CN107904616A - 一种表面还原态的高效钒钼酸铋光阳极的制备方法 - Google Patents

一种表面还原态的高效钒钼酸铋光阳极的制备方法 Download PDF

Info

Publication number
CN107904616A
CN107904616A CN201711148607.4A CN201711148607A CN107904616A CN 107904616 A CN107904616 A CN 107904616A CN 201711148607 A CN201711148607 A CN 201711148607A CN 107904616 A CN107904616 A CN 107904616A
Authority
CN
China
Prior art keywords
solution
preparation
vanadium
reduction state
bismuth molybdate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711148607.4A
Other languages
English (en)
Inventor
王洪伟
李卫兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201711148607.4A priority Critical patent/CN107904616A/zh
Publication of CN107904616A publication Critical patent/CN107904616A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种表面还原态的高效钒钼酸铋光阳极的制备方法,包括以下步骤:S1:准备原料和设备:Bi(NO3)3·5H2O、KI溶液、稀HNO3、p‑对苯醌、无水乙醇、乙酰丙酮钒、二甲基亚砜、乙酰丙酮钼溶液、马弗炉和NaOH溶液;S2:取S1中1‑3mmol的Bi(NO3)3·5H2O于50mL浓度为1‑3mol/L的KI溶液中搅拌混合,待溶解后在得到的溶液中加入稀HNO3调节PH至酸性;S3:取S1中8‑10mmol的p‑对苯醌于20mL的无水乙醇中超声溶解,将得到的溶液与S2中制得的溶液混合,搅拌至混合均匀。本发明极大程度上提高BiMoVO光阳极的光电化学裂解水产氢气性能,降低成本。

