CN107910201B - 一种层状复合材料的制备方法 - Google Patents

一种层状复合材料的制备方法 Download PDF

Info

Publication number
CN107910201B
CN107910201B CN201710999877.XA CN201710999877A CN107910201B CN 107910201 B CN107910201 B CN 107910201B CN 201710999877 A CN201710999877 A CN 201710999877A CN 107910201 B CN107910201 B CN 107910201B
Authority
CN
China
Prior art keywords
quantum dot
graphene quantum
solution
laminar composite
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710999877.XA
Other languages
English (en)
Other versions
CN107910201A (zh
Inventor
张娜
房永征
丁艳花
甘传先
陆沁怡
沈姗姗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201710999877.XA priority Critical patent/CN107910201B/zh
Publication of CN107910201A publication Critical patent/CN107910201A/zh
Application granted granted Critical
Publication of CN107910201B publication Critical patent/CN107910201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种层状复合材料的制备方法,首先利用水热法制备石墨烯量子点;然后按体积比例称取前驱体溶液:硝酸钴溶液、石墨烯量子点溶液、去离子水,混合均匀,并将所得液转入反应釜中,在160~200℃烘箱中反应12~24 h,抽滤、洗涤、干燥即可得到石墨烯量子点/CoCo2O4层状材料。本发明方法简单,成本低,生产周期短,且获得的层状复合材料具有大的比表面积,高的化学稳定性,良好的电化学性能,最高比电容可达400F/g,循环1000次后,比电容仍然保持原来的93%,在超级电容器、离子电池的电极材料和锂‑空气电池的电催化剂方面具有潜在的应用价值。

