CN107937875A - 一种烧结钕铁硼磁体表面防护涂层的制备方法 - Google Patents

一种烧结钕铁硼磁体表面防护涂层的制备方法 Download PDF

Info

Publication number
CN107937875A
CN107937875A CN201711165684.0A CN201711165684A CN107937875A CN 107937875 A CN107937875 A CN 107937875A CN 201711165684 A CN201711165684 A CN 201711165684A CN 107937875 A CN107937875 A CN 107937875A
Authority
CN
China
Prior art keywords
film
bottoming
preparation
magnet surface
bombardment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711165684.0A
Other languages
English (en)
Inventor
张鹏杰
徐光青
曹玉杰
吴玉程
刘家琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201711165684.0A priority Critical patent/CN107937875A/zh
Publication of CN107937875A publication Critical patent/CN107937875A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • C23C14/0611Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种烧结钕铁硼磁体表面防护涂层的制备方法,采用循环氩离子轰击及主弧轰击对磁体进行炉内前处理,然后在基体表面采用磁控溅射方式制备一层硬度较低,且电化学活性比铁元素高的金属薄膜打底,采用主弧轰击的方式对打底薄膜进一步轰击夯实,确保薄膜与基体之间结合紧密,采用真空蒸发离子束辅助沉积技术在打底层表面制备一层类金刚石薄膜;复合薄膜沉积完成出炉后,采用喷丸工艺对复合涂层进行进一步机械夯实,所制备的打底金属/类金刚石复合涂层不仅硬度高,且具有优异的耐磨、耐腐蚀性能,同时,采用本方案方法制备的复合涂层与基体之间的结合力极高。本发明可实现烧结钕铁硼磁体表面高硬度、高结合力以及耐腐蚀涂层的制备。

