CN107759105A - 一种有效调控TiO2纳米线阵列线直径和垂直度的方法 - Google Patents

一种有效调控TiO2纳米线阵列线直径和垂直度的方法 Download PDF

Info

Publication number
CN107759105A
CN107759105A CN201710993639.8A CN201710993639A CN107759105A CN 107759105 A CN107759105 A CN 107759105A CN 201710993639 A CN201710993639 A CN 201710993639A CN 107759105 A CN107759105 A CN 107759105A
Authority
CN
China
Prior art keywords
tio
nano
perpendicularity
wire array
seed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710993639.8A
Other languages
English (en)
Inventor
楚亮
刘维
李兴鳌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201710993639.8A priority Critical patent/CN107759105A/zh
Publication of CN107759105A publication Critical patent/CN107759105A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

本发明公开了一种有效调控TiO2纳米线阵列线直径和垂直度的方法,主要涉及TiOx种子层以及其不同温度退火后对生成TiO2纳米线直径和垂直度的影响。TiCl4水解反应制备TiOx种子层,随后种子层在不同温度下退火,引起种子层的结晶度和表面粗糙度的变化,进一步调控下一步水热生产的TiO2纳米线阵列的线直径和垂直度。

Description

一种有效调控TiO2纳米线阵列线直径和垂直度的方法
技术领域
本发明属于一种调控的TiO2纳米线直径和垂直度的研究领域,主要涉及通过种子层不同温度退火调控结晶度和粗糙度进而调控TiO2纳米线阵列的直径和垂直度的方法。
背景技术
TiO2纳米线阵列具有有序直接的电荷传输通道,相对于纳米颗粒薄膜,具有更好的电荷转移能力,在光电器件领域表现出优异的性能。在过去的研究中,主要集中在TiO2纳米线阵列的长度上。TiO2纳米线阵列的线直径以及垂直度对基于该材料器件的性能理应有较大的影响,然后目前没有在不引起长度变化的情况下调控TiO2纳米线直径和垂直度度的报道。
本发明首次提出一种有效调控TiO2纳米线阵列线直径和垂直度的方法,填补了TiO2纳米线阵列制备领域内的不足,具有开创性的意义。
发明内容
本发明所要解决的技术问题是:如何通过TiOx种子薄膜层的调控进一步调控TiO2纳米线阵列的线直径和垂直度。
本发明解决其技术问题采用以下的技术方案:
(1)以TiCl4为钛源水解反应,在基底(如FTO导电玻璃)上生产一层TiOx种子层,用去离子水和乙醇清洗,随后自然干燥。
(2)不同温度退火TiOx种子层,改变种子层的结晶性和表面粗糙度。
(3)以不同温度退火TiOx种子层生长TiO2纳米线阵列,生长方法为水热法。种子层表面粗糙度越低,生长出的TiO2纳米线阵列越垂直;同时,结晶度越好,越能抑制纳米线生长初期的横向成核,从而纳米线的直径越小。
有益效果
本发明首次提出一种调控TiO2纳米线阵列线直径和垂直度的方法,具有以下主要的优点:调控工艺简单易行、材料成核生长原理清晰、成本低、无明显纳米线长度的变化等。
附图说明
图1为TiO2纳米线阵列的SEM俯视、截面图以及直径大小的分布图。其中(a-c)、(d-f)、(e-i)和(j-l)分别为直接在FTO玻璃上、100度、300度和500度退火种子层上生长的TiO2纳米线阵列的SEM俯视、截面图以及直径大小的分布图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
一种有效调控TiO2纳米线阵列线直径和垂直度的方法,主要涉及以下具体步骤:
(1)40-400mM TiCl4在水溶液中水解反应,如附图1中用的浓度为150mM,随后先用去离子水和乙醇清洗,自然干燥后得到TiOx薄膜;
(2)TiOx薄膜在空气中在100-550温度下退火,改变其结晶性和表面粗糙度,如附图中(a-c)为直接在FTO玻璃上生长TiO2纳米线阵列,(d-f)、(e-i)和(j-l)分别为100度、300度和500度退火种子层上生长的TiO2纳米线阵列。
(3)以TiOx薄膜为种子层,钛盐酸式水解生长出不同直径和垂直度的TiO2纳米线阵列,如附图中样品采取的是钛酸四正丁酯在盐酸溶液中150度水热反应。
附图1为TiO2纳米线阵列的SEM俯视、截面图以及直径大小的分布图。从图中可见,无种子层的纳米线垂直度最差,随着种子层退火温度的增大,纳米线的垂直度越来越好,这可能的原因是,沉积种子层后,FTO表面的粗糙度降低;另一方面,增加退火温度,种子层表面的纳米微粒具有更大的迁移能力,当温度降低时,由于能量最低原理,表面约平整,表面积越大,表面总能量越低。所以种子层增加退火,更平整的种子层获得了一个垂直度更高的纳米线阵列。同时,增强种子层退火温度,种子层结晶性越好,抑制了横向生长,生长的纳米线越细。

Claims (5)

