CN107855109A - 一种提高含锌沸石类唑基骨架材料co2吸附性能的方法 - Google Patents

一种提高含锌沸石类唑基骨架材料co2吸附性能的方法 Download PDF

Info

Publication number
CN107855109A
CN107855109A CN201711068415.2A CN201711068415A CN107855109A CN 107855109 A CN107855109 A CN 107855109A CN 201711068415 A CN201711068415 A CN 201711068415A CN 107855109 A CN107855109 A CN 107855109A
Authority
CN
China
Prior art keywords
oxazolyl
framework material
containing zinc
zeolites containing
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711068415.2A
Other languages
English (en)
Inventor
刘双
刘澜涛
周艳丽
胡春华
王涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangqiu Normal University
Original Assignee
Shangqiu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangqiu Normal University filed Critical Shangqiu Normal University
Priority to CN201711068415.2A priority Critical patent/CN107855109A/zh
Publication of CN107855109A publication Critical patent/CN107855109A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明属于多孔材料气体吸附技术领域,公开了一种提高含锌沸石类唑基骨架材料CO2吸附性能的方法,该方法对预合成的含锌沸石类唑基骨架材料采用后修饰负载,通过氮原子与不饱和的锌金属中心的配位作用将哌嗪引入含锌沸石类唑基骨架材料的孔道中。利用碱性的哌嗪与酸性CO2分子之间的亲和性,增加含锌沸石类唑基骨架材料孔道对CO2的吸收吸附热,使含锌沸石类唑基骨架材料对CO2的吸附量增加,在原来基础上增加30~35%。本发明方法简单,可高效吸附CO2