Description

一种烧结钕铁硼磁体表面防护涂层的制备方法
技术领域
本发明涉及一种烧结钕铁硼磁体表面防护涂层的制备方法,属于磁性材料表面防护技术领域。
背景技术
近年来,我国制造的烧结钕铁硼磁体虽然在磁性能方面已经可以与日本和欧美强国相媲美,但是所制备磁体的耐腐蚀性能一直还与之存在较大差距。烧结NdFeB磁体为多相复合结构,磁体内部各相之间电位差较大,尤其是晶间及晶界交隅处的富Nd相电化学活性较高,在电化学、潮湿或高温环境中极易优先发生腐蚀,进而导致磁体内部电化学腐蚀的发生,并最终导致磁体的粉化失效。随着应用领域的不断拓展,汽车、智能制造、航空航天、动力电机等尖端技术领域对磁体耐腐蚀性能提出了更高的要求。采用传统电镀及化学镀方式对磁体表面进行防护已不能满足高端制造领域的需求。且传统用于烧结钕铁硼磁体表面防护的电镀金属镀层均存在其各自的缺点,例如,电镀锌层的结晶粒子较粗,耐高温性能较差;电镀镍层对磁体的磁性能有屏蔽作用,且所有电镀制备的镀层与烧结钕铁硼基体之间的结合力均较差。电镀过程中产生的氢也会造成磁体表面镀层的脆性增加。在特殊的应用领域(如航空航天、风电等应用领域),镀层脆性及耐磨性能差极易造成磁体表面镀层的腐蚀防护失效。更为重要的是,随着国家对环保要求的不断提高,污染较为严重的电镀及化学镀方式必须被取代,因此,开发无污染、绿色环保磁体表面防护技术成为烧结钕铁硼磁体制造领域亟需解决的关键问题。
作为现代表面处理技术之一的真空镀膜技术逐渐被应用于稀土永磁材料的表面防护处理领域。相对于电镀和化学镀等表面防护涂层添加技术,物理气相沉积技术具有的优点包括,(1)环境友好,涂层添加过程中可以避免环境污染所带来的三废处理问题;(2)所制备薄膜的膜/基体结合力高,薄膜耐高低温冲击性能优异,且所制备薄膜致密均匀;(3)可制备的薄膜的种类较多。目前,用于稀土永磁体表面处理的真空镀膜类型主要有热蒸发镀、磁控溅射和离子镀等技术。
然而,当前用于磁体表面防护的物理气相沉积薄膜主要为Al薄膜,Al薄膜沉积具有工艺简单易操作、成本低等诸多优点,且该薄膜电化学活性较高,某种程度上可为基体提供牺牲阳极保护作用,但由于烧结钕铁硼基体内部富Nd相的电化学活性比Al更高,导致这种牺牲阳极保护作用的效果大打折扣。且由于Al薄膜硬度较低,为金属软薄膜,薄膜的耐磨性能极差,在包装、运输过程中易导致涂层破裂进而造成涂层防护失效。因此,开发烧结钕铁硼磁体表面绿色、高耐磨、耐腐蚀金属涂层涂覆技术成为当前烧结钕铁硼磁体表面防护领域一个亟需解决的难题。
类金刚石薄膜是一种由碳元素构成、在性质上和钻石类似,同时又具有石墨原子组成结构的物质。类金刚石薄膜为硬薄膜,是一种非晶态薄膜,由于具有高硬度和高弹性模量,低摩擦因数,耐磨损以及良好的真空摩擦学特性,可作为耐磨涂层在工程技术领域推广使用。
发明内容
一种烧结钕铁硼磁体表面防护涂层的制备方法,包括以下步骤:
(1)磁体炉内前处理:将经过传统前处理后的磁体置于真空镀膜机内,采用循环氩离子轰击及主弧轰击对磁体进行镀膜前处理,以去除磁体表面形成的氧化膜,提高后期镀膜与基体之间的结合力,其中循环氩离子轰击前处理工艺:将真空室内真空抽至1×10-3Pa以下,然后向真空室内通入高纯氩气,真空度控制在1~5Pa,给工件挂具施加500~1000V偏压,使真空室内产生循环氩离子并对磁体表面进行轰击清洗,从而去除磁体表面因氧化产生的氧化皮;
主弧轰击前处理工艺:对经过循环氩离子轰击后的磁体表面进一步采用主弧轰击进行前处理,继续通入高纯氩气,真空室真空度在1.2×10-1~4.7×10-1Pa,磁控溅射电流为1~5A,磁控溅射电压为100~300V,时间3~5min;