Description

一种表面还原态的高效钒钼酸铋光阳极的制备方法
技术领域
本发明涉及光电化学裂解水产氢技术领域,尤其涉及一种表面还原态的高效钒钼酸铋光阳极的制备方法。
背景技术
能源问题和环境问题已经成为全世界共同关心的问题,它们是威胁人类生存与发展的两大关键性因素。随着之问题的加剧,开发利用可持续的清洁能源成为当下势在必行的趋势。利用太阳能的光电化学裂解水制氢技术作为一种清洁、无污染的新能源转换技术,被广泛认为具有解决能源短缺和环境污染问题的潜力。
1972年,Fujishima首次用TiO2薄膜为电极,利用光能分解水获得了氢气,自此,光电化学裂解水产氢技术引起了越来越广泛的关注。然而,TiO2具有较大的禁带宽度(锐钛矿3.2eV,金红石3.0eV),太阳光中仅有4%-5%的紫外线能被吸收利用,再加上电子与空穴的复合速率较快,以及极易发生的氢和氧逆反应,致使太阳能产氢的效率仅约1%,从而大大限制了TiO2的应用。因此,如何拓宽半导体材料的光吸收范围以及寻找禁带宽度相对较窄的半导体材料成为光电化学的重要任务。
除了以上可见光响应的半导体材料外,近年来BiVO4因具有较窄的禁带宽度(2.4eV)以及合适的导带电位和价带电位而得到广泛关注。目前可以通过金属掺杂、表面改性调控以及合成异质结体系等方法,进一步提高BiVO4的光电化学性能。这些方法虽然取得了良好的效果,但是这些方法也存在一些问题,比如需要贵金属的添加,或者复杂的工艺的处理,从而提高了其制备价格。
发明内容
基于背景技术存在的技术问题,本发明提出了一种表面还原态的高效钒钼酸铋光阳极的制备方法。
本发明提出的一种表面还原态的高效钒钼酸铋光阳极的制备方法,包括以下步骤:
S1:准备原料和设备:Bi(NO3)3·5H2O、KI溶液、稀HNO3、p-对苯醌、无水乙醇、乙酰丙酮钒、二甲基亚砜、乙酰丙酮钼溶液、马弗炉和NaOH溶液;
S2:取S1中1-3mmol的Bi(NO3)3·5H2O于50mL浓度为1-3mol/L的KI溶液中搅拌混合,待充分溶解后在得到的溶液中加入稀HNO3调节PH至酸性;
S3:取S1中8-10mmol的p-对苯醌于20mL的无水乙醇中超声溶解,将得到的溶液与S2中制得的溶液混合,搅拌至混合均匀;
S4:将S3中混合得到的溶液采用三电极体系、多电位阶跃法进行电沉积,沉积阶跃电位为-0.1V,沉积时间为3-5min,电沉积得到前驱体BiOI;
S5:取S1中1mmol的乙酰丙酮钒溶于5mL的二甲基亚砜中,超声溶解;
S6:0.15-0.2mL乙酰丙酮钒和乙酰丙酮钼溶液涂覆在BiOI表面,马弗炉内350-650℃退火2-5小时;
S7:采用NaOH溶液中清洗去除多余的V2O5,去离子水冲洗后,室温下晾干,得到纯的BiVO4样品;
S8:将0.1-0.3mL的乙酰丙酮钒和3%乙酰丙酮钼溶液涂覆在S7中制得的样品中,在马弗炉内350-650℃退火2-5h,最后去离子水冲洗后,室温下晾干,得到掺Mo样品;
S9:将S8中得到的样品在三电极体系中,通过恒电位还原法还原1小时,得到还原态的BiMoVO光阳极。
优选地,所述S2中,取S1中2mmol的Bi(NO3)3·5H2O于50mL浓度为2mol/L的KI溶液中搅拌混合,待充分溶解后在得到的溶液中加入稀HNO3调节PH至酸性。
优选地,所述S3中,取S1中9mmol的p-对苯醌于20mL的无水乙醇中超声溶解,将得到的溶液与S2中制得的溶液混合,搅拌至混合均匀。
优选地,所述S4中,将S3中混合得到的溶液采用三电极体系、多电位阶跃法进行电沉积,沉积阶跃电位为-0.1V,沉积时间为4min,电沉积得到前驱体BiOI。
优选地,所述S4中,电沉积的工作电极为FTO,Ag/AgCl为参比电极,Pt为对电极。
优选地,所述S6中,0.18mL乙酰丙酮钒和乙酰丙酮钼溶液涂覆在BiOI表面,马弗炉内500℃退火4小时。
优选地,所述S8中,将0.2mL的乙酰丙酮钒和3%乙酰丙酮钼溶液涂覆在S7中制得的样品中,在马弗炉内500℃退火4h,最后去离子水冲洗后,室温下晾干,得到掺Mo样品。
优选地,所述S9中,恒电位还原法的电压为-0.5V至-1.5V。
本发明中,所述一种表面还原态的高效钒钼酸铋光阳极的制备方法首先制备了具有多孔结构BiMoVO光阳极薄膜,再通过简单的电化学还原法,对BiMoVO光阳极的表面进行处理,极大程度上提高了BiMoVO光阳极的光电化学裂解水产氢气性能,具有较强的实用价值,工艺处理简单,有效降低制备成本。本发明设计合理,制备工艺简单,极大程度上提高了BiMoVO光阳极的光电化学裂解水产氢气性能,降低制备成本,实用性强。
附图说明
图1为本发明提出的一种表面还原态的高效钒钼酸铋光阳极的制备方法的制备样品XRD图谱;
图2为本发明提出的一种表面还原态的高效钒钼酸铋光阳极的制备方法的BiMoVO和还原后BiMoVO光阳极的扫描电镜图;
图3为本发明提出的一种表面还原态的高效钒钼酸铋光阳极的制备方法的制备样品紫外可见漫反射吸收光谱图;