Description

一种提高含锌沸石类唑基骨架材料CO2吸附性能的方法
技术领域
本发明属于多孔材料气体吸附技术领域,具体涉及一种提高含锌沸石类唑基骨架材料CO2吸附性能的方法。
背景技术
沸石类唑基骨架材料是由金属离子和唑基配体连接而成的三维晶体结构,具有特殊的孔道结构,微孔发达又高度集中,且具有大的孔隙率,是一种理想的高容量气体吸附材料。沸石类唑基骨架材料对于二氧化碳捕捉及分离表现出极大的潜力[Chemsuschem,2014, 7, 3202],可用于高纯气体净化领域,主要吸附去除二氧化碳杂质气体。研究表明,沸石类唑基骨架材料的孔道表面性质是影响其二氧化碳吸附性能的主要因素。因此,对沸石类唑基骨架材料的孔道进行修饰改性,有利用提高二氧化碳吸附性能。
发明内容
基于目前沸石类唑基骨架材料CO2吸附性能不够理想,本发明的目的在于提供一种提高含锌沸石类唑基骨架材料CO2吸附性能的方法。
为实现本发明目的,本发明采用的技术方案为:
所述的提高含锌沸石类唑基骨架材料CO2吸附性能的方法通过如下步骤实现:
1)将含锌沸石类唑基骨架材料超声分散于无水正己烷中,超声使含锌沸石类唑基骨架材料均匀分散,并施加氮气保护;
2)在步骤(1)所述分散液中加入哌嗪,保持磁力搅拌,回流反应;
3)步骤(2)所述反应结束后,对反应液抽滤,将固体产物加入无水正己烷中浸渍,抽滤;
4)重复步骤(3),将固体产物常温真空干燥,得到产品;
所述的含锌沸石类唑基骨架材料为ZIF-8,ZIF-8的BET比表面积在1000~1200m2/g。
优选:按照每30~50mL无水正己烷加入1克含锌沸石类唑基骨架材料的比例进行超声分散。
优选:哌嗪与含锌沸石类唑基骨架材料中不饱和锌离子的摩尔比为5~10:1。
本发明有益效果:本发明采用后修饰负载,通过氮原子与不饱和的锌金属中心的配位作用将哌嗪引入含锌沸石类唑基骨架材料的孔道中,利用碱性的哌嗪与酸性CO2分子之间的亲和性,增加含锌沸石类唑基骨架材料孔道对CO2的吸收吸附热,进一步将含锌沸石类唑基骨架材料的CO2吸附性能提高30~35%。该方法有利于提高此类材料的二氧化碳吸附性能。
附图说明
图1为二氧化碳吸附量测试装置图;图中1-氦气电磁阀;2-二氧化碳低流量电磁阀;3-二氧化碳高流量电磁阀;4-10 Torr压力传感器;5-1000 Torr压力传感器;6-1000Torr压力传感器;7-10 torr压力传感器;8-1000 Torr压力传感器;9-样品管电磁阀;10-P0参比管电磁阀;11-样品管;12-P0参比管;13-真空电磁阀;14-超高真空电磁阀;15-高真空电磁阀;16-涡轮分子泵;17-隔膜泵;18-真空冷凝电磁阀;19-真空冷凝三向阀;20-脱气站1号;21-脱气站2号。
图2为实施例1和对比例1的X射线粉末衍射谱图,图中1为实施例1,2为对比例1。
图3为实施例1、对比例1、对比例2和对比例3在298K下二氧化碳等温吸附曲线,图中1为对比例1,2为对比例2,3为对比例3,4为实施例1。
具体实施方式
下面结合具体实施例对本发明作进一步的解释说明,但具体实施例并不对本发明作任何限定。除非特别说明,实施例中所涉及的试剂、方法均为本领域常用的试剂和方法。
实施例1
(a)含锌沸石类唑基骨架材料的制备
将5 mmol的Zn(NO3)2·6H2O和40 mmol的2-甲基咪唑溶于200mL甲醇中,室温水浴搅拌1h,静置12h;产物用100 mL 甲醇抽滤洗涤,40ºC真空干燥12h,制得含锌沸石类唑基骨架材料。
(b)含锌沸石类唑基骨架材料负载哌嗪复合材料的制备
将1g的含锌沸石类唑基骨架材料置于圆底烧瓶中,加入35ml的无水正己烷,超声分散,氮气保护。在搅拌的同时,加入哌嗪1.55g。氮气保护下,90℃回流中速搅拌24h。将产品抽滤,并用正己烷浸渍-洗涤-抽滤(50mL*2)以去除未反应的哌嗪,常温真空干燥去掉正己烷,即制得产品。
对比例1
将5 mmol的Zn(NO3)2·6H2O和40 mmol的2-甲基咪唑溶于200mL甲醇中,室温水浴搅拌1h,静置12h;产物用100 mL 甲醇抽滤洗涤,40ºC真空干燥12h,制得含锌沸石类唑基骨架材料。
对比例2
(a)含锌沸石类唑基骨架材料的制备
将5 mmol的Zn(NO3)2•6H2O和40 mmol的2-甲基咪唑溶于200mL甲醇中,室温水浴搅拌1h,静置12h;产物用100 mL 甲醇抽滤洗涤,40ºC真空干燥12h,制得含锌沸石类唑基骨架材料。
(b)含锌沸石类唑基骨架材料负载乙二胺复合材料的制备
将1g的含锌沸石类唑基骨架材料置于圆底烧瓶中,加入35ml的无水正己烷,超声分散,氮气保护。在搅拌的同时,加入乙二胺1.20mL。氮气保护下,回流中速搅拌24h。将产品抽滤,并用正己烷浸渍-洗涤-抽滤(50mL*2)以去除未反应的乙二胺,常温真空干燥去掉正己烷,即制得产品。
对比例3
(a)含锌沸石类唑基骨架材料的制备
将5 mmol的Zn(NO3)2·6H2O和40 mmol的2-甲基咪唑溶于200mL甲醇中,室温水浴搅拌1h,静置12h;产物用100 mL 甲醇抽滤洗涤,40ºC真空干燥12h,制得含锌沸石类唑基骨架材料。
(b)含锌沸石类唑基骨架材料负载N,N-二甲基乙二胺复合材料的制备
将1g的含锌沸石类唑基骨架材料置于圆底烧瓶中,加入35ml的无水正己烷,超声分散,氮气保护。在搅拌的同时,加入N,N-二甲基乙二胺1.97mL。氮气保护下,回流中速搅拌24h。将产品抽滤,并用正己烷浸渍-洗涤-抽滤(50mL*2)以去除未反应的N,N-二甲基乙二胺,常温真空干燥去掉正己烷,即制得产品。
实施例1和对比例1的X射线粉末衍射谱图如图2所示。对于对比例1,主要的衍射峰与SOD型沸石结构相符合[Science, 2008, 319, 939.]。
实施例1的X射线衍射谱图衍射峰与对比例1基本重合,这表明:1)本发明所采用的哌嗪负载实验方法并没有对复合材料中金属唑基框架材料晶体结构构成影响;2)复合材料以对比例1的含锌沸石类唑基骨架材料为基础。
根据298 K下CO2的等温吸附曲线(如图3所示),得出实施例1、对比例1、对比例2和对比例3在1 atm下的CO2吸附量分别为1.32mmol/g、0.98mmol/g、1.03mmol/g和1.05mmol/g。通过计算可知,实施例1相比于对比例1,298 K和1 atm条件下的CO2吸附性能提高了34.7%;对比例2相比于对比例1,298 K和1 atm条件下的CO2吸附性能提高了5.1%;对比例3相比于对比例1,298 K和1 atm条件下的CO2吸附性能提高了7.1%。据此可知:1)哌嗪的加入明显提高了ZIF-8在常温常压下的二氧化碳吸附性能;2)哌嗪的加入,相比于同类的碱性含氮小分子-乙二胺和N,N-二甲基乙二胺,其对ZIF-8常温常压下二氧化碳吸附性能的提升更为显著。