(2)磁体表面打底金属薄膜的制备:采用磁控溅射方式在磁体表面制备一层打底金属薄膜,然后采用主弧轰击的方式对打底金属薄膜进一步轰击夯实,其中,磁体表面打底金属薄膜的制备工艺:真空室内通入高纯氩气,真空室真空度为2×10-1~5×10-1Pa,偏压电源电压为150~400V,磁控溅射电流10~18A,金属打底薄膜沉积时间为20~40min;
主弧轰击的方式对打底金属薄膜进一步轰击夯实工艺:真空室内通入高纯氩气,真空室真空度1.2×10-1~4.7×10-1Pa,磁控溅射电流1~3A,磁控溅射电压在500~800V,时间控制在3~5min;
(3)打底薄膜表面类金刚石薄膜的制备:采用真空蒸发离子束辅助沉积技术在打底金属薄膜表面制备一层类金刚石薄膜,具体工艺:采用真空蒸发离子束辅助沉积法在打底金属薄膜表面制备一层类金刚石薄膜,真空室真空度在0.5×10-2~3×10-2Pa;
(4)在磁体表面交替沉积上述打底金属/类金刚石复合薄膜,具体工艺:以上述金属打底/类金刚石复合薄膜为一个单位,交替沉积;
(5)复合薄膜表面后处理工艺:采用喷丸工艺对复合薄膜进行后处理,对薄膜起到机械夯实作用,可进一步提高镀膜与基体之间的结合力。
步骤(1)中,传统前处理具体为除油、酸洗、超声清洗、二级水洗。
步骤(1)中,循环氩离子清洗时间为3~10min。
步骤(2)中,所述磁体表面打底金属薄膜的金属为Mg或Al。。
步骤(3)中,采用电弧蒸发石墨靶材,在类金刚石薄膜沉积的同时,采用高能离子束对正在生长的打底金属薄膜进行轰击,高能粒子束离子能量500~800eV,类金刚石薄膜沉积时间10~30min。
步骤(4)中,交替沉积不超过3次,避免涂层过厚导致应力增大对涂层造成破坏。
步骤(5)中,喷丸材料选用石英砂与玻璃砂比例为1:1的混砂,喷丸压力为1~1.8MPa,喷丸角度为45°。
与现有技术相比较,本发明的实施效果如下:
本发明采用循环氩离子轰击及主弧轰击对磁体进行炉内前处理,可以进一步去除磁体在装炉过程中产生的氧化皮,同时,增加待镀基体的表面活性,从而可增加后期镀膜与基体之间的结合力。采用磁控溅射方式在基体表面首先制备一层硬度较低、电化学活性比铁元素高的金属薄膜,如Mg、Al薄膜等打底,采用主弧轰击的方式对打底薄膜进一步轰击夯实,确保薄膜与基体之间结合紧密,然后采用真空蒸发离子束辅助沉积技术在打底层表面制备一层类金刚石薄膜;该工艺的主要有益效果在于以下两点:一是单纯在磁体表面直接沉积类金刚石薄膜,由于类金刚石薄膜为硬质膜,与烧结钕铁硼基体不匹配,薄膜与基体之间的结合力较低,很容易发生镀层剥离现象,采用金属薄膜打底,由于金属薄膜与基体以及类金刚石薄膜之间均具有较高结合力,因此,复合薄膜与基体的结合力亦较高;二是类金刚石薄膜为惰性薄膜,虽然涂层较为致密,但一旦被腐蚀溶液突破,就会与基体之间产生电化学腐蚀,使基体发生快速腐蚀,采用电化学活性较强的Mg、Al涂层作为打底层,纵使类金刚石薄膜被腐蚀溶液突破,Mg、Al涂层作为牺牲阳极保护涂层将首先发生腐蚀,进而保护基体不受腐蚀介质腐蚀。复合薄膜沉积完成出炉后,采用喷丸工艺对Al/类金刚石薄膜复合涂层进行进一步机械夯实,从而可进一步夯实所制备的Al/类金刚石薄膜复合涂层,提高复合薄膜与基体之间结合力,最终所制备的打底金属/类金刚石薄膜复合涂层不仅硬度高,且具有优异的耐磨、耐腐蚀性能。同时,采用本方案方法制备的复合涂层与基体之间的结合力极高,而且通过交替沉积的方式可进一步提高该复合涂层的各项性能。本发明技术方案可实现烧结钕铁硼磁体表面高硬度、高结合力以及耐腐蚀涂层的制备。
具体实施方式
下面将结合具体的实施例来说明本发明的内容。
实施例1
一种烧结钕铁硼磁体表面防护涂层的制备方法,包括以下步骤:
