CN107921413A - 高加氢脱氮选择性的加氢处理催化剂 - Google Patents

高加氢脱氮选择性的加氢处理催化剂 Download PDF

Info

Publication number
CN107921413A
CN107921413A CN201680044475.8A CN201680044475A CN107921413A CN 107921413 A CN107921413 A CN 107921413A CN 201680044475 A CN201680044475 A CN 201680044475A CN 107921413 A CN107921413 A CN 107921413A
Authority
CN
China
Prior art keywords
catalyst
component
molar ratio
group viii
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680044475.8A
Other languages
English (en)
Other versions
CN107921413B (zh
Inventor
松下康
松下康一
后藤康仁
M.伍兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Refining Technologies Inc
Advanced Refining Technologies LLC
Original Assignee
Advanced Refining Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Refining Technologies Inc filed Critical Advanced Refining Technologies Inc
Publication of CN107921413A publication Critical patent/CN107921413A/zh
Application granted granted Critical
Publication of CN107921413B publication Critical patent/CN107921413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/50Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

本发明公开了可用于包括残渣烃给料的石油给料的加氢脱硫(HDS)和加氢脱氮(HDN)的改善的负载型氢加工催化剂及其制备方法。所述催化剂含有至少一种第VIB族金属组分、至少一种第VIII族金属组分、以及磷组分,所述组分负载在诸如氧化铝的多孔载体上。所述负载型催化剂的特征在于性质的具体组合,即第VIII族金属与磷的摩尔比、第VIII族金属与第VIB族金属的摩尔比、磷组分与第VIB族组分的摩尔比和中值孔径。所得催化剂展现出增强的HDN而不使HDS活性牺牲至任何明显程度。