Claims (4)

1.一种提高含锌沸石类唑基骨架材料CO2吸附性能的方法,其特征在于,通过如下步骤实现:
1)将含锌沸石类唑基骨架材料超声分散于无水正己烷中,并施加氮气保护;
2)在步骤(1)所述分散液中加入哌嗪,保持磁力搅拌,回流反应;
3)步骤(2)所述反应结束后,对反应液抽滤,将固体产物加入无水正己烷浸渍,抽滤;
4)重复步骤(3),将固体产物常温真空干燥,得到产品;
步骤1)中所述含锌沸石类唑基骨架材料为ZIF-8。
2.如权利要求1所述的提高含锌沸石类唑基骨架材料CO2吸附性能的方法,其特征在于,ZIF-8的BET比表面积在1000~1200m2/g。
3.如权利要求1所述的提高含锌沸石类唑基骨架材料CO2吸附性能的方法,其特征在于,步骤1)中按照每30~50mL无水正己烷加入1克含锌沸石类唑基骨架材料的比例进行超声分散。
4.如权利要求1所述的提高含锌沸石类唑基骨架材料CO2吸附性能的方法,其特征在于,步骤2)中哌嗪与含锌沸石类唑基骨架材料中不饱和锌离子的摩尔比为5~10:1。
CN201711068415.2A 2017-11-03 2017-11-03 一种提高含锌沸石类唑基骨架材料co2吸附性能的方法 Pending CN107855109A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711068415.2A CN107855109A (zh) 2017-11-03 2017-11-03 一种提高含锌沸石类唑基骨架材料co2吸附性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711068415.2A CN107855109A (zh) 2017-11-03 2017-11-03 一种提高含锌沸石类唑基骨架材料co2吸附性能的方法

Publications (1)

Publication Number Publication Date
CN107855109A true CN107855109A (zh) 2018-03-30

Family

ID=61700449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711068415.2A Pending CN107855109A (zh) 2017-11-03 2017-11-03 一种提高含锌沸石类唑基骨架材料co2吸附性能的方法

Country Status (1)