(1)磁体炉内前处理:将经过传统除油、酸洗、超声清洗、二级水洗前处理后的磁体置于真空镀膜机内,采用循环氩离子轰击及主弧轰击对磁体进行镀膜前处理,循环氩离子轰击工艺为:将真空室内真空抽至1×10-3Pa以下,然后向真空室内通入高纯氩气,将真空室内真空度控制在1Pa,给工件挂具施加500V偏压,循环氩离子清洗时间为3min,对经过循环氩离子轰击后的磁体表面进一步采用主弧轰击进行前处理,继续通入高纯氩气,控制真空室真空度为1.2×10-1Pa,设置磁控溅射电流为1A,磁控溅射电压为100V,主弧轰击时间为3min。
(2)磁体表面打底金属薄膜的制备:采用磁控溅射方式在磁体表面制备一层打底Mg膜,镀膜工艺为:真空室内通入高纯氩气,控制氩气流量,真空室真空度为2×10-1Pa,偏压电源电压设置为150V,磁控溅射电流为10A,打底薄膜沉积时间为20min。然后采用主弧轰击的方式对打底金属薄膜进一步轰击夯实。主弧轰击工艺为:真空室内通入高纯氩气,控制真空室真空度1.2×10-1Pa,磁控溅射电流1A,磁控溅射电压500V,时间控制在3min。
(3)打底薄膜表面类金刚石薄膜的制备:采用真空蒸发离子束辅助沉积技术在打底金属薄膜表面制备一层类金刚石薄膜。薄膜制备工艺为:控制真空室真空度维护0.5×10-2Pa,采用电弧蒸发石墨靶材,在类金刚石薄膜沉积的同时,采用高能离子束对正在生长的打底金属薄膜进行轰击,高能粒子束离子能量为500eV,类金刚石薄膜沉积时间为10min。
(4)为进一步提高复合镀层的力学性能及耐腐蚀性能,在磁体表面交替沉积上述Mg/类金刚石复合薄膜两次,复合薄膜制备工艺如(1)、(2)、(3)所示。
(5)复合薄膜表面后处理工艺:采用喷丸工艺对复合薄膜进行后处理,对薄膜起到机械夯实作用,喷丸工艺参数为:选用石英砂与玻璃砂比例为1:1的混砂,喷丸压力为1MPa,喷丸角度为45°。
实施例1所制备样品为1A,采用相同工艺参数,制备Al/类金刚石复合薄膜,样品为1B。
实施例2
一种烧结钕铁硼磁体表面防护涂层的制备方法,包括以下步骤:
(1)磁体炉内前处理:将经过传统除油、酸洗、超声清洗、二级水洗前处理后的磁体置于真空镀膜机内,采用循环氩离子轰击及主弧轰击对磁体进行镀膜前处理,循环氩离子轰击工艺为:将真空室内真空抽至1×10-3Pa以下,然后向真空室内通入高纯氩气,将真空室内真空度控制在3Pa,给工件挂具施加800V偏压,循环氩离子清洗时间为6min,对经过循环氩离子轰击后的磁体表面进一步采用主弧轰击进行前处理,继续通入高纯氩气,控制真空室真空度为3.5×10-1Pa,设置磁控溅射电流为3A,磁控溅射电压为200V,主弧轰击时间为4min。
(2)磁体表面打底金属薄膜的制备:采用磁控溅射方式在磁体表面制备一层打底Mg膜,镀膜工艺为:真空室内通入高纯氩气,控制氩气流量,真空室真空度为3×10-1Pa,偏压电源电压设置为300V,磁控溅射电流设置为15A,Mg打底薄膜沉积时间为30min。然后采用主弧轰击的方式对打底金属薄膜进一步轰击夯实。主弧轰击工艺为:真空室内通入高纯氩气,控制真空室真空度3.1×10-1Pa,磁控溅射电流2A,磁控溅射电压600V,时间控制在4min。
(3)打底薄膜表面类金刚石薄膜的制备:采用真空蒸发离子束辅助沉积技术在打底金属薄膜表面制备一层类金刚石薄膜。薄膜制备工艺为:控制真空室真空度维护2×10- 2Pa,采用电弧蒸发石墨靶材,在类金刚石薄膜沉积的同时,采用高能离子束对正在生长的打底金属薄膜进行轰击,高能粒子束离子能量为700eV,类金刚石薄膜沉积时间为20min。
(4)复合薄膜表面后处理工艺:采用喷丸工艺对复合薄膜进行后处理,对薄膜起到机械夯实作用,喷丸工艺参数为:选用石英砂与玻璃砂比例为1:1的混砂,喷丸压力为1.5MPa,喷丸角度为45°。
实施例2所制备样品为2A,采用相同工艺参数,制备Al/类金刚石复合薄膜,样品为2B。