图4为本发明提出的一种表面还原态的高效钒钼酸铋光阳极的制备方法的BiMoVO和还原后的BiMoVO光电极的光致发光光谱;
图5为本发明提出的一种表面还原态的高效钒钼酸铋光阳极的制备方法的BiMoVO和还原后的BiMoVO光电极样品的光致I-V曲线;
图6为本发明提出的一种表面还原态的高效钒钼酸铋光阳极的制备方法的BiMoVO和还原后的BiMoVO光阳极的性能稳定性示意图。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
实施例
参照图1-6,一种表面还原态的高效钒钼酸铋光阳极的制备方法,包括以下步骤:
S1:准备原料和设备:Bi(NO3)3·5H2O、KI溶液、稀HNO3、p-对苯醌、无水乙醇、乙酰丙酮钒、二甲基亚砜、乙酰丙酮钼溶液、马弗炉和NaOH溶液;
S2:取S1中2mmol的Bi(NO3)3·5H2O于50mL浓度为2mol/L的KI溶液中搅拌混合,待充分溶解后在得到的溶液中加入稀HNO3调节PH至酸性;
S3:取S1中9mmol的p-对苯醌于20mL的无水乙醇中超声溶解,将得到的溶液与S2中制得的溶液混合,搅拌至混合均匀;
S4:将S3中混合得到的溶液采用三电极体系、多电位阶跃法进行电沉积,沉积阶跃电位为-0.1V,沉积时间为4min,电沉积得到前驱体BiOI;
S5:取S1中1mmol的乙酰丙酮钒溶于5mL的二甲基亚砜中,超声溶解;
S6:0.18mL乙酰丙酮钒和乙酰丙酮钼溶液涂覆在BiOI表面,马弗炉内500℃退火4小时;
S7:采用NaOH溶液中清洗去除多余的V2O5,去离子水冲洗后,室温下晾干,得到纯的BiVO4样品;
S8:将0.2mL的乙酰丙酮钒和3%乙酰丙酮钼溶液涂覆在S7中制得的样品中,在马弗炉内500℃退火4h,最后去离子水冲洗后,室温下晾干,得到掺Mo样品;
S9:将S8中得到的样品在三电极体系中,通过恒电位还原法还原1小时,得到还原态的BiMoVO光阳极。
本实施例中,通过CHI660D电化学工作站进行光电化学测试,采用三电极体系,参比电极为Ag/AgCl电极,对电极为Pt电极,工作电极为制备的系列光电极,电解液为0.1mol/L的Na2SO4溶液。入射光源为300W Xe灯,光强为100mW/cm2。光生电流密度随时间的变化曲线测试偏压为1.0V,开光和闭光循环3次。稳定性的测试偏压为1.0V,先闭光100s然后开光1800s。交流阻抗谱曲线以及莫特肖特基曲线分别在暗态下进行,交流阻抗谱测试频率范围为10KHz~0.1Hz,在系列光电极的开路电压下测试。莫特肖特基曲线电势扫描范围为-0.6V~1.0V,扫描速度为5mV/s,频率为1000Hz,振幅0.005V。
图1中F表示导电玻璃的衍射峰,B表示BiMoVO的衍射峰。曲线a是BiMoVO样品XRD曲线,与标准谱图对照可知,所制备样品衍射峰全部为单斜晶型的BiMoVO。图1中b为表面还原后的BiMoVO样品的XRD图谱,电化学还原后的系列衍射峰未发生偏移,表明电化学还原法不会改变BiMoVO的晶体结构。
图2中可以看出BiMoVO和还原后BiMoVO光阳极的表面并未发生明显的形貌变化,均以不规则纳米棒状结构组装成多孔薄膜结构。
图3中,电化学还原后BiMoVO光阳极对光子的吸收能力较BiMoVO光阳极具有明显的提高,说明电化学还原法有利于BiMoVO对电子的捕获。还原前后吸收带边均在520nm附件,并没有发现明显的变化,说明电化学还原处理并未对BiVO4的能带结构造成影响。
通过光致发光光谱测试了的BiMoVO和还原后的BiMoVO光电极荧光峰强度变化。从图4中可以看出,两种样品在400-600nm处都有发光峰,而与BiMoVO相比,电化学还原处理后的BiMoVO光阳极在400-600nm处的发光强度明显降低,说明电化学还原预处理后的BiMoVO的电子迁移能力增强,光生电子的寿命增加,光生电子-空穴的分离效率增强,即光生电子与空穴复合的几率减小,这可能导致光生载流子的密度增加。
图5中,光电流从-0.25V左右开始产生,并且光生电流密度随电压的增大而缓慢增大。而还原后的BiMoVO光阳极的光生电流密度在电压大于0.25V时迅速增加,并且还原的BiMoVO的光生电流密度在相同偏压下都大于为还原的BiMoVO光阳极,在偏压为1.5V时达到4.3mAcm-2,在同等测试条件下是为还原的BiMoVO光阳极的4.3倍。
还原后的BiMoVO光阳极的光生电流有很大提高,但是能否稳定也成为比较关心的问题。因此对其光电化学稳定性进行了评价,相关结果如图6所示。前100s为避光,100s后开光。测试是偏压为1V在开光稳定100s后BiMoVO的光生电流密度为0.78mA cm-2,1800s后光生电流密度为0.66mA cm-2,光生电流密度下降了0.16mA cm-2。对于电化学还原后的BiMoVO的光阳极,可以发现在开光稳定100s后,光生电流密度为3.0mA cm-2,在1800s时光生电流密度为2.6mA cm-2,对比可知,电化学还原不会大幅降低BiMoVO光阳极的光电化学裂解水稳定性。