Country Link
CN (1) CN107855109A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970585A (zh) * 2018-07-27 2018-12-11 福州大学 一种阳离子后修饰的磁性金属有机骨架复合材料的制备方法及应用
CN109876681A (zh) * 2019-03-14 2019-06-14 浙江工业大学 一种高通量混合基质纳滤膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327392A (zh) * 2007-06-12 2008-12-24 韩国电力公社 用于酸性气体分离的吸收剂
CN102015065A (zh) * 2008-02-21 2011-04-13 埃克森美孚研究工程公司 使用沸石咪唑酯骨架结构材料分离氮和二氧化碳
CN102218298A (zh) * 2011-04-28 2011-10-19 华南理工大学 一种改性zif-8沸石咪唑酯骨架材料的制备方法
CN102335626A (zh) * 2011-07-20 2012-02-01 中国科学院化学研究所 一种合成沸石咪唑酯微纳骨架结构材料的方法
CN102361678A (zh) * 2009-03-20 2012-02-22 巴斯夫欧洲公司 使用用胺浸渍的金属有机骨架分离酸性气体的方法
CN102574886A (zh) * 2009-06-19 2012-07-11 加利福尼亚大学董事会 有机金属骨架和其制造方法
CN103203159A (zh) * 2013-04-08 2013-07-17 浙江师范大学 一种利用类沸石分子筛骨架材料分离氧化亚氮和二氧化碳的方法
CN104056598A (zh) * 2014-06-20 2014-09-24 浙江大学 一种MOFs基二氧化碳吸附剂及其制备方法和应用
CN105498720A (zh) * 2014-10-14 2016-04-20 中国石油化工股份有限公司 一种脱除混和气中h2s、co2和有机硫的固体吸附剂
EP2358726B1 (en) * 2008-12-18 2017-08-02 The Regents of the University of California Porous reactive frameworks
CN107106966A (zh) * 2014-10-24 2017-08-29 研究三角协会 用于从气体流中除去酸性气体的集成系统和方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327392A (zh) * 2007-06-12 2008-12-24 韩国电力公社 用于酸性气体分离的吸收剂
CN102015065A (zh) * 2008-02-21 2011-04-13 埃克森美孚研究工程公司 使用沸石咪唑酯骨架结构材料分离氮和二氧化碳
EP2358726B1 (en) * 2008-12-18 2017-08-02 The Regents of the University of California Porous reactive frameworks
CN102361678A (zh) * 2009-03-20 2012-02-22 巴斯夫欧洲公司 使用用胺浸渍的金属有机骨架分离酸性气体的方法
CN102574886A (zh) * 2009-06-19 2012-07-11 加利福尼亚大学董事会 有机金属骨架和其制造方法
CN102218298A (zh) * 2011-04-28 2011-10-19 华南理工大学 一种改性zif-8沸石咪唑酯骨架材料的制备方法
CN102335626A (zh) * 2011-07-20 2012-02-01 中国科学院化学研究所 一种合成沸石咪唑酯微纳骨架结构材料的方法
CN103203159A (zh) * 2013-04-08 2013-07-17 浙江师范大学 一种利用类沸石分子筛骨架材料分离氧化亚氮和二氧化碳的方法
CN104056598A (zh) * 2014-06-20 2014-09-24 浙江大学 一种MOFs基二氧化碳吸附剂及其制备方法和应用
CN105498720A (zh) * 2014-10-14 2016-04-20 中国石油化工股份有限公司 一种脱除混和气中h2s、co2和有机硫的固体吸附剂
CN107106966A (zh) * 2014-10-24 2017-08-29 研究三角协会 用于从气体流中除去酸性气体的集成系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEFEI LIU ET AL.: ""Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8"", 《ADSORPTION》 *
MEHDI VAHIDI ET AL.: ""Preparation of piperazine grafted amine functionalized UiO 66 metal organic framework and its application for CO2 over CH4 separation"", 《J. IRAN. CHEM. SOC.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970585A (zh) * 2018-07-27 2018-12-11 福州大学 一种阳离子后修饰的磁性金属有机骨架复合材料的制备方法及应用
CN109876681A (zh) * 2019-03-14 2019-06-14 浙江工业大学 一种高通量混合基质纳滤膜及其制备方法

Similar Documents

Publication Publication Date Title
Hao et al. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2
Li et al. Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO 2 capture
Ma et al. Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO2 adsorption
Qi et al. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules
Xian et al. Vapor-enhanced CO2 adsorption mechanism of composite PEI@ ZIF-8 modified by polyethyleneimine for CO2/N2 separation
Zhang et al. Investigating the intrinsic ethanol/water separation capability of ZIF-8: an adsorption and diffusion study
Yan et al. Amine-modified mesocellular silica foams for CO2 capture
Qin et al. Metal–organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage
Nune et al. Metal organic gels (MOGs): a new class of sorbents for CO 2 separation applications
CN108339522B (zh) 一种氨基酸@Cu-BTC复合吸附剂及其制备方法
CN105233802B (zh) 一种掺杂l‑精氨酸的铜基金属有机骨架材料及其制备方法
BR112014032145B1 (pt) composição adsorvente tratada termicamente, e usada em processos de adsorção e separação de gás, processo de adsorção para separar n2 de uma mistura de gás contendo n2, e, método para fabricar uma composição adsorvente aglomerada
CN107321317A (zh) 一种固态胺二氧化碳吸附材料、制备方法及应用
CN104907045B (zh) 二氧化碳高效捕集材料
Jiao et al. Synthesis and CO 2 capture properties of mesoporous MgAl (O) sorbent
CN107855109A (zh) 一种提高含锌沸石类唑基骨架材料co2吸附性能的方法
Huong et al. Improvement of selective separation of CO2 over N2 by transition metal–exchanged nano-zeolite
Pan et al. Efficient capture of iodine and methyl iodide using all-silica EMM-17 zeolite
Hassan et al. Enrichment of biogas through composite membrane of PEBA-1657/hierarchical T-type zeolite
Lee et al. Carbon dioxide absorption by hydroxyalkyl amidines impregnated into mesoporous silica: the effect of pore morphology and absorbent loading
CN109967039B (zh) 一种对co2具有高效分离的复合材料的制备方法及应用
KR102026884B1 (ko) 질소 및 탄화수소를 포함하는 공급 원료로부터 고순도 질소 및 선택적으로 고순도 탄화수소를 생산하기 위한 순환 방법
CN107840334A (zh) 一种极微孔多孔碳材料及其制备方法
Landström et al. Inducing hierarchical pores in nano-MOFs for efficient gas separation
Qasem et al. Enhancing CO 2 adsorption capacity and cycling stability of Mg-MOF-74

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180330