实施例3
一种烧结钕铁硼磁体表面防护涂层的制备方法,包括以下步骤:
(1)磁体炉内前处理:将经过传统除油、酸洗、超声清洗、二级水洗前处理后的磁体置于真空镀膜机内,采用循环氩离子轰击及主弧轰击对磁体进行镀膜前处理,循环氩离子轰击工艺为:将真空室内真空抽至1×10-3Pa以下,然后向真空室内通入高纯氩气,将真空室内真空度控制在5Pa,给工件挂具施加1000V偏压,循环氩离子清洗时间为10min,对经过循环氩离子轰击后的磁体表面进一步采用主弧轰击进行前处理,继续通入高纯氩气,控制真空室真空度为1.2×10-1Pa,设置磁控溅射电流为5A,磁控溅射电压为300V,主弧轰击时间为5min。
(2)磁体表面打底金属薄膜的制备:采用磁控溅射方式在磁体表面制备一层打底Mg膜,镀膜工艺为:真空室内通入高纯氩气,控制氩气流量,真空室真空度为5×10-1Pa,偏压电源电压设置为400V,Mg打底薄膜沉积时间为40min。然后采用主弧轰击的方式对打底金属薄膜进一步轰击夯实。主弧轰击工艺为:真空室内通入高纯氩气,控制真空室真空度4.7×10-1Pa,磁控溅射电流3A,磁控溅射电压800V,时间控制在5min。
(3)打底薄膜表面类金刚石薄膜的制备:采用真空蒸发离子束辅助沉积技术在打底金属薄膜表面制备一层类金刚石薄膜。薄膜制备工艺为:控制真空室真空度维护3×10- 2Pa,采用电弧蒸发石墨靶材,在类金刚石薄膜沉积的同时,采用高能离子束对正在生长的打底金属薄膜进行轰击,高能粒子束离子能量为800eV,类金刚石薄膜沉积时间为30min。
(4)复合薄膜表面后处理工艺:采用喷丸工艺对复合薄膜进行后处理,对薄膜起到机械夯实作用,喷丸工艺参数为:选用石英砂与玻璃砂比例为1:1的混砂,喷丸压力为1.8MPa,喷丸角度为45°。
实施例3所制备样品为3A,采用相同工艺参数,制备Al/类金刚石复合薄膜,样品为3B。
对照实施例1:
采用与实施例1相同的复合薄膜制备工艺,镀膜种类及交替次数相同,区别仅在于对照实施例1样品镀膜之前未经过循环氩离子轰击及主弧轰击前处理工艺,得样品1C。
对照实施例2:
采用与实施例2相同的打底Mg薄膜制备工艺,不再进行类金刚石薄膜的施镀,打底Mg薄膜沉积时间为40min,确保Mg薄膜的厚度与实施例2Mg/类金刚石薄膜的厚度相同,得样品2C。
将上述实施例与对照实施例的所有试样分别进行中性盐雾试验,拉力试验,硬度测试,结果如下表所示:
试样 中性盐雾试验(h) 拉力试验(MPa) 薄膜硬度(GPa)
1A 456 15.3 57
1B 552 14.7 54
1C 384 9.5 56
2A 296 21.7 64
2B 312 20.9 63
2C 128 23.1 0.2
3A 384 25.6 71
3B 408 25.1 69
从表中数据可以看出,所制备Mg/类金刚石复合薄膜或Al/类金刚石复合薄膜的耐中性盐雾试验均大于296h以上,远优于传统电镀Zn、Ni镀层,传统电镀Zn、Ni镀层最大96h。未采用循环氩离子及主弧轰击前处理的样品1C的结合力及耐腐蚀性能比样品1A差,说明镀膜前对磁体进行循环氩离子及主弧轰击前处理有助于提高后期镀膜与基体之间结合力,并有利于镀膜耐腐蚀性能的提高。
样品1A,1B样品的耐中性盐雾试验优于2A、2B、3A、3B试样,说明交替涂覆本方案复合涂层将大幅提高镀层耐腐蚀性能。
样品2C试样的耐中性盐雾试验能力小于样品2A,可能有两个原因导致,一是类金刚石薄膜表面致密,较Mg薄膜耐腐蚀性能更优,二是类金刚石薄膜与Mg薄膜优先发生电化学腐蚀,对烧结钕铁硼基体间接起到牺牲阳极保护作用。
同时,从上述测试结果还可以看出,制备的Mg/类金刚石复合薄膜或Al/类金刚石复合薄膜的硬度极高,涂层具有优异的耐磨性能。