Description

高加氢脱氮选择性的加氢处理催化剂
相关申请的交叉引用
本专利申请要求于2015年5月29日提交的名称为“High HDN SelectivityHydrotreating Catalyst”的美国临时专利申请62/167,995的提交日期的权益,该专利申请的公开内容据此以引入方式并入本文。
技术领域
本发明涉及在FCC过程中用作给料的重质烃油的催化氢加工(hydroprocessing)。具体地,本发明涉及在给定加氢脱硫(HDS)水平下对加氢脱氮(HDN)具有更高选择性的改善的加氢处理催化剂,并且涉及用于制备该改善的催化剂的方法。
[根据联合研究协议研发]
本发明根据JX Nippon Oil & Energy Corporation(单位位于6-3 Otemachi 2-chome,Chiyodaku,Tokyo 100-8162,Japan)与Advanced Refining Technologies L.L.C.(办公室位于7500 Grace Drive,Columbia,MD)之间的联合研究协议而研发。
背景技术
流体催化裂解在高沸点烃转化为诸如汽油的更具价值的较轻质烃中扮演主要角色。存在如下趋势:处理更为经济、较重质的给料(诸如大气压残油)而非更传统的给料(诸如真空瓦斯油)。然而,在馈料至FCC单元之前,这些较重质给料必须经处理以移除对成功操作FCC过程有害的污染物。硫、氮和金属(例如,钒和镍)全部都为FCC操作造成潜在问题。碱性氮化合物由于毒害酸性沸石位点而尤其对FCC催化剂造成麻烦。
移除硫、氮和金属的氢加工处理通常由在高温和高压下、在氢气存在下使给料暴露于一系列催化剂床所组成。初始催化剂床的目的主要是移除来自给料的含金属化合物。此举充当对于后续催化剂床的保护,催化剂床的主要目的是移除硫和氮。这些床在钝化发生之前对金属具有有限的耐受性。本发明具体地涉及这些后续催化剂床,催化剂床的主要目的是硫和氮移除。应注意,一些金属将会到达这些床,并且金属耐受性仍为会缩短催化剂寿命的一个重要因素。
实际上,氢加工操作目标为产物中的特定硫水平。使反应器温度增加或降低来命中(hit)此硫目标量。即使催化剂给出改善的硫和氮移除,但实际上将降低反应器温度来命中该目标硫水平。如果期望增加氮移除,则有利的是使用对氮移除具有选择性的催化剂(即,较高的氮移除对硫移除比率)。
在氢加工过程中,在高压和高温下、在氢气存在下使烃给料与加氢转化催化剂接触。用于氢加工过程的催化剂通常包括来自周期表的第VIB族(第6族)和第VIII族(第8、9和10族)的催化活性金属并且通常负载在一般主要由氧化铝制成的载体上。通常该操作条件被驱使成最大化HDS,并且典型的操作条件已包括:300℃至500℃的反应区温度、3至25MPa的氢分压、每升油馈料400至3000标准升(normal liter)的氢气(NL/L)、以及在主要为氧化铝的载体上的诸如镍或钴以及钼或钨的催化剂。然而,因为最佳HDN温度并不与最佳HDS温度相同,所以如果对HDN的选择性可针对给定HDS活性水平得以提高则是有利的。
为此,仍然需要开发催化剂组合物,所述催化剂组合物提供对重油和残渣给料的良好加氢脱硫,而同时在氢加工过程期间提供改善的HDN。
发明内容
本发明基于以下发现:通过控制诸如第VIII族金属与磷的摩尔比、第VIII族金属与第VIB族金属的摩尔比、以及中值孔径的某些催化剂性质,可针对给定HDS活性获得增强的HDN活性。
在本发明的一个方面中,提供具有增强的HDN选择性的负载型催化剂,该负载型催化剂包含:至少一种含金属催化剂组分和至少一种含磷催化剂组分,其中该含金属催化剂组分中的金属为选自元素周期表的第VIB族的至少一种、选自元素周期表的第VIII族的至少一种另一金属,并且其中所述催化剂组分承载于多孔载体上,所述催化剂的特征在于具有:
(a)小于0.60∶1的第VIII族金属组分与磷组分的摩尔比;
(b)小于0.45∶1的第VIII族金属组分与第VIB族金属组分的摩尔比;
(c)大于0.23∶1的磷组分与第VIB族金属组分的摩尔比;以及
(d)大于且小于的中值孔径。
具体实施方式
定义
如本文所用,以下术语或词组具有所指示的含义。
作为例证,对“氮”的提及是指元素氮以及含有氮的化合物。类似地,作为例证,对“硫”的提及是指元素硫以及含有硫的化合物。
如例如对催化剂浸渍溶液或催化剂本身的金属所用的“组分”是指任何化合物或复合物,包括所讨论金属的盐、氧化物、硫化物、或氧化物与硫化物之间的任何中间形式。
“载体(Carrier)”和“载体(support)”在本文中可互换使用。
通常使用包括本发明的催化剂的过程来处理的“给料(feedstock)”或石油给料常常以“重质”或“轻质”等术语来描述。关于石油馏分的术语“轻质”和“重质”在本文中以其在炼油工业中的通常意义来使用,以便分别指相对低沸点范围和相对高沸点范围。重质燃料油(HFO)包括成品(残余燃料)和成品由其共混而得的初级炼油厂流。重质燃料油类别的成员为多样性物质群组,其涵盖具有广泛范围的分子量、碳数(通常约C7至约C50)以及约121℃至600℃(约250°F至约1112°F)的沸点的烃。除石油烃之外,重质燃料油还含有一种或多种含有硫、氮和氧的杂环化合物,以及有机金属化合物或金属化合物。成品重质燃料(残余燃料)为在实际上所有较高质量烃已蒸馏、裂解、或从原油给料催化移除之后主要包括精炼过程的残渣的产物。实质上所有(至少90体积%)的烃馈料流或给料通常落在介于约149℃与565.6℃之间(介于约300°F与1050°F之间)且优选地介于约316℃与537.8℃之间(介于约600°F与1000°F之间)的沸点范围内。给料可包括石油馏分的混合物,所述石油馏分诸如大气压瓦斯油和真空瓦斯油(AGO和VGO)。合适的给料包括重质含烃矿物油或合成油或其一种或多种馏分的混合物。因此,设想了这些已知给料诸如直馏瓦斯油、真空瓦斯油、脱金属化油、大气压残渣、真空残渣、脱沥青真空残渣、脱沥青溶剂、焦化馏出油、催化裂解器馏出油、页岩油、焦砂油、液态煤等以及它们的混合物。优选的给料将具有开始于高于约500℃(高于约932°F)或以上的温度的沸点范围。合适的给料通常含有氮,其通常以量介于1ppm与小于4.0重量%之间的有机氮化合物存在。给料通常还将包括含硫化合物,所述含硫化合物足以提供小于5重量%、优选小于4重量%的硫含量。在任何特定炼油厂中回收的各种产物馏分的沸点范围将根据诸如原油来源的特性、炼油厂的本地市场、产品价格等因素而变化。
“族”:对元素周期表的一个或多个族的任何提及优选地为对反映在使用IUPAC系统对元素族编号为第1至18族的元素周期表中的一个或多个族的提及。然而,在例如根据如“Hawley′s Condensed Chemical Dictionary”(2001)(“CAS”系统)中公布的元素周期表通过罗马数字标识某一族的程度上,将进一步标识出族的一种或多种元素以便避免混淆并提供对数字IUPAC识别符的交互参照。
“中值孔径”通过氮气吸附来测量。因此,其是相对应于基于孔尺寸分布所计算的中值孔径,并且为孔体积的一半都处于其上的孔径。本文所报告的中值孔隙值基于氮吸附,使用由E.P.Barrett、L.G.Joyner和P.P.Halenda(“BJH”),“The Determination of PoreVolume and Area Distributions in Porous Substances.I.Computations fromNitrogen Isotherms”,J.Am.Chem.Soc.,1951,73(1),第373至380页所描述的熟知计算方法来进行。
出于本发明的目的,孔体积可使用氮孔隙度测定法来测量。
“表面积”在本文中是指如通过BET表面积分析所测定的比表面积。测量表面积的BET方法已由Brunauer、Emmett和Teller在J.Am.Chem.Soc.60(1938)309-319中进行了详细描述,该文献以引用方式并入本文。
涉及重量的所有形态学性质,诸如孔体积、PV(cc/g)或表面积(SA)(m2/g)可根据本领域中熟知的程序标准化为无“金属”基准。然而,本文中所报告的形态学性质为未校正金属含量的“如此测量(as-measured)”基准。