Description

一种层状复合材料的制备方法
技术领域
本发明属于材料学领域,涉及一种层状复合材料,具体来说是一种石墨烯量子点/CoCo2O4层状复合材料的制备方法。
背景技术
随着科学技术的发展,环境和能源问题愈加突出,研究开发清洁和可再生的新型能源材料及其器件已经迫在眉睫。超级电容器作为一种高效、清洁、可持续的能源设备,受到广泛关注。超级电容器主要结构包括电极活性材料、隔膜、电解液和集流体等。其中电极材料是超级电容器的主要组成部分,直接决定超级电容器输出性能的高低。现在常用的电极材料分为碳质材料、金属氧化物、导电聚合物及复合材料四类。
石墨烯量子点( GQDs)是准零维的碳纳米材料,具有小尺寸组装优势、高比表面积、高导电性、高的化学稳定性、丰富的官能团、优良的溶剂分散性。这些优点使之成为优越的高活性物质,用于各种高功率密度、高能量密度和循环寿命长的微型电容器的电极材料具有很好的发展前景。然而,已报道结果表明石墨烯量子点应用于双电层电容器,面容量依然很低且量子点之间易团聚,这将限制石墨烯量子点在高容量超级电容器上的应用。其中在过渡金属氧化物中,钴的氧化物,如CoO、Co3O4、尖晶石型CoCo2O4,因具备成本低廉、资源相对丰富、理论比容量高等优点,近几年成为超级电容器领域电极材料的研究热点。虽然金属氧化物具有良好的电化学性能,但是存在电导率低的缺点。为了克服以上两类单一材料存在的不足,所以研究者将其与碳质材料进行复合,利用各组分之间的协同效应提高超级电容器的综合性能。
目前,在专利CN105632787A中公开了一种四氧化三钴/石墨烯纳米复合超级电容器电极材料的制备方法,所述复合材料电化学性能良好,比电容有所提高,但是制备工艺复杂,需要高温反应,消耗能源,不适合工业化生产。
在专利CN104393283A中公开了一种纳米晶状CoO-石墨烯复合材料的制备方法,所述复合材料,结构稳定,电化学性能较好,但是制备条件苛刻,周期较长,难以应用到实际中。然而,关于石墨烯量子点与层状氧化物CoCo2O4的复合材料还未见报道。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种层状复合材料的制备方法,所述的这种层状复合材料的制备方法要解决现有技术中制备层状复合材料的工艺复杂、生产周期长比电容较低的技术问题。
本发明提供了一种层状复合材料的制备方法,包括如下步骤:
1) 一个制备石墨烯量子点的步骤,先利用Hummers法制备出氧化石墨烯,再将氧化石墨烯超声分散于N,N-二甲基甲酰胺中,氧化石墨烯和N,N-二甲基甲酰胺的物料比为0.2~0.4g:20 mL,形成均匀混合液,然后将所得混合液转入反应釜,180~220℃保持6~10h,最后冷却,再采用0.22μm的微孔滤膜抽滤,得到滤液,在80~100℃下蒸干,即可得到石墨烯量子点;
2)称取前驱体溶液硝酸钴溶液、石墨烯量子点溶液和去离子水,所述的前驱体溶液硝酸钴溶液、石墨烯量子点溶液和去离子水的体积比为10~20mL:4 mL:1 mL,将前驱体溶液硝酸钴溶液、石墨烯量子点溶液和去离子水混合;然后搅拌均匀,转入水热釜中,在160~200 ℃烘箱中反应12~24 h,抽滤、洗涤、干燥即可得到石墨烯量子点/CoCo2O4层状复合材料。
进一步的,所述前驱体溶液硝酸钴溶液浓度为0.02 mol/L,所述的石墨烯量子点溶液浓度为0.1 g/L。
本发明先制备出石墨烯量子点,再利用简单的水热法即可合成石墨烯量子点/CoCo2O4层状复合材料。所述复合材料利用石墨烯量子点高的导电性、CoCo2O4片层状可增加电极的比表面积及电荷的传导速率,以及两者的协同效应三方面有效提高复合电极的比电容。
本发明利用简单的水热法,制备出石墨烯量子点/CoCo2O4层状复合材料。这种复合材料将典型的碳质材料和过渡金属氧化物材料耦合,石墨烯量子点具有大的比表面积,优异的导电性,可大大增加对活性物质的利用率;二维层状材料CoCo2O4具有大范围规整、稳定和顺畅的电荷传导路径,复合材料兼具两者优势,协同发挥电化学性能,从而有效增加电极的比容量和高倍率特性。
本发明可用于超级电容器和离子电池的电极材料,锂-空气电池的电催化剂。此类电极材料具有较好的电化学性能,电流阻抗小,循环稳定性高,最高比电容可达400 F/g,循环1000次后,比电容仍然保持原来的93%。
本发明利用水热法制备一种石墨烯量子点/CoCo2O4层状复合材料,即采用简单的合成技术制备具有优越性能的超级电容器电极材料。克服了两种单一电极材料在超级电容器应用方面上的不足,充分发挥碳材料以及过渡金属氧化物的协同作用,优势相互结合,缺陷相互减弱,极大地提高了材料的电化学性能。
本发明和已有技术相比,其技术进步是显著的。本发明的石墨烯量子点/CoCo2O4复合材料,利用水热法即可完成,操作性强,制备工艺简单可控,设备要求低,制备周期短,原料成本低廉,适合工业化生产。所得复合材料具有良好的循环性能和高比电容量,满足超级电容器电极材料的要求,是一种理想的超级电容器电极材料。在超级电容器、离子电池的电极材料和锂-空气电池的电催化剂方面具有潜在的应用价值。
附图说明
图1是实施例1所得石墨烯量子点/CoCo2O4层状复合材料的XRD图。
具体实施方式
实施例1
1)一个制备石墨烯量子点的步骤,先利用Hummers法制备出氧化石墨烯(GO),再将0.27g GO超声分散于20 mL N,N-二甲基甲酰胺中,形成均匀混合液,然后将所得混合液转入30 mL反应釜,200℃保持8 h,最后冷却、抽滤(0.22μm微孔滤膜),得到滤液,在80℃下蒸干,即可得到石墨烯量子点;
2)一个制备石墨烯量子点/CoCo2O4层状复合材料的步骤,
按照前驱体溶液硝酸钴溶液:石墨烯量子点溶液:去离子水的体积比为(10~20)mL:4 mL:1 mL,称取原料;然后搅拌均匀,转入50 mL水热釜中,在160 ℃烘箱中反应12h,抽滤、洗涤、干燥即可得到石墨烯量子点/CoCo2O4层状材料;所述前驱体溶液硝酸钴溶液浓度为0.02 mol/L,所述的石墨烯量子点溶液浓度为0.1 g/L。
利用CHI660E型号电化学工作站测试样品的电化学性能。以恒电流充电−放电方法在0.5Ag-1电流密度下,测得比电容为400 Fg-1
实施例2
1)一个制备石墨烯量子点的步骤,先利用Hummers法制备出氧化石墨烯(GO),再将0.27g GO超声分散于20 mL N,N-二甲基甲酰胺中,形成均匀混合液,然后将所得混合液转入30 mL反应釜,200℃保持8 h,最后冷却、抽滤(0.22μm微孔滤膜),得到滤液,在80℃下蒸干,即可得到石墨烯量子点;
2) 一个制备石墨烯量子点/CoCo2O4层状复合材料的步骤,
按照前驱体溶液硝酸钴溶液:石墨烯量子点溶液:去离子水的体积比为(10~20)mL:4 mL:1 mL,称取原料;然后搅拌均匀,转入50 mL水热釜中,在180 ℃烘箱中反应12 h,抽滤、洗涤、干燥即可得到石墨烯量子点/CoCo2O4层状材料;所述前驱体溶液硝酸钴溶液浓度为0.02 mol/L,所述的石墨烯量子点溶液浓度为0.1 g/L。
利用CHI660E型号电化学工作站测试样品的电化学性能。以恒电流充电−放电方法在0.5Ag-1电流密度下,测得比电容为380Fg-1
实施例3
1) 一个制备石墨烯量子点的步骤,先利用Hummers法制备出氧化石墨烯(GO),再将0.27g GO超声分散于20 mL N,N-二甲基甲酰胺中,形成均匀混合液,然后将所得混合液转入30 mL反应釜,200℃保持8 h,最后冷却、抽滤(0.22μm微孔滤膜),得到滤液,在80℃下蒸干,即可得到石墨烯量子点;
2)一个制备石墨烯量子点/CoCo2O4层状复合材料的步骤,
按照前驱体溶液硝酸钴溶液:石墨烯量子点溶液:去离子水的体积比为(10~20)mL:4 mL:1 mL,称取原料;然后搅拌均匀,转入50 mL水热釜中,在200℃烘箱中反应12 h,抽滤、洗涤、干燥即可得到石墨烯量子点/CoCo2O4层状材料;所述前驱体溶液硝酸钴溶液浓度为0.02 mol/L,所述的石墨烯量子点溶液浓度为0.1 g/L。
利用CHI660E型号电化学工作站测试样品的电化学性能。以恒电流充电−放电方法在0.5Ag-1电流密度下,测得比电容为350Fg-1