Claims (6)

1.一种烧结钕铁硼磁体表面防护涂层的制备方法,其特征在于,包括以下步骤:
(1)磁体炉内前处理:将经过传统前处理后的磁体置于真空镀膜机内,采用循环氩离子轰击及主弧轰击对磁体进行镀膜前处理,其中循环氩离子轰击前处理工艺:将真空室内真空抽至1×10-3Pa以下,然后向真空室内通入高纯氩气,真空度控制在1~5Pa,给工件挂具施加500~1000V偏压,使真空室内产生循环氩离子并对磁体表面进行轰击清洗,从而去除磁体表面因氧化产生的氧化皮;
主弧轰击前处理工艺:对经过循环氩离子轰击后的磁体表面进一步采用主弧轰击进行前处理,继续通入高纯氩气,真空室真空度在1.2×10-1~4.7×10-1Pa,磁控溅射电流为1~5A,磁控溅射电压为100~300V,时间3~5min;
(2)磁体表面打底金属薄膜的制备:采用磁控溅射方式在磁体表面制备一层打底金属薄膜,然后采用主弧轰击的方式对打底金属薄膜进一步轰击夯实,其中,磁体表面打底金属薄膜的制备工艺:真空室内通入高纯氩气,真空室真空度为2×10-1~5×10-1Pa,偏压电源电压为150~400V,磁控溅射电流10~18A,金属打底薄膜沉积时间为20~40min;
主弧轰击的方式对打底金属薄膜进一步轰击夯实工艺:真空室内通入高纯氩气,真空室真空度1.2×10-1~4.7×10-1Pa,磁控溅射电流1~3A,磁控溅射电压在500~800V,时间控制在3~5min;
(3)打底薄膜表面类金刚石薄膜的制备:采用真空蒸发离子束辅助沉积技术在打底金属薄膜表面制备一层类金刚石薄膜,具体工艺:采用真空蒸发离子束辅助沉积法在打底金属薄膜表面制备一层类金刚石薄膜,真空室真空度在0.5×10-2~3×10-2Pa;
(4)在磁体表面交替沉积上述打底金属/类金刚石复合薄膜,具体工艺:以上述金属打底/类金刚石复合薄膜为一个单位,交替沉积;
(5)复合薄膜表面后处理工艺:采用喷丸工艺对复合薄膜进行后处理,对薄膜起到机械夯实作用,可进一步提高镀膜与基体之间的结合力。
2.根据权利要求1所述的烧结钕铁硼磁体表面防护涂层的制备方法,其特征在于,步骤(1)中,循环氩离子清洗时间为3~10min。
3.根据权利要求1所述的烧结钕铁硼磁体表面防护涂层的制备方法,其特征在于,步骤(2)中,所述磁体表面打底金属薄膜的金属为Mg或Al。
4.根据权利要求1所述的烧结钕铁硼磁体表面防护涂层的制备方法,其特征在于,步骤(3)中,采用电弧蒸发石墨靶材,在类金刚石薄膜沉积的同时,采用高能离子束对正在生长的打底金属薄膜进行轰击,高能粒子束离子能量500~800eV,类金刚石薄膜沉积时间10~30min。
5.根据权利要求1所述的烧结钕铁硼磁体表面防护涂层的制备方法,其特征在于,步骤(4)中,交替沉积不超过3次。
6.根据权利要求1所述的烧结钕铁硼磁体表面防护涂层的制备方法,其特征在于,步骤(5)中,喷丸材料选用石英砂与玻璃砂比例为1:1的混砂,喷丸压力为1~1.8MPa,喷丸角度为45°。
CN201711165684.0A 2017-11-21 2017-11-21 一种烧结钕铁硼磁体表面防护涂层的制备方法 Pending CN107937875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711165684.0A CN107937875A (zh) 2017-11-21 2017-11-21 一种烧结钕铁硼磁体表面防护涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711165684.0A CN107937875A (zh) 2017-11-21 2017-11-21 一种烧结钕铁硼磁体表面防护涂层的制备方法