本发明整体提供被负载在多孔载体(优选包含氧化铝)上的催化剂组合物,所述催化剂组合物包含周期表的第VIII族和第VIB族的催化活性金属或金属的前体金属化合物,以及磷化合物。
可用于本发明的载体(carrier)或载体(support)通常被识别为“多孔(foraminous)”载体;出于本发明的目的,这些载体将通常被理解为包括许多孔洞、穿孔和/或包括孔隙性。合适的多孔载体材料的示例包括二氧化硅、硅胶、二氧化硅-氧化铝、氧化铝、氧化钛、氧化钛-氧化铝、氧化锆、氧化硼(boria)、蒙脱土(terrana)、高岭土、硅酸镁、碳酸镁、氧化镁、氧化铝、沉淀氧化铝、活化氧化铝、铝矾土(bauxite)、硅藻土、浮石、天然粘土、合成粘土、阳离子粘土或阴离子粘土(诸如皂石、膨润土(bentonite)、高岭土、海泡石或水滑石(hydrotalcite))、以及它们的混合物。优选的多孔载体材料为二氧化硅、二氧化硅-氧化铝、氧化铝、氧化钛、氧化钛-氧化铝、氧化锆、膨润土、氧化硼、以及它们的混合物;二氧化石、二氧化硅-氧化铝、以及氧化铝是特别优选的。用作载体的氧化铝可通过例如通常利用煅烧而将拟薄冰铝石形式的氧化铝前体转化成用作载体材料的优选形式即γ氧化铝而制备。
氧化铝粉末通常以分批过程进行制备。在该分批过程中,氧化铝在受控的反应物浓度和反应条件下沉淀,所述反应条件包括温度、时间、pH、反应物馈料速率等。这些过程在本领域中通常为已知的(参见,例如,Sanchez等人的U.S.4,154,812、Lussier等人的U.S.6,403,526、以及本文中引用的专利,所述专利的公开内容以引用方式并入本文)。本发明的氧化铝粉末的表面积在约180m2/g至约300m2/g的范围内。在本发明的另一个实施方案中,氧化铝粉末的表面积在约220m2/g至约280m2/g的范围内。
在一个实施方案中,粉末的总孔体积可在约0.5cc/g至约1.5cc/g的范围内。在本发明的另一个实施方案中,粉末的总孔体积可在约0.6cc/g至约0.8cc/g的范围内。
将干燥氧化铝粉末或经洗涤氧化铝滤饼或两者与水混合或混掺(commingled)以提供称为潮湿或湿式混合物或团的物质。任选地,也可将酸性或碱性含水介质诸如酸或酸盐的水溶液添加到混合物中。当包括酸时,优选地将一元无机酸的水溶液与水和氧化铝混掺以提供混合物。可使用盐酸和其他一元强酸(包括硝酸);硝酸是优选的。其他可用的酸包括有机酸,诸如乙酸、甲酸、丙酸等。另选地,可使用诸如氢氧化铵的含水碱。另外,如本领域中所公开的,可有利地在此步骤期间添加量为总氧化铝的至多约25重量%的再循环的煅烧产物细粒。
由先前步骤所得的混合物被称为潮湿混合物。此混合物如以下所述用作形成为载体的氧化铝的来源,所述载体诸如呈丸粒形式或其他形状,如在本文中别处所述的。此步骤方便地通过如下进行:挤出潮湿混合物,通常之后是丸粒的干燥和煅烧。
根据本发明的催化剂通过使所形成的载体、优选地氧化铝载体与至少一种催化活性金属或前体金属组分的水溶液接触来制备,以将所期望的金属组分均匀地分布在载体上。优选地,金属和/或金属前体均匀地分布遍及载体的孔隙。在本发明的优选实施方案中,催化剂通过利用所期望的催化活性金属或前体化合物的水溶液将催化剂载体浸渍至初期湿润度来制备。
可用于制备本发明的催化剂组合物的催化活性金属和/或前体金属化合物包括但不限于选自由周期表的第VIB族(还称为第6族)和周期表的第VIII族(在本文中还称为第8、9和10族、优选第9和10族)的一个或多个成员组成的组的金属或金属的化合物。第VIB族金属包括但不限于钼和钨,其中与钨比,钼是优选的。第VIII族金属包括但不限于钴及镍,其中与钴比,镍是优选的。
在本发明的一个实施方案中,镍和钼催化剂的组合是优选的。在本发明的另一个实施方案中,所得催化剂包含在约5.0至约15.0重量%(例如,6.0至约12重量%)范围内的Mo浓度,以及在约1.0至约6.0重量%(例如,1至4重量%)范围内的Ni浓度,所述重量%是基于催化剂组合物的总重量计的。
在一个实施方案中,所得催化剂中磷的浓度基于总催化剂组合物的重量计可在磷的约0.5至约3.0重量%(例如,1.0至约3重量%)的范围内。
第VIII族或第VIB族金属的合适的前体金属化合物包括但不限于金属盐,诸如硝酸盐、乙酸盐等。第VIB族金属的合适的前体金属化合物包括但不限于钼酸铵、钼酸、三氧化钼等等。合适的第VIII族金属化合物包括但不限于硝酸钴、乙酸镍等等。
设想与本发明的载体一起使用的催化活性金属在一个实施方案中是以金属的硫化物形式被使用的,但在另一个实施方案中,可制成并出售为氧化物,并且在使用之前转化成硫化物。
本发明的催化剂组合物包含磷组分。在这种状况下,除所期望的催化活性金属或前体金属化合物之外,浸渍溶液也可含有磷化合物,例如磷酸、磷酸盐等等。
第VIB族金属组分、第VIII族金属组分和磷的特定量经选择以获得所期望的和后文所述的第VIII族金属与P的摩尔比;第VIII族金属与第VIB族金属的摩尔比、以及P与第VIB族金属的摩尔比。
如将对于本领域技术人员明显的是,用于将催化活性金属负载在催化剂载体上的浸渍方法有广泛范围的变化。可能应用多个浸渍步骤,或浸渍溶液可含有待沉积的组分或前体中的一者或多者,或其一部分。可使用浸泡方法、喷雾方法等等来替代浸渍技术。在多次浸渍、浸泡等等的状况下,可在步骤之间进行干燥和/或煅烧。
优选地,氢加工催化剂可使用载体和催化活性金属组分通过各种替代方法来制备,包括通过预浸渍或通过后浸渍来制备。
“预浸渍”催化剂是指其中在多孔催化剂载体成形之前添加一种或多种含金属溶液的催化剂。“后浸渍”催化剂是指其中在多孔催化剂载体成形之后添加一种或多种含金属溶液的催化剂。多孔催化剂载体可在催化剂粒子的成形之前或之后被煅烧。后浸渍在经煅烧成形的载体再次经浸渍且随后煅烧的情况中是优选的。
更具体地,在一个预浸渍制备方法中,将氧化铝和催化金属前体、水以及诸如挤出助剂、胶溶化学品等等的添加剂共同混合且挤出成为成形结构。随后将含有金属的成形结构干燥并煅烧以制备最终催化剂。
在后浸渍方法中,将氧化铝粉末与水混合且随后挤出以形成成形催化剂载体。将载体干燥并煅烧,并且将金属前体浸渍到载体上。随后将经浸渍成形的结构干燥并煅烧以提供成品。
根据本发明的挤出成形的载体可具有各种几何形式,诸如圆柱体、环、以及对称和/或不对称多叶形,例如三叶形或四叶形。挤出物的标称大小可有所变化。直径通常在约0.8mm至约3mm的范围内,并且长度在约1mm至约30mm的范围内。在本发明的一个实施方案中,直径在约1.1mm至约1.2mm的范围内且长度在约1mm至约6mm的范围内。如将由催化剂领域中具有通常技术人员所理解的,由载体制备的催化剂粒子将具有与载体类似的大小与形状。
更具体地,合适的催化剂可通过以下而制备:使用如U.S.7,390,766、U.S.7,560,407和U.S.7,642,212(D.P.Klein,转让给Advanced Refining Technologies)中所述的稳定含水组合物和方法来浸渍催化剂载体、优选为展现本文所述的性质的氧化铝载体,所述专利的公开内容在本文中并入至所准许的程度。合适的方法和组合物包括向合适量的水中添加:(A)至少一种实质上不溶于水的第VIII族金属组分;以及(B)至少一种实质上水溶性含磷酸性组分,其量不足以引起该至少一种第VIII族金属组分的溶解,以便通常在环境温度下制备浆料,并且将该浆料与以下组合:(C)至少一种第VIB族金属组分;以及(D)将(A)、(B)和(C)的组合混合并将该混合物加热足以使(A)、(B)和(C)形成溶液的时间和温度;以及(E)如果需要,则添加附加量的水来获得至少一种第VIII族金属、至少一种第VIB族金属和磷的可用于浸渍载体的溶液浓度;其中第VIB族和第VIII族是指元素周期表的族。
有利地,在浸渍和煅烧以形成催化剂之后,载体通常具有以下特定性质:表面积、孔体积和孔体积分布。
在一个实施方案中,成形催化剂的表面积可在约150至约350m2/g的范围内。在本发明的另一个实施方案中,载体的表面积可在约200至约320m2/g的范围内。
在一个实施方案中,成形催化剂可具有在约0.6至约1cc/g范围内的总孔体积。在另一个实施方案中,载体的总孔体积可在约0.65至约0.9cc/g的范围内。