本发明首先制备了Mo掺杂的BiVO4光阳极,之后通过简单的电化学还原法成功制得了还原太的纯的Mo掺杂的BiVO4光阳极。该还原的BiMoVO光阳极的光生电流密度为4.3是为还原的BiMoVO光阳极的4.3倍,并且具有较高的光电化学稳定性。因此电化学还原是一种具有应用潜力的提高钒酸铋光阳极性能的表面处理技术。提高的主要原因是电化学还原使得光生载流子在溶液与电极表面迁移转化的速度加快,减小了光生电子与空穴复合的机会。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,包括以下步骤:
S1:准备原料和设备:Bi(NO3)3·5H2O、KI溶液、稀HNO3、p-对苯醌、无水乙醇、乙酰丙酮钒、二甲基亚砜、乙酰丙酮钼溶液、马弗炉和NaOH溶液;
S2:取S1中1-3mmol的Bi(NO3)3·5H2O于50mL浓度为1-3mol/L的KI溶液中搅拌混合,待充分溶解后在得到的溶液中加入稀HNO3调节PH至酸性;
S3:取S1中8-10mmol的p-对苯醌于20mL的无水乙醇中超声溶解,将得到的溶液与S2中制得的溶液混合,搅拌至混合均匀;
S4:将S3中混合得到的溶液采用三电极体系、多电位阶跃法进行电沉积,沉积阶跃电位为-0.1V,沉积时间为3-5min,电沉积得到前驱体BiOI;
S5:取S1中1mmol的乙酰丙酮钒溶于5mL的二甲基亚砜中,超声溶解;
S6:0.15-0.2mL乙酰丙酮钒和乙酰丙酮钼溶液涂覆在BiOI表面,马弗炉内350-650℃退火2-5小时;
S7:采用NaOH溶液中清洗去除多余的V2O5,去离子水冲洗后,室温下晾干,得到纯的BiVO4样品;
S8:将0.1-0.3mL的乙酰丙酮钒和3%乙酰丙酮钼溶液涂覆在S7中制得的样品中,在马弗炉内350-650℃退火2-5h,最后去离子水冲洗后,室温下晾干,得到掺Mo样品;
S9:将S8中得到的样品在三电极体系中,通过恒电位还原法还原1小时,得到还原态的BiMoVO光阳极。
2.根据权利要求1所述的一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,所述S2中,取S1中2mmol的Bi(NO3)3·5H2O于50mL浓度为2mol/L的KI溶液中搅拌混合,待充分溶解后在得到的溶液中加入稀HNO3调节PH至酸性。
3.根据权利要求1所述的一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,所述S3中,取S1中9mmol的p-对苯醌于20mL的无水乙醇中超声溶解,将得到的溶液与S2中制得的溶液混合,搅拌至混合均匀。
4.根据权利要求1所述的一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,所述S4中,将S3中混合得到的溶液采用三电极体系、多电位阶跃法进行电沉积,沉积阶跃电位为-0.1V,沉积时间为4min,电沉积得到前驱体BiOI。
5.根据权利要求1所述的一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,所述S4中,电沉积的工作电极为FTO,Ag/AgCl为参比电极,Pt为对电极。
6.根据权利要求1所述的一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,所述S6中,0.18mL乙酰丙酮钒和乙酰丙酮钼溶液涂覆在BiOI表面,马弗炉内500℃退火4小时。
7.根据权利要求1所述的一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,所述S8中,将0.2mL的乙酰丙酮钒和3%乙酰丙酮钼溶液涂覆在S7中制得的样品中,在马弗炉内500℃退火4h,最后去离子水冲洗后,室温下晾干,得到掺Mo样品。
8.根据权利要求1所述的一种表面还原态的高效钒钼酸铋光阳极的制备方法,其特征在于,所述S9中,恒电位还原法的电压为-0.5V至-1.5V。
CN201711148607.4A 2017-11-17 2017-11-17 一种表面还原态的高效钒钼酸铋光阳极的制备方法 Pending CN107904616A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711148607.4A CN107904616A (zh) 2017-11-17 2017-11-17 一种表面还原态的高效钒钼酸铋光阳极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711148607.4A CN107904616A (zh) 2017-11-17 2017-11-17 一种表面还原态的高效钒钼酸铋光阳极的制备方法