Publications (1)

Publication Number Publication Date
CN107937875A true CN107937875A (zh) 2018-04-20

Family

ID=61929609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711165684.0A Pending CN107937875A (zh) 2017-11-21 2017-11-21 一种烧结钕铁硼磁体表面防护涂层的制备方法

Country Status (1)

Country Link
CN (1) CN107937875A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950503A (zh) * 2018-07-30 2018-12-07 山西金山磁材有限公司 一种烧结钕铁硼镀膜及其真空镀膜工艺
CN110098044A (zh) * 2019-04-18 2019-08-06 中国科学院力学研究所 一种钕铁硼磁体表面防护的复合改性方法
CN111621757A (zh) * 2020-05-21 2020-09-04 沈阳中北通磁科技股份有限公司 一种具有防腐耐磨镀层的钕铁硼永磁体及其制备方法
CN112342576A (zh) * 2020-10-27 2021-02-09 合肥工业大学 一种烧结NdFeB磁体表面金属镀层致密化方法
CN114597436A (zh) * 2022-03-28 2022-06-07 中国科学院兰州化学物理研究所 一种用于金属双极板的防护涂层及其制备方法
CN116497325A (zh) * 2023-03-29 2023-07-28 广东省科学院资源利用与稀土开发研究所 一种磁压榨用钕铁硼磁体表面防护改性的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950503A (zh) * 2018-07-30 2018-12-07 山西金山磁材有限公司 一种烧结钕铁硼镀膜及其真空镀膜工艺
CN110098044A (zh) * 2019-04-18 2019-08-06 中国科学院力学研究所 一种钕铁硼磁体表面防护的复合改性方法
CN110098044B (zh) * 2019-04-18 2021-04-27 中国科学院力学研究所 一种钕铁硼磁体表面防护的复合改性方法
CN111621757A (zh) * 2020-05-21 2020-09-04 沈阳中北通磁科技股份有限公司 一种具有防腐耐磨镀层的钕铁硼永磁体及其制备方法
CN112342576A (zh) * 2020-10-27 2021-02-09 合肥工业大学 一种烧结NdFeB磁体表面金属镀层致密化方法
CN114597436A (zh) * 2022-03-28 2022-06-07 中国科学院兰州化学物理研究所 一种用于金属双极板的防护涂层及其制备方法
CN114597436B (zh) * 2022-03-28 2023-06-16 中国科学院兰州化学物理研究所 一种用于金属双极板的防护涂层及其制备方法
CN116497325A (zh) * 2023-03-29 2023-07-28 广东省科学院资源利用与稀土开发研究所 一种磁压榨用钕铁硼磁体表面防护改性的方法

Similar Documents

Publication Publication Date Title
CN107937875A (zh) 一种烧结钕铁硼磁体表面防护涂层的制备方法
CN109913771B (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN109943803B (zh) 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
CN109666904B (zh) 一种低应力高耐磨抗冲蚀涂层、制备方法及应用
CN105839127B (zh) 金属工件表面碳基薄膜的褪镀方法
CN103668095A (zh) 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN107164731B (zh) 一种镁合金表面铝复合防护层的制备方法
CN102787300A (zh) 一种超临界水冷堆燃料包壳表面的Cr/CrAlN梯度涂层工艺
CN110791730B (zh) 一种核燃料用锆合金包壳表面复合涂层的制备方法
CN102345099A (zh) 一种汽轮机叶片材料表面多层抗点蚀涂层的制备方法
CN111441017A (zh) 一种制备钕铁硼磁体表面防腐涂层的方法
CN108998794B (zh) 一种Re-Si共改性铝化物涂层及其制备方法
CN105970215B (zh) 一种轴承的复合层制备方法及其轴承
CN106884136A (zh) 一种金属材料表面渗氮沉积复合减摩耐磨改性层制备方法
CN107858684B (zh) 金属-类金刚石复合涂层及其制备方法与用途以及涂层工具
CN101144129A (zh) 耐磨、耐腐蚀备件及其表面处理工艺
CN111621757A (zh) 一种具有防腐耐磨镀层的钕铁硼永磁体及其制备方法
CN109306464B (zh) 一种Ti/CrN复合结构的梯度陶瓷耐磨合金层及其制备方法
CN105088129A (zh) 微纳织构化氮化钛固体润滑膜的制备方法
CN111020482A (zh) 一种烧结NdFeB磁体表面致密化Al镀层及其制备方法
CN112662939B (zh) 一种表面沉积涂层的超薄永磁体
US5154816A (en) Process for depositing an anti-wear coating on titanium based substrates
CN111304596A (zh) 一种钕铁硼磁体表面防腐涂层的制备方法
CN114959613B (zh) 一种增强中熵合金CoCrNi薄膜耐腐蚀性的方法
CN109136864A (zh) 一种在磁钢表面真空涂覆铝锡复合涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420