在一个实施方案中,成形催化剂的中值孔径将大于且小于,并且可在约78至约的范围内,优选地在约80至约的范围内,并且最优选地在约85至约的范围内。
在各种实施方案中,至少一种第VIII族金属组分与第VIB族金属组分的摩尔比可小于约0.45∶1,并且在另一个实施方案中小于约0.43∶1,并且在另一个实施方案中小于约0.42∶1,并且在一个实施方案中可在约0.05∶1至约0.44∶1的范围内,并且在另一个实施方案中在约0.10∶1至约0.43∶1的范围内,并且在另一个实施方案中在约0.20∶1至约0.40∶1的范围内。至少一种第VIII族金属组分的量经选择足以促进第VIB族金属组分的催化效应。
在一个实施方案中,表示为氧化物的第VIB族金属组分的浓度基于组合物的重量计通常为约1至约15重量%(例如,5至约12重量%)。
含磷酸性组分的量足以提供以下的第VIII族金属组分与含磷酸性组分的摩尔比:小于约0.60∶1、在另一个实施方案中小于约0.55∶1、以及在另一个实施方案中小于约0.53∶1;并且在一个实施方案中,这种比率通常可在约0.05∶1至约0.59∶1的范围内,在另一个实施方案中在约0.10∶1至约0.53∶1的范围内,并且在另一个实施方案中,在约0.25∶1至约0.50∶1的范围内。
在一个实施方案中,含磷酸性组分与第VIB族金属组分的摩尔比大于约0.23∶1、在另一个实施方案中大于约0.40∶1、并且在另一个实施方案中大于约0.50∶1;并且这种比率在一个实施方案中可在约0.24∶1至约0.95∶1的范围内,在另一个实施方案中在约0.65∶1至约0.90∶1的范围内,并且在另一个实施方案中在约0.70∶1至约0.85∶1的范围内。
用催化活性金属或前体化合物的水溶液处理载体的干燥条件在一个实施方案中可在约100℃至约200℃的范围内历时约30分钟至约2小时。
煅烧是在足以将金属组分或前体的至少部分、优选全部转化成氧化物形式的温度和时间下进行,这些条件在一个实施方案中可在约300℃至约900℃的范围内、在另一个实施方案中在约450℃至约650℃的范围内并在一个实施方案中历时约0.5至约3小时的范围内且在另一个实施方案中历时约0.5至约2小时的范围内。
根据本发明的催化剂在给定HDS催化剂活性下,在给料(优选地为残渣给料)的氢加工(例如加氢处理)期间展现针对HDN而增加的催化活性和可接受的金属耐受性。本发明的催化过程是基本上涉及与瓦斯油给料相对的残渣给料。残渣通常具有大于10ppm的金属,而瓦斯油几乎始终具有小于10ppm的金属含量。因此,可用于本发明的典型给料为“重质油”,其包括但不限于原油大气压蒸馏柱底物(蒸余原油或大气压柱残渣)或真空蒸馏柱底物(真空残渣)。咸信金属是以有机金属化合物存在的,此类有机金属化合物可能呈卟啉(porphyrin)或螯合物类型结构,但本文中所提及的金属的浓度被计算为重量份每百万份(wppm)或纯金属重量%。
在一个实施方案中,本发明的催化剂适合于处理烃馈料,所述烃馈料在一个实施方案中含有小于4重量%(例如,0.0001至约3.9重量%)的氮、在另一个实施方案中大于约0.001重量%、在另一个实施方案中大于约.01重量%、在另一个实施方案中大于约.0.1重量%、在另一个实施方案中大于约1重量%、并且在另一个实施方案中大于约2重量%的氮,并且这种馈料可在约0.001至约3.9重量%的氮含量范围内,在另一个实施方案中在0.01至约3重量%的氮范围内。馈料中氮的来源可归结于含氮化合物,诸如例如咪唑、吡唑、噻唑、异噻唑、氮杂噻唑(azathiozole)等等。
本发明的催化剂适合于处理烃馈料,所述烃馈料在一个实施方案中含有小于5重量%的硫、在另一个实施方案中大于约0.001重量%、在另一个实施方案中大于约0.01重量%、在另一个实施方案中大于约0.1重量%的硫,并且这种馈料可在约0.0001至约4.9重量%的硫含量范围内,在另一个实施方案中在0.001至约4.5重量%的硫范围内。馈料中硫化合物的示例包括但不限于含有硫的杂环化合物,诸如苯并噻吩、烷基苯并噻吩、多烷基苯并噻吩等,二苯并噻吩(DBT)、烷基二苯并噻吩、多烷基二苯并噻吩,诸如4,6-二甲基二苯并噻吩(4,6-DMDBT)等。
根据本发明制备的催化剂可用于实际上所有氢加工过程以在广大范围的反应条件下处理多种馈料,所述反应条件通常为例如约200℃至约500℃范围内的温度、约0.5至30MPa范围内的氢压力、以及约0.05至10h-1范围内的液空时度(LHSV)。术语“氢加工”可涵盖各种过程,其中烃馈料在高温和高压(氢加工反应条件)下与氢反应,包括氢化、加氢脱硫、加氢脱氮、加氢脱金属化、加氢去芳香化、加氢裂解、以及在温和压力条件下的加氢裂解(还称为温和加氢裂解)。
更具体地,如在本文中使用的术语“氢加工”意指炼油过程,其用于使石油给料(存在于石油中的烃的复杂混合物)与氢在压力下、在催化剂存在下反应,以便降低:(a)存在于所述给料中的硫、污染物金属、氮、以及康式碳(Conradson carbon)中的至少一者的浓度,以及(b)给料的粘度、倾点、以及密度中的至少一者。氢加工包括加氢裂解、异构化/脱蜡、加氢精炼、以及加氢处理过程,此类过程的不同之处在于所反应氢的量以及所处理石油给料的性质。
加氢精炼通常被理解为涉及在润滑油沸点范围内对含烃油(“给料”)的氢加工,所述含烃油主要(以重量计)含有含烃化合物,其中在高压和高温的条件下使给料与固体负载型催化剂接触以达到使芳族和烯烃化合物饱和以及移除给料内存在的氮、硫和氧的化合物的目的,并且改善给料的颜色、气味、热、氧化、以及UV稳定性等性质。
加氢裂解通常被理解为涉及主要含烃化合物(“给料”)的氢加工,所述含烃化合物每个分子含有至少五(5)个碳原子,所述氢加工是:(a)在超大气压氢分压下;(b)在通常低于593.3℃(1100°F)的温度下;(c)以氢的总体净化学消耗;以及(d)在含有至少一(1)种氢化组分的固体负载型催化剂存在下进行的。
加氢处理通常被理解为涉及主要含烃化合物(“给料”)的氢加工以用于所述给料的去硫和/或去氮,所述含烃化合物每个分子含有至少五(5)个碳原子,其中该过程是:(a)在超大气压氢分压下;(b)在通常低于593.3℃(1100°F)的温度下;(c)以氢的总体净化学消耗;以及(d)在含有至少一种氢化组分的固体负载型催化剂存在下进行的。
使用本发明的催化剂组合物的氢加工过程可在设备中在用于加氢处理的类型的加氢脱硫过程条件下进行,从而获得催化剂组合物与所述给料和游离含氢气体的紧密接触,以制备具有降低的硫水平的含烃馏分。在本发明的一个优选实施方案中,氢加工过程使用固定催化剂床进行。氢加工过程可以分批过程或连续过程、使用一个或多个固定催化剂床、或并联或串联的多个固定床反应器进行。
在各种实施方案中,反应条件可被选择为有效氢加工条件。一种可能类型的有效氢加工条件可为在流体催化裂解之前可用于馈料的氢加工的条件。本发明的氢加工催化剂可被包含在内作为用于氢加工过程的氢加工催化剂的至少一部分。氢加工可通过使馈料暴露于一个或多个反应器和/或阶段中的催化剂来执行,其中每个反应器和/或阶段可能包括一个或多个催化剂床。任选地,可在氢加工期间在连续反应器、阶段、或床之间包括一次或多次中间分离和/或淬熄。中间淬熄可例如用于控制可能由于在氢加工期间发生的许多反应的放热性质而升高的反应温度。中间分离可例如用于降低在氢加工期间反应系统中产生的H2S和/或NH3的浓度。
更具体地,在涉及氢加工催化剂的多个床的氢加工过程中,一个床的至少一部分可包含本发明的催化剂。本发明的氢加工催化剂的量可对应于床的至少约10%,例如床的至少约25%、床的至少约50%、至少一整个床、或氢加工反应系统内的至少多个整个床。本发明的催化剂可被包含在氢加工反应器、阶段、和/或床内的任何合宜位置处,优选朝向氢加工过程的下游端,例如处于给料暴露于其的催化剂的至少约后一半中。
可用的典型加氢脱硫过程条件包括但不限于在约300℃与约500℃之间(例如,350至约450℃)的温度、在约3MPa与约25MPa之间(例如,约5至约20MPa、更优选约8至约18MPa)的氢分压、在约400N L/L与约3000N L/L(例如,500至约1800N L/L)之间的H2:油比率、以及在约0.1与约3.0(例如,0.2至约2)之间的空间速度(hr-1)。在一个实施方案中,用于烃给料去硫过程的操作条件包括约371℃至约388℃的反应区温度、约13.8至约15.8MPa的氢压力、以及约880至约1300标准升/升油馈料的氢馈料速率。在这些HDS条件下,还将获得增强的HDN选择性。