Publications (1)

Publication Number Publication Date
CN107904616A true CN107904616A (zh) 2018-04-13

Family

ID=61846228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711148607.4A Pending CN107904616A (zh) 2017-11-17 2017-11-17 一种表面还原态的高效钒钼酸铋光阳极的制备方法

Country Status (1)

Country Link
CN (1) CN107904616A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440130A (zh) * 2018-11-29 2019-03-08 山东大学 一种大尺寸的纳米多孔BiVO4光阳极及其制备方法与应用
CN110498487A (zh) * 2019-09-06 2019-11-26 西安建筑科技大学 一种十六烷基三甲基溴化铵改性钼酸铋光电极的制备方法、产品及其应用
CN110656364A (zh) * 2019-09-30 2020-01-07 清华大学 一种基于电沉积法制备大面积钒酸铋薄膜的方法
CN111155139A (zh) * 2018-11-07 2020-05-15 天津大学 含有BiVO4和双金属磷化物的电极及其在光电催化中的应用
WO2022062228A1 (zh) * 2020-09-22 2022-03-31 深圳先进技术研究院 一种构建z型异质结光阳极的方法及z型异质结光阳极
CN114797833A (zh) * 2022-04-11 2022-07-29 扬州大学 一种光触媒材料的制备方法及光触媒玻璃

