载金纳米颗粒催化材料及制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070592A1 (ja) * 2004-12-27 2006-07-06 Kaneka Corporation 熱可塑性樹脂組成物
CN103819695A (zh) * 2014-02-27 2014-05-28 单东成 三种聚合物互穿网络弹性体的制备及性能
US20150299456A1 (en) * 2012-06-29 2015-10-22 Dow Global Technologies Llc Process for preparing stable aqueous epoxy resin dispersions
CN105037690A (zh) * 2015-06-17 2015-11-11 牛无畏 一种环氧树脂低温固化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070592A1 (ja) * 2004-12-27 2006-07-06 Kaneka Corporation 熱可塑性樹脂組成物
US20150299456A1 (en) * 2012-06-29 2015-10-22 Dow Global Technologies Llc Process for preparing stable aqueous epoxy resin dispersions
CN103819695A (zh) * 2014-02-27 2014-05-28 单东成 三种聚合物互穿网络弹性体的制备及性能
CN105037690A (zh) * 2015-06-17 2015-11-11 牛无畏 一种环氧树脂低温固化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGHAI LIU ET AL.: "Dendritic Amphiphile Mediated One-Pot Preparation of 3D Pt Nanoparticles-Decorated PolyHIPE as a Durable and Well-Recyclable Catalyst", 《APPLIED MATERIALS AND INTERFACES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927216A (zh) * 2018-06-29 2018-12-04 同济大学 一种补丁约束的多孔载体催化材料及其制备方法与应用
CN109621918A (zh) * 2018-12-17 2019-04-16 同济大学 一种氨基功能化多孔材料及其制备方法和应用
CN109621918B (zh) * 2018-12-17 2021-07-20 同济大学 一种氨基功能化多孔材料及其制备方法和应用
CN112808309A (zh) * 2020-12-25 2021-05-18 同济大学 一种多孔催化微球的制备及其底物尺寸选择性催化应用
CN113042100A (zh) * 2021-03-23 2021-06-29 同济大学 配体补丁调制的负载金纳米颗粒催化材料及制备方法和应用

Also Published As

Publication number Publication date
CN107952481B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN107952481A (zh) 一种负载贵金属纳米粒子的多孔材料催化剂及其制备方法
Shifrina et al. Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites
Du et al. Dendritic silica particles with center‐radial pore channels: promising platforms for catalysis and biomedical applications
Dai et al. Gold nanoparticles stabilized by amphiphilic hyperbranched polymers for catalytic reduction of 4-nitrophenol
WO2019095751A1 (zh) 一种纤维素/二维层状材料复合水凝胶及其制备方法
CN102643513B (zh) 一种间氨基苯酚-甲醛树脂球的制备方法和碳球的制备方法
CN106832437B (zh) 一种载银纳米纤维素-壳聚糖复合膜的制备方法
Miao et al. Highly efficient nanocatalysts supported on hollow polymer nanospheres: Synthesis, characterization, and applications
Zuo et al. Single-metal-atom polymeric unimolecular micelles for switchable photocatalytic H2 evolution
CN102921013A (zh) 具有孔隙结构的壳聚糖纳米粒的制备方法及应用
Moreno-Castilla Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions
Elumalai et al. Synergic effect of ionic liquid grafted titanate nanotubes on the performance of anion exchange membrane fuel cell
Tang et al. Development of MOF-based heterostructures for photocatalytic hydrogen evolution
CN102423299A (zh) 一种新型壳聚糖纳米载药微球的制备方法
CN102814502A (zh) 一种半纤维素为稳定剂的银纳米粒子的制备方法
CN108470920A (zh) 一种用于酸性介质的石墨烯负载铂钴钨合金纳米粒子复合催化剂及其制备方法
Huang et al. Electrospun nanofibers: from rational design, fabrication to electrochemical sensing applications
Ding et al. Efficient and generic preparation of diverse polyelectrolyte nanogels by electrostatic assembly directed polymerization
Mallakpour et al. Improving the direct methanol fuel cell performance with poly (vinyl alcohol)/titanium dioxide nanocomposites as a novel electrolyte additive
CN112086648A (zh) 一种合成AuPd@C材料用于氧还原反应电催化的方法
CN107195918A (zh) 一种以石墨烯‑富勒烯三维复合材料为载体的燃料电池催化剂及其制备和应用
CN109560299B (zh) 一种纳米线网结构PtCu合金催化剂及其制备方法与应用
CN107188775A (zh) 一种两亲性分子筛负载Ru纳米粒子催化α‑蒎烯加氢制备顺式蒎烷的方法
Chabalala et al. MOF based nanocomposites for photocatalytic degradation of pollutants in water: A critical review
CN110961055B (zh) 离子液体聚合微球及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200728