在各种实施方案中,过程条件可经选择以有效地氢加工相对高氮含量的给料。条件可经选择以获得一种或多种所期望的产物特性。例如,氢加工条件可经选择以获得约小于约0.10重量%、在另一个实施方案中小于0.05重量%或更低的硫含量,例如获得约500wppm或更低、约350wppm或更低、或约250wppm或更低的硫含量。另外或另选地,硫含量可降低至约100wppm或更高,例如约200wppm或更高或约500wppm或更高。这些硫水平可允许氢加工的流出物用作流体催化裂解过程的输入物。氢加工的油中的所期望的镍和钒含量在一个实施方案中针对每种金属而言为10wppm或更低,在另一个实施方案中为5wppm或更低。
除硫含量之外或作为硫含量的替代,氢加工条件可经选择以获得约1200wppm或更低的氮水平,例如约1000wppm或更低、约900wppm或更低、约750wppm或更低、或约500wppm或更低的氮水平。另外或另选地,氮含量可降低至约100wppm或更高,例如约200wppm或更高或约500wppm或更高。
为进一步说明本发明及其优点,给出以下具体实施例。给出实施例作为对所请求发明的具体说明。然而应理解,本发明不期望限制于实施例中所阐述的特定细节。
除非另有指定,否则实施例以及本说明书的其余部分中提及固体组合物或浓度的所有份数和百分比均按重量计。然而,除非另有指定,实施例以及本说明书的其余部分中提及气体组合物的所有份数和百分比均按摩尔量或体积计。
此外,在说明书或权利要求书中叙述的数的任何范围,诸如表示特定性质集合、测量单位、条件、物理状态或百分比的范围,都期望以引用方式或以其他方式字面上在本文中明确并入落入这些范围中的任何数,包括按此叙述的任何范围内的数的任何子集。
实施例和比较例
制备一系列的四种催化剂且测试这些催化剂的氢加工活性。催化剂如表1中所概述由以各种数量处于氧化铝载体上的选自Mo、Ni、Co和P的金属构成(试验1至4),并且将催化剂与一系列参考催化剂(试验5至8)相比。如部分E所述地测试催化剂。给料如部分D所述。反应条件如部分E所示。表3示出每种催化剂的性质,并且表4示出每种催化剂的反应性能。每种反应(HDS、HDN和加氢脱金属化(HDM))的速率常数基于在360℃、380℃和400℃下的结果,并且假定第一级反应动力学。HDN选择性被计算为kHDN/kHDS。碱性氮的移除量由所测量的馈料和产物碱性氮含量来计算。金属耐受性被计算为HDS活性降至其初始活性的20%所花费的时间。试验1至4的催化剂为本发明的催化剂,而试验5至8的催化剂作为比较参考来提供。结果以相对于参考试验8的性能的百分比来呈现。试验4示出最高HDN选择性。
部分A:商业氧化铝粉末由本领域中熟知的技术由硫酸铝和铝酸钠制备。所得粉末具有以下性质:
部分B:将部分A中描述的氧化铝与硝酸和水混合90min形成湿式混合物。随后将该湿式混合物挤出成不对称四叶形挤出物(标称直径0.05”)。将挤出物在110℃下干燥过过夜,之后以8升每分钟的空气流量在530℃下煅烧90min。
部分C:如利用各种金属水溶液浸渍如部分B中所述制备的经煅烧氧化铝挤出物的八个不同样本,所述金属水溶液含有选自如表3所示的Mo、Ni、Co和P的金属。使用三氧化钼、碳酸镍和磷酸的水溶液制备水溶液。以两步浸渍挤出物。在第一步骤期间,将最终Mo、Ni和P的一半浸渍在载体上。将所得湿润挤出物在130℃下在静态床中干燥16小时。随后利用足以达到表3中试验1至8所列的重量%的剩余Mo、Ni和P来第二次浸渍干燥挤出物。将这些湿润挤出物在130℃下干燥3小时。
随后将来自每次试验的干燥挤出物以8升每分钟的空气流量在500℃下煅烧30min。每种成品催化剂通过表3中所示的试验编号指定,并且含有表中报告的钼、镍、钴和磷的重量百分比。这些催化剂用于处理给料。
部分D:试验1至8中处理的给料为大气压残油与溶剂脱沥青油的(50/50)混合物,其中各自具有以下如表2所示的性质。
部分E:固定床反应器在第一阶段中使用100cc的脱金属化催化剂、并且在第二阶段中使用关于试验1至8所描述的100cc的每种氢加工催化剂来设置。作为用于所有试验的脱金属化床催化剂(平均孔径为18nm且孔体积为0.87ml/g),使用含有2.7重量%钼的氧化铝载体来从给料移除金属的一部分。
使给料通过固定床反应器以接触新鲜脱金属化及氢加工催化剂用于在以下条件下的各试验:
氢/油比率:1000L/L
LHSV:0.44h-1
氢分压:14.4MPa
用于HDM和HDS两阶段的反应温度:360℃、380℃和400℃,每种温度下的反应时间分别为68小时、45小时和45小时。
对所处理油进行硫、镍、钒、以及氮含量的分析。活性结果示于表4中。使用在380℃反应温度下所处理给料中的碱性氮浓度来计算碱性氮移除。
如自表4的结果可见,除试验7的催化剂外,试验5至8的催化剂展现相对于试验1至4的催化剂较低的HDN选择性。试验4的催化剂展现最高HDN选择性。然而,试验7的催化剂展现相较于其他试验的极差金属耐受性。低的金属耐受性相对应于短的催化剂寿命。
替代实施方案
以下列举的段落说明本发明的各种实施方案和替代实施方案。
一种负载型催化剂,该负载型催化剂包含至少一种含金属催化剂组分和至少一种含磷催化剂组分,其中该含金属催化剂组分中的金属为选自元素周期表的第VIB族的至少一种、选自元素周期表的第VIII族的至少一种另一金属,并且其中此类催化剂组分承载于多孔载体上,所述催化剂的特征在于具有:
(a)小于0.60∶1的第VIII族金属组分与磷组分的摩尔比;
(b)小于0.45∶1的第VIII族金属组分与第VIB族金属组分的摩尔比;
(c)大于0.23∶1的磷组分与第VIB族金属组分的摩尔比;以及
(d)大于且小于的中值孔径。
根据段落【0084】的实施方案所述的催化剂,其中:
(a)该第VIII族金属组分与磷组分的摩尔比为约0.05∶1至约0.59∶1;
(b)该第VIII族金属组分与第VIB族金属组分的摩尔比为约0.05至约0.44∶1;
(c)该磷组分与第VIB族金属组分的摩尔比为约0.24∶1至约0.95∶1;
(d)该中值孔径为约78至约;并且
(e)该载体包含氧化铝。
根据段落【0085】的实施方案所述的催化剂,其中:
(a)该第VIII族金属选自钴、镍以及它们的混合物;并且
(b)该第VIB族金属选自铬、钨和钼以及它们的混合物。
根据段落【0084】的实施方案所述的催化剂,其中该催化剂的表面积为约150至约350m2/g,并且该载体的总孔体积为约0.5至约1.1cc/g。
一种用于制备催化剂的方法,该催化剂在给料的氢加工期间具有高HDN选择性,该方法包括:用水溶液浸渍多孔载体,所述水溶液含有至少一种含金属催化剂组分和至少一种含磷催化剂组分,其中该含金属催化剂组分中的金属为选自元素周期表的第VIB族的至少一种,该含金属催化剂组分中的至少一种另一金属选自元素周期表的第VIII族,所述组分可热分解成金属氧化物;以及此后将所得经浸渍载体干燥并煅烧以提供负载型催化剂,所述负载型催化剂的特征在于具有:
(a)小于0.60的第VIII族金属组分与磷组分的摩尔比;
(b)小于0.45的第VIII族金属组分与第VIB族金属组分的摩尔比;
(c)大于0.23的磷组分与第VIB族金属组分的摩尔比;以及
(d)大于且小于的中值孔径。
根据段落【0088】的实施方案所述的方法,其中:
(a)该第VIII族金属组分与磷组分的摩尔比为约0.05∶1至约0.59∶1;
(b)该第VIII族金属组分与第VIB族金属组分的摩尔比为约0.05至约0.44∶1;
(c)该磷组分与第VIB族金属组分的摩尔比为约0.24∶1至约0.95∶1;
(d)该中值孔径为约78至约;并且
(e)该载体包含氧化铝。
根据段落【0089】的实施方案所述的方法,其中:
(a)该第VIII族金属选自钴、镍以及它们的混合物;并且
(b)该第VIB族金属选自铬、钨和钼以及它们的混合物。
根据段落【0084】的实施方案所述的催化剂,其中该催化剂的表面积为约150至约350m2/g,并且该载体的总孔体积为约0.5至约1.1cc/g。