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502839A (zh) * 2011-11-07 2012-06-20 河北联合大学 一种厚度均匀的片状钼酸铋纳米材料的制备方法
CN105803476A (zh) * 2016-03-15 2016-07-27 西南大学 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502839A (zh) * 2011-11-07 2012-06-20 河北联合大学 一种厚度均匀的片状钼酸铋纳米材料的制备方法
CN105803476A (zh) * 2016-03-15 2016-07-27 西南大学 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUYU BU ET AL.: "Optimization of the Photo‐Electrochemical Performance of Mo-Doped BiVO4 Photoanode by Controlling the Metal–Oxygen Bond State on (020) Facet", 《ADVANCED MATERIALS INTERFACES》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155139A (zh) * 2018-11-07 2020-05-15 天津大学 含有BiVO4和双金属磷化物的电极及其在光电催化中的应用
CN109440130A (zh) * 2018-11-29 2019-03-08 山东大学 一种大尺寸的纳米多孔BiVO4光阳极及其制备方法与应用
CN110498487A (zh) * 2019-09-06 2019-11-26 西安建筑科技大学 一种十六烷基三甲基溴化铵改性钼酸铋光电极的制备方法、产品及其应用
CN110656364A (zh) * 2019-09-30 2020-01-07 清华大学 一种基于电沉积法制备大面积钒酸铋薄膜的方法
WO2022062228A1 (zh) * 2020-09-22 2022-03-31 深圳先进技术研究院 一种构建z型异质结光阳极的方法及z型异质结光阳极
CN114797833A (zh) * 2022-04-11 2022-07-29 扬州大学 一种光触媒材料的制备方法及光触媒玻璃
CN114797833B (zh) * 2022-04-11 2023-10-10 扬州大学 一种光触媒材料的制备方法及光触媒玻璃

Similar Documents

Publication Publication Date Title
CN107904616A (zh) 一种表面还原态的高效钒钼酸铋光阳极的制备方法
Xia et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell
CN107324441B (zh) 镍铁羟基氧化物修饰钒酸铋光电极及其制备方法、应用
CN106498372B (zh) 光沉积制备Bi/BiVO4复合光电阳极材料的方法
Woodhouse et al. Combinatorial discovery and optimization of a complex oxide with water photoelectrolysis activity
CN108842169B (zh) 一种负载金属氧化物的钒酸铋复合材料及其制备和应用
Wysmulek et al. A SrTiO3-TiO2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production
CN103871750B (zh) 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN109626422A (zh) 一种TiO2/g-C3N4光阳极纳米复合材料的制备方法及其应用
CN107994120B (zh) Sn2Nb2O7光阳极材料及Sn2Nb2O7光电极薄膜
CN108579765A (zh) 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
CN102509625A (zh) 一种原位制备硅钨共掺杂TiO2纳米管薄膜光阳极的方法
CN109092319A (zh) 一种WO3/BiVO4/FeOOH三元体系复合材料及其制备方法和应用
CN108611653A (zh) 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
CN109706478A (zh) 氢气还原的薄层碳化钛负载光电解水用氧化亚铜光阴极材料及其制备方法
Abdi et al. Spray-deposited Co-Pi Catalyzed BiVO4: a low-cost route towards highly efficient photoanodes
CN110227478A (zh) 通过旋涂煅烧制备钴氧化物/钒酸铋复合材料的方法
He et al. NiFe layered double hydroxide/BiVO4 photoanode based dual-photoelectrode photocatalytic fuel cell for enhancing degradation of azo dye and electricity generation
Xie et al. Structural and photoelectrochemical properties of Cu-doped CdS thin films prepared by ultrasonic spray pyrolysis
Norazlina et al. Fabrication and characterization of p-Cu2O on n-TiO2 layer by electrodeposition method for heterojunction solar cells development
Raguram et al. Influence of boron doping on the structural, spectral, optical and morphological properties of TiO2 nanoparticles synthesized by sol–gel technique for DSSC applications
Tian et al. Enhanced charge injection and collection of niobium-doped TiO2/gradient tungsten-doped BiVO4 nanowires for efficient solar water splitting
CN106431005A (zh) 一种钛酸锶‑二氧化钛复合纳米管阵列薄膜及其制备方法与应用
He et al. Facile fabrication of Ga2O3 nanorods for photoelectrochemical water splitting
CN113293404A (zh) 一种异质结光阳极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180413

RJ01 Rejection of invention patent application after publication