Claims (2)

1.一种层状复合材料的制备方法,其特征在于包括如下步骤:
1)一个制备石墨烯量子点的步骤,先利用Hummers法制备出氧化石墨烯,再将氧化石墨烯超声分散于N,N-二甲基甲酰胺中,氧化石墨烯和N,N-二甲基甲酰胺的物料比为0.2~0.4g:20 mL,形成均匀混合液,然后将所得混合液转入反应釜,180~220℃保持6~10h,最后冷却,再采用0.22μm的微孔滤膜抽滤,得到滤液,在80~100℃下蒸干,即可得到石墨烯量子点;
2)称取前驱体溶液硝酸钴溶液、石墨烯量子点溶液和去离子水,所述的前驱体溶液硝酸钴溶液、石墨烯量子点溶液和去离子水的体积比为10~20mL:4 mL:1 mL,将前驱体溶液硝酸钴溶液、石墨烯量子点溶液和去离子水混合;然后搅拌均匀,转入水热釜中,在160~200℃烘箱中反应12~24 h,抽滤、洗涤、干燥即可得到石墨烯量子点/CoCo2O4层状复合材料。
2.根据权利要求1所述的一种层状复合材料的制备方法,其特征在于:所述前驱体溶液硝酸钴溶液浓度为0.02 mol/L,所述的石墨烯量子点溶液浓度为0.1 g/L。
CN201710999877.XA 2017-10-24 2017-10-24 一种层状复合材料的制备方法 Active CN107910201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710999877.XA CN107910201B (zh) 2017-10-24 2017-10-24 一种层状复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710999877.XA CN107910201B (zh) 2017-10-24 2017-10-24 一种层状复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107910201A CN107910201A (zh) 2018-04-13
CN107910201B true CN107910201B (zh) 2019-10-01