Claims (9)

1.一种负载型催化剂,其包含至少一种含金属催化剂组分和至少一种含磷催化剂组分,其中所述含金属催化剂组分中的金属为选自元素周期表的第VIB族的至少一种、选自元素周期表的第VIII族的至少一种另一金属,并且其中所述催化剂组分承载于多孔载体上,所述催化剂的特征在于具有:
(a)小于0.60∶1的第VIII族金属组分与磷组分的摩尔比;
(b)小于0.45∶1的第VIII族金属组分与第VIB族金属组分的摩尔比;
(c)大于0.23∶1的磷组分与第VIB族金属组分的摩尔比;以及
(d)大于且小于的中值孔径。
2.根据权利要求1所述的催化剂,其中:
(a)所述第VIII族金属组分与磷组分的摩尔比为约0.05∶1至约0.59∶1;
(b)所述第VIII族金属组分与第VIB族金属组分的摩尔比为约0.05至约0.44∶1;
(c)所述磷组分与第VIB族金属组分的摩尔比为约0.24∶1至约0.95∶1;
(d)所述中值孔径为约78至约;并且
(e)所述载体包含氧化铝。
3.根据权利要求2所述的催化剂,其中:
(a)所述第VIII族金属选自钴、镍以及它们的混合物;并且
(b)所述第VIB族金属选自铬、钨和钼以及它们的混合物。
4.根据权利要求1所述的催化剂,其中所述催化剂的表面积为约150至约350m2/g,并且所述载体的总孔体积为约0.5至约1.1cc/g。
5.一种用于制备催化剂的方法,所述催化剂在给料的氢加工期间具有高加氢脱氮(HDN)选择性,所述方法包括:用含有至少一种含金属催化剂组分和至少一种含磷催化剂组分的水溶液浸渍多孔载体,其中所述含金属催化剂组分中的金属为选自元素周期表的第VIB族的至少一种,所述含金属催化剂组分中的至少一种另一金属选自元素周期表的第VIII族,所述组分可热分解成金属氧化物;以及此后将所得经浸渍的载体干燥并煅烧以提供负载型催化剂,所述负载型催化剂的特征在于具有:
(a)小于0.60的第VIII族金属组分与磷组分的摩尔比;
(b)小于0.45的第VIII族金属组分与第VIB族金属组分的摩尔比;
(c)大于0.23的磷组分与第VIB族金属组分的摩尔比;以及
(d)大于且小于的中值孔径。
6.根据权利要求5所述的方法,其中:
(a)所述第VIII族金属组分与磷组分的摩尔比为约0.05∶1至约0.59∶1;
(b)所述第VIII族金属组分与第VIB族金属组分的摩尔比为约0.05至约0.44∶1;
(c)所述磷组分与第VIB族金属组分的摩尔比为约0.24∶1至约0.95∶1;
(d)所述中值孔径为约78至约;并且
(e)所述载体包含氧化铝。
7.根据权利要求6所述的方法,其中:
(a)所述第VIII族金属选自钴、镍以及它们的混合物;并且
(b)所述第VIB族金属选自铬、钨和钼以及它们的混合物。
8.根据权利要求1所述的催化剂,其中所述催化剂的表面积为约150至约350m2/g,并且所述载体的总孔体积为约0.5至约1.1cc/g。
9.一种负载型催化剂,其包含至少一种含金属催化剂组分和至少一种含磷催化剂组分,其中所述含金属催化剂组分中的至少一种金属为选自铬、钨和钼的元素周期表第VIB族金属,并且所述含金属催化剂组分中的至少一种另一金属为选自钴和镍的元素周期表第VIII族金属,并且其中所述催化剂组分承载于多孔载体上,所述催化剂的特征在于具有:
(a)约0.05∶1至约0.59∶1的第VIII族金属组分与磷组分的摩尔比;
(b)约0.05至约0.44∶1的第VIII族金属组分与第VIB族金属组分的摩尔比;
(c)约0.24∶1至约0.95∶1的磷组分与第VIB族金属组分的摩尔比;
(d)约78至约的中值孔径;以及
(e)载体,所述载体包含氧化铝;并且
其中:
(1)所述催化剂的表面积为约150至约350m2/g;并且
(2)所述载体的总孔体积为约0.5至约1.1cc/g。
CN201680044475.8A 2015-05-29 2016-05-13 高加氢脱氮选择性的加氢处理催化剂 Active CN107921413B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562167995P 2015-05-29 2015-05-29
US62/167995 2015-05-29
PCT/US2016/032474 WO2016195973A1 (en) 2015-05-29 2016-05-13 High hdn selectivity hydrotreating catalyst