1.一种有效调控TiO2纳米线阵列线直径和垂直度的方法,其特征在于,包括如下步骤:
(1)TiCl4在水溶液中水解反应,在基底上生长一层TiOx种子层,随后先用去离子水处理,然后用乙醇清洗,自然干燥;
(2)TiOx薄膜在空气中不同温度退火,改变其结晶性和表面粗糙度;
(3)以TiOx薄膜为种子层,生长出不同直径和垂直度的TiO2纳米线阵列。
2.根据权利要求1所述的方法,所述步骤(1)中钛源为TiCl4,溶液为去离子水,热处理温度为20~100度。
3.根据权利要求1所述的方法,其特征在于,所述的步骤(1)中,TiCl4的浓度为40:400mM。
4.根据权利要求1所述的方法,其特征在于,所述的步骤(2)中,退火温度为100~550度。
5.根据权利要求1所述的方法,其特征在于,所述的步骤(3)中,制备TiO2纳米线阵列的方法为酸式水解。
CN201710993639.8A 2017-10-23 2017-10-23 一种有效调控TiO2纳米线阵列线直径和垂直度的方法 Pending CN107759105A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710993639.8A CN107759105A (zh) 2017-10-23 2017-10-23 一种有效调控TiO2纳米线阵列线直径和垂直度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710993639.8A CN107759105A (zh) 2017-10-23 2017-10-23 一种有效调控TiO2纳米线阵列线直径和垂直度的方法

Publications (1)

Publication Number Publication Date
CN107759105A true CN107759105A (zh) 2018-03-06

Family

ID=61269128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710993639.8A Pending CN107759105A (zh) 2017-10-23 2017-10-23 一种有效调控TiO2纳米线阵列线直径和垂直度的方法

Country Status (1)

Country Link
CN (1) CN107759105A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153140A (zh) * 2011-04-15 2011-08-17 河南大学 一种TiO2纳米棒阵列的水热合成方法
CN102747424A (zh) * 2012-08-06 2012-10-24 苏州汶颢芯片科技有限公司 一种在ito玻璃上制备可调控直径和高度的氧化锌纳米线/管阵列的方法
CN104576074A (zh) * 2015-01-09 2015-04-29 哈尔滨工业大学 一种超长TiO2纳米线阵列薄膜光阳极的制备方法
CN104264131B (zh) * 2014-08-12 2016-11-09 西北大学 一种在ZnO纳米线阵列上生长的纤维状ZnO纳米线及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153140A (zh) * 2011-04-15 2011-08-17 河南大学 一种TiO2纳米棒阵列的水热合成方法
CN102747424A (zh) * 2012-08-06 2012-10-24 苏州汶颢芯片科技有限公司 一种在ito玻璃上制备可调控直径和高度的氧化锌纳米线/管阵列的方法
CN104264131B (zh) * 2014-08-12 2016-11-09 西北大学 一种在ZnO纳米线阵列上生长的纤维状ZnO纳米线及其制备方法
CN104576074A (zh) * 2015-01-09 2015-04-29 哈尔滨工业大学 一种超长TiO2纳米线阵列薄膜光阳极的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HSUEH-TAO CHOU ET AL.: "The effect of annealing temperatures to prepare ZnO seeds layer on ZnO nanorods array/TiO2 nanoparticles photoanode", 《SOLID-STATE ELECTRONICS》 *
JINGYANG WANG EA AL.: "Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
何苗等: "FTO表面预处理对TiO2纳米棒阵列的形貌及光电性能的影响", 《科技视界》 *
袁占强等: "种子层对TiO2纳米棒阵列取向生长及界面态的影响", 《高等学校化学学报》 *
裴润: "《硫酸法钛白生产》", 28 February 1982, 化学工业大学 *

Similar Documents

Publication Publication Date Title
Tao et al. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method
Hung et al. Low-temperature solution approach toward highly aligned ZnO nanotip arrays
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
CN103523827A (zh) 具有快速电子传输性能的三维枝状二氧化钛阵列的制法
Syed Zahirullah et al. Structural and optical properties of Cu-doped ZnO nanorods by silar method
CN104264131B (zh) 一种在ZnO纳米线阵列上生长的纤维状ZnO纳米线及其制备方法
CN102040187B (zh) 一种核壳结构ZnO纳米线阵列的生长方法
CN104311142A (zh) 一种垂直生长TiO2纳米片及其制备方法
CN102220637A (zh) BiOCl,BiOBr及Bi2S3的微/纳米分级结构
CN101429643A (zh) 透明导电氧化物薄膜的低温制备方法
CN102208487B (zh) 铜铟硒纳米晶/硫化镉量子点/氧化锌纳米线阵列纳米结构异质结的制备方法
CN103762316A (zh) 一种Sb2S3基有机无机复合太阳能电池的制备方法
Del Gobbo et al. In-suspension growth of ZnO nanorods with tunable length and diameter using polymorphic seeds
Lopez et al. Synthesis of zinc oxide nanowires on seeded and unseeded gold substrates: Role of seed nucleation and precursor concentration
Ku et al. Aqueous solution route to high-aspect-ratio zinc oxide nanostructures on indium tin oxide substrates
Kois et al. Electrochemically synthesised CdSe nanofibers and pearl-chain nanostructures for photovoltaic applications
CN103864460A (zh) 一种有序氧化钨纳米线阵列结构的制备方法
Soleimanzadeh et al. Sequential microwave-assisted ultra-fast ZnO nanorod growth on optimized sol–gel seedlayers
CN102013327A (zh) 氟离子掺杂的氧化锌多孔棱柱阵列薄膜及其制备和应用
CN107759105A (zh) 一种有效调控TiO2纳米线阵列线直径和垂直度的方法
CN102061498B (zh) 一种场发射用注射器状ZnO纳米结构阵列的制备方法
CN103074683A (zh) ZnO同轴同质pn结纳米棒及其制备方法
CN108147418B (zh) 一种平行排列的SiO2纳米线及其制备方法
Watanabe et al. Highly c-axis oriented deposition of zinc oxide on an ITO surface modified by layer-by-layer method
Kartini et al. Sol-gel derived ZnO nanorod templated TiO2 nanotube synthesis for natural dye sensitized solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180306

WD01 Invention patent application deemed withdrawn after publication