Family

ID=61840781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710999877.XA Active CN107910201B (zh) 2017-10-24 2017-10-24 一种层状复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107910201B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855035A (zh) * 2018-06-29 2018-11-23 江苏弗瑞仕环保科技有限公司 空气净化用光催化材料的制备方法
CN112812771B (zh) * 2020-12-25 2022-08-09 北京师范大学 一种石墨烯量子点敏化铕铽共掺层状氢氧化物的制备方法及由其制备的产品
CN113118454A (zh) * 2021-03-11 2021-07-16 上海应用技术大学 一种光伏电池用石墨烯量子点负载的超细银粉的制备方法
TWI811822B (zh) * 2021-10-26 2023-08-11 國立高雄科技大學 金屬空氣電池用陰極觸媒及其製法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660270A (zh) * 2012-05-03 2012-09-12 吉林大学 溶剂热法制备荧光石墨烯量子点的方法
CN104109534A (zh) * 2013-04-18 2014-10-22 国家纳米科学中心 一种氮掺杂石墨烯量子点双光子荧光探针的制备及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660270A (zh) * 2012-05-03 2012-09-12 吉林大学 溶剂热法制备荧光石墨烯量子点的方法
CN104109534A (zh) * 2013-04-18 2014-10-22 国家纳米科学中心 一种氮掺杂石墨烯量子点双光子荧光探针的制备及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Carbon Dots/NiCo2O4 Nanocomposites with Various Morphologies for High Performance Supercapacitors";Ji-Shi Wei,et al.;《small》;20160926;第12卷;第5927-5934页 *
"Conductive Co3O4/graphene (core/shell) quantum dots as electrode materials for electrochemical pseudocapacitor applications";Jaeho Shim,et al.;《Composites Part B》;20170731;第130卷;第230-235页 *

Also Published As

Publication number Publication date
CN107910201A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN107910201B (zh) 一种层状复合材料的制备方法
CN102468057B (zh) 由石墨烯和二氧化锰组成的复合电极材料的制备方法
CN104882298A (zh) 一种微波法制备NiCo2O4/石墨烯超级电容材料的方法
CN105895384B (zh) 一种石墨烯/超微四氧化三钴颗粒复合电极材料制备方法
CN105140046B (zh) 一种纳米γ-MnO2/石墨烯气凝胶复合材料的制备方法及其应用
CN106504906B (zh) 碳量子点/氢氧化镍电化学储能材料、合成方法及应用
CN108364793A (zh) CoNiFe-LDH/多层石墨烯高性能复合储能材料及其制备方法
CN105938761B (zh) 用作超级电容器电极材料的镁钴氧化物/石墨烯复合材料及其制备方法
CN106910647B (zh) 石墨烯气凝胶复合钴酸镍纳米线阵列材料及其制备方法
CN105810456B (zh) 一种活化石墨烯/针状氢氧化镍纳米复合材料及其制备方法
CN110156081A (zh) 一种锂离子电池负极用多孔薄片状TiNb2O7纳米晶的制备方法
CN105449230B (zh) 一种LaCoO3/N-rGO复合物及其制备和应用方法
CN110233256A (zh) 一种复合纳米材料及其制备方法
CN108520827A (zh) 碳纤维/NiCo2O4/石墨烯复合材料的制备方法
CN108899218B (zh) 一种超级电容器电极复合材料及其制备方法
CN107937967A (zh) 多孔道的过渡金属磷化物碳纳米管复合材料及其基于小分子调控的制备方法与应用
CN106887572A (zh) 一种锑‑碳复合材料及其制备方法和应用
CN109904007A (zh) 一种海绵状氮硫共掺杂多孔碳电极材料的制备方法
CN106531457B (zh) 一种超级电容器用NiCo2O4/碳纳米管复合电极材料
CN110078130B (zh) 一种中空结构铁基化合物的制备方法及其作为超级电容器负极材料的应用
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
CN105869907A (zh) 一种碳氮共掺杂NiFe2O4/Ni纳米立方结构复合材料的制备方法
CN110492076A (zh) 一种二维多孔六边形金属氧化物纳米片复合材料的制备方法及其在钾离子电池中的应用
CN105788881B (zh) 一种氮掺杂竹节状碳纳米管的制备方法
CN106683896A (zh) 一种核壳结构钼酸镍/二氧化锰复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180413

Assignee: SHANGHAI SUPERHIGH ENVIRONMENTAL PROTECTION TECHNOLOGY CO.,LTD.

Assignor: SHANGHAI INSTITUTE OF TECHNOLOGY

Contract record no.: X2022310000094

Denomination of invention: A kind of preparation method of layered composite material

Granted publication date: 20191001

License type: Common License

Record date: 20220829