Publications (2)

Publication Number Publication Date
CN107921413A true CN107921413A (zh) 2018-04-17
CN107921413B CN107921413B (zh) 2021-07-20

Family

ID=57441542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680044475.8A Active CN107921413B (zh) 2015-05-29 2016-05-13 高加氢脱氮选择性的加氢处理催化剂

Country Status (8)

Country Link
US (1) US10518251B2 (zh)
EP (1) EP3302790A4 (zh)
JP (2) JP6842428B2 (zh)
KR (1) KR102542845B1 (zh)
CN (1) CN107921413B (zh)
CA (1) CA2987590C (zh)
TW (1) TWI599401B (zh)
WO (1) WO2016195973A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118019584A (zh) * 2021-08-13 2024-05-10 雪佛龙美国公司 对烃原料进行加氢处理的层状催化剂反应器系统和方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542845B1 (ko) * 2015-05-29 2023-06-12 어드벤스드 리파이닝 테크놀로지즈 엘엘씨 고 수소화탈질소 선택도 수소처리 촉매
US10603657B2 (en) 2016-04-11 2020-03-31 Saudi Arabian Oil Company Nano-sized zeolite supported catalysts and methods for their production
US11084992B2 (en) * 2016-06-02 2021-08-10 Saudi Arabian Oil Company Systems and methods for upgrading heavy oils
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US12071592B2 (en) 2017-02-12 2024-08-27 Magēmā Technology LLC Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil
US20180230389A1 (en) 2017-02-12 2018-08-16 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US12025435B2 (en) 2017-02-12 2024-07-02 Magēmã Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US10689587B2 (en) 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
JP2020527638A (ja) 2017-07-17 2020-09-10 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company 油アップグレードに続く蒸気分解により重質油を処理するためのシステムおよび方法
EP3746219A4 (en) * 2018-01-31 2021-10-27 Advanced Refining Technologies, LLC WATER TREATMENT CATALYST FOR METALS AND SULFUR REDUCTION IN HEAVY LOADS
CN113042021B (zh) * 2019-12-27 2023-05-26 中国石油化工股份有限公司 一种沸腾床加氢催化剂及其制备方法
WO2024184899A1 (en) 2023-03-07 2024-09-12 Hindustan Petroleum Corporation Limited Catalyst for residue hydrocracking and preparation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043429A1 (en) * 1998-02-24 1999-09-02 Phillips Petroleum Company A catalyst comprising aluminum borate and zirconium borate and use thereof
CN1074687C (zh) * 1993-09-30 2001-11-14 环球油品公司 加氢催化剂及其应用
CN101279279A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 用于选择性加氢的大孔容镍催化剂
CN101330972A (zh) * 2005-12-14 2008-12-24 先进炼制技术有限公司 制备加氢处理催化剂的方法
CN101890383A (zh) * 2009-05-19 2010-11-24 中国石油化工股份有限公司 一种加氢脱氮催化剂及其应用
CN103801314A (zh) * 2012-11-08 2014-05-21 中国石油化工股份有限公司 一种加氢处理催化剂、其制造方法及其应用
CN104053500A (zh) * 2011-09-01 2014-09-17 先进炼制技术有限公司 催化剂载体和由其制备的催化剂

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544452A (en) * 1968-07-08 1970-12-01 Chevron Res Fluorine and metal phosphate-containing catalysts and preparation and use thereof
US4154812A (en) 1977-03-25 1979-05-15 W. R. Grace & Co. Process for preparing alumina
US4879265A (en) * 1982-08-19 1989-11-07 Union Oil Company Of California Hydroprocessing catalyst and phosphorous and citric acid containing impregnating solution
JPH0661464B2 (ja) 1986-02-26 1994-08-17 住友金属鉱山株式会社 重質炭化水素油の水素化脱硫脱窒素用触媒
US5827421A (en) 1992-04-20 1998-10-27 Texaco Inc Hydroconversion process employing catalyst with specified pore size distribution and no added silica
JP2900771B2 (ja) 1992-11-18 1999-06-02 住友金属鉱山株式会社 炭化水素油の水素化処理触媒の製造方法
JP3445507B2 (ja) * 1998-06-24 2003-09-08 コスモ石油株式会社 軽油の水素化処理触媒及び軽油の水素化処理方法
JP3545943B2 (ja) 1998-07-28 2004-07-21 株式会社ジャパンエナジー 水素化精製触媒
DK1145763T3 (da) 1999-10-27 2012-10-08 Idemitsu Kosan Co Hydrogeneringskatalysator til carbonhydridolie, bærestof for denne samt fremgangsmåde til hydrogenering af carbonhydridolie
US6403526B1 (en) 1999-12-21 2002-06-11 W. R. Grace & Co.-Conn. Alumina trihydrate derived high pore volume, high surface area aluminum oxide composites and methods of their preparation and use
JP4643805B2 (ja) * 2000-07-28 2011-03-02 日本ケッチェン株式会社 重質炭化水素油の水素化処理触媒および水素化処理方法
JP4468693B2 (ja) * 2001-06-27 2010-05-26 株式会社ジャパンエナジー 水素化精製触媒の製造方法
US7265075B2 (en) * 2001-07-10 2007-09-04 Japan Energy Corporation Hydro-refining catalyst, carrier for use therein and method for production thereof
JP4817659B2 (ja) * 2002-08-30 2011-11-16 Jx日鉱日石エネルギー株式会社 水素化精製触媒の製造方法
US7390766B1 (en) 2003-11-20 2008-06-24 Klein Darryl P Hydroconversion catalysts and methods of making and using same
AU2010238811B2 (en) 2009-04-21 2015-01-29 Albemarle Europe Sprl Hydrotreating catalyst containing phosphorus and boron
SG178430A1 (en) * 2009-08-24 2012-04-27 Albemarle Europe Sprl Solutions and catalysts comprising group vi metal, group viii metal, phosphorous and an additive
EP2603317A4 (en) 2010-08-13 2014-08-06 Shell Oil Co HYDROCRACKING CATALYST DEVELOPED USING WASTE CATALYST FINE AND USE THEREOF
WO2013095856A1 (en) * 2011-12-22 2013-06-27 Advanced Refining Technologies Llc Silica containing alumina supports, catalysts made therefrom and processes using the same
TWI617354B (zh) * 2012-06-20 2018-03-11 先進精鍊科技有限公司 改良之含氧化鈦之殘餘氫化處理觸媒
KR102542845B1 (ko) * 2015-05-29 2023-06-12 어드벤스드 리파이닝 테크놀로지즈 엘엘씨 고 수소화탈질소 선택도 수소처리 촉매

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074687C (zh) * 1993-09-30 2001-11-14 环球油品公司 加氢催化剂及其应用
WO1999043429A1 (en) * 1998-02-24 1999-09-02 Phillips Petroleum Company A catalyst comprising aluminum borate and zirconium borate and use thereof
CN101330972A (zh) * 2005-12-14 2008-12-24 先进炼制技术有限公司 制备加氢处理催化剂的方法
CN101279279A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 用于选择性加氢的大孔容镍催化剂
CN101890383A (zh) * 2009-05-19 2010-11-24 中国石油化工股份有限公司 一种加氢脱氮催化剂及其应用
CN104053500A (zh) * 2011-09-01 2014-09-17 先进炼制技术有限公司 催化剂载体和由其制备的催化剂
CN103801314A (zh) * 2012-11-08 2014-05-21 中国石油化工股份有限公司 一种加氢处理催化剂、其制造方法及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118019584A (zh) * 2021-08-13 2024-05-10 雪佛龙美国公司 对烃原料进行加氢处理的层状催化剂反应器系统和方法

Also Published As

Publication number Publication date
US20180147567A1 (en) 2018-05-31
JP2018521837A (ja) 2018-08-09
JP6842428B2 (ja) 2021-03-17
KR102542845B1 (ko) 2023-06-12
CN107921413B (zh) 2021-07-20
EP3302790A1 (en) 2018-04-11
KR20180014008A (ko) 2018-02-07
WO2016195973A1 (en) 2016-12-08
JP2021087953A (ja) 2021-06-10
TW201701949A (zh) 2017-01-16
US10518251B2 (en) 2019-12-31
EP3302790A4 (en) 2019-01-16
CA2987590A1 (en) 2016-12-08
CA2987590C (en) 2021-01-05
TWI599401B (zh) 2017-09-21

Similar Documents

Publication Publication Date Title
CN107921413A (zh) 高加氢脱氮选择性的加氢处理催化剂
JP4766749B2 (ja) バルク第viii族/第vib族触媒を用いた水素処理
CN104673373B (zh) 采用催化剂串联的减压馏分油加氢处理法
CN104053500A (zh) 催化剂载体和由其制备的催化剂
CN101822994A (zh) 加氢脱金属和加氢脱硫催化剂,以及在级联过程中的单个配制剂中的使用
CN109196077A (zh) 升级重油的系统和方法
CA2652227C (en) Improved hydrocracker post-treat catalyst for production of low sulfur fuels
KR101643547B1 (ko) 탄화수소유의 탈랍 방법 및 윤활유용 기유의 제조 방법
SA520411072B1 (ar) نظم وطرق لمعالجة أنواع نفط ثقيلة بواسطة رفع درجة نفط يعقبها تقطير
JP4576334B2 (ja) 軽油留分の水素化処理方法
JP5537222B2 (ja) 水素化har油の製造方法
JP4444690B2 (ja) 水素化処理触媒前駆体およびその製造方法並びに精製炭化水素油の製造方法
Egorova Study of aspects of deep hydrodesulfurization by means of model reactions
JP2023501180A (ja) 脱油アスファルトを水素化処理するための方法およびシステム
JP3978064B2 (ja) 重質炭化水素油の2段階水素化処理方法
Karim et al. Effect of operating conditions on hydrodesulfurization of vacuum gas oil
KR102327495B1 (ko) 고활성 수소화처리 촉매
RU2563252C1 (ru) Способ получения катализаторов деметаллизации нефтяных фракций
Halim et al. Effect of Operating Cconditions on Hydrodesulfurization of Vacuum Gas Oil
CN114433214A (zh) 一种复合载体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant