CN107689449B - 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法 - Google Patents

一种外延式碳纳米管包覆的锂离子正极材料及其制备方法 Download PDF

Info

Publication number
CN107689449B
CN107689449B CN201710819261.XA CN201710819261A CN107689449B CN 107689449 B CN107689449 B CN 107689449B CN 201710819261 A CN201710819261 A CN 201710819261A CN 107689449 B CN107689449 B CN 107689449B
Authority
CN
China
Prior art keywords
lithium ion
carbon nanotube
atmosphere
positive electrode
cathode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710819261.XA
Other languages
English (en)
Other versions
CN107689449A (zh
Inventor
陈龙
高玉仙
夏昕
李道聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gotion High Tech Co Ltd
Original Assignee
Gotion High Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gotion High Tech Co Ltd filed Critical Gotion High Tech Co Ltd
Priority to CN201710819261.XA priority Critical patent/CN107689449B/zh
Publication of CN107689449A publication Critical patent/CN107689449A/zh
Application granted granted Critical
Publication of CN107689449B publication Critical patent/CN107689449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种外延式碳纳米管包覆的锂离子正极材料及其制备方法,该正极材料由锂离子正极材料本体和由在锂离子正极材料表面的NiO催化诱导生成的外延式碳纳米管组成。制备方法步骤如下:将锂离子正极材料和镍浴按照质量比1:1‑2混合后加热搅拌,将镍源还原成Ni单质;将悬浊液中粉体离心分离后,在氧气气氛中热处理氧化Ni单质,再用氮气气吹扫去除残余氧气,再切换成CH4或C2H2气氛中保温,得到外延式碳纳米管包覆的锂离子正极材料。本发明工艺简单,制备的正极材料表面碳纳米管包覆均匀性好,外延式碳纳米管有利于形成正极材料颗粒之间的导电网络形成,提高材料的倍率性能和循环性能。

Description

一种外延式碳纳米管包覆的锂离子正极材料及其制备方法
技术领域
本发明属于锂离子电池技术领域,具体是一种外延式碳纳米管包覆的锂离子正极材料及其制备方法。
背景技术
锂离子电池技术发展迅速,现广泛应用于电子消费类电池及动力汽车电池体系。正极材料是锂离子电池的关键主材之一,一些常见的锂离子电极材料主要包括:正极材料三元电极Li(NixCoyMn1-x-y)O2(0<x<1,0<y<1),富锂锰基电极(xLi[Li1/3Mn2/3]O2·(1-x)LiMO2(0<x<1)),Li(NixCoyAl1-x-y)O2(0<x<1,0<y<1),LiMn2O4,LiNi0.5Mn1.5O4和LiFePO4。这些电极材料中,许多都存在导电性差的缺陷,如LiCoO2、LiMn2O4、Li4Ti5O12和LiFePO4电导率分别为10-3Scm-1、10-5Scm-1、10-9Scm-1和10-10Scm-1左右,严重影响了电池的电化学性能。
采用电导率高的材料包覆则能提高正极材料的电子导电率,从而改善其循环稳定性和倍率性能。例如LiFePO4的碳包覆,可提升了材料的电子电导率至10-5-10-6Scm-1,也实现了电极材料与电解液的物理隔绝。但对电极材料的碳包覆需要在惰性或还原性气氛中才能实现,而三元材料Li(NixCoyMn1-x-y)O2(0<x<1,0<y<1),富锂锰基电极(xLi[Li1/3Mn2/3]O2·(1-x)LiMO2(0<x<1)),Li(NixCoyAl1-x-y)O2(0<x<1,0<y<1),LiMn2O4,LiNi0.5Mn1.5O4等材料的合成需要在空气或氧气气氛中进行,因此,利用碳包覆来改善此类材料电子电导的应用案例较少。公开号为CN 104282886 A,CN 104282887 A,CN 104882589 A,CN 101894943 A,CN104466163 A专利中都报导了碳包覆的锂离子三元正极材料方法,但都采用正极材料与碳源液相混合及后续高温热处理的方法。
发明内容
本发明的目的在于提供一种外延式碳纳米管包覆的锂离子正极材料及其制备方法,用来改善锂离子电池正极材料的电化学性能。
本发明的目的可以通过以下技术方案实现:
一种外延式碳纳米管包覆的锂离子正极材料,该正极材料由锂离子正极材料本体和由在锂离子正极材料表面的NiO催化诱导生成的外延式碳纳米管组成。
进一步方案,所述的锂离子正极材料本体化学通式为:Li(NixCoyM1-x-y)O2
其中0.55<x≤0.9,0.09≤y≤0.2,M为Mn,Al,Zr,Ti中的一种或多种,其通用制备方法为将市售前驱体与锂源,金属氧化物混合后高温烧结所得。
本发明的另一个目的在于提供一种外延式碳纳米管包覆的锂离子正极材料的制备方法,包括以下步骤:
(1)将锂离子正极材料和镍浴按照质量比1:1-2混合后加热搅拌,将镍源还原成Ni单质,得悬浊液;
(2)将悬浊液中粉体离心分离后,在氧气气氛中热处理氧化Ni单质,再用氮气吹扫去除残余氧气,再切换成CH4或C2H2气氛中保温,得到外延式碳纳米管包覆的锂离子正极材料。
进一步方案,步骤(1)所述的镍浴是由镍源Ni(NO3)2·6H2O、水合肼、氨水、乙醇和去离子水组成。
进一步方案,所述镍源Ni(NO3)2·6H2O在镍浴中的质量体积比为6-10g/L;所述水合肼、氨水、乙醇和去离子水的体积比为2:3:5:20。
进一步方案,所述步骤(1)中的加热温度为60℃,搅拌时间为10-30min。
进一步方案,述步骤(2)中热处理温度为600-800℃,热处理时间:氧气气氛下0.5h,氮气气氛下0.5h,CH4或C2H2气氛下保温2-5h。
本发明的有益效果:
(1)本发明所使用的改性包覆方法,工艺简单,包覆层更均匀,易于调控;
(2)使用本发明的外延式碳纳米管包覆方法能够提高锂离子正极极材料的电导率,能够提高倍率性能等电化学性能;
(3)镍浴步骤里可以去除材料表面的残碱杂质,降低pH值,稳定了材料及电解液的界面,提升锂离子正极材料的循环性能。
附图说明
图1为本发明一种外延式碳纳米管包覆的锂离子正极材料制备方法的示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述。
一种外延式碳纳米管包覆的锂离子正极材料,该正极材料由锂离子正极材料本体和由在锂离子正极材料表面的NiO催化诱导生成的外延式碳纳米管组成。
锂离子正极材料本体化学通式为:Li(NixCoyM1-x-y)O2,其中0.55<x≤0.9,0.09≤y≤0.2,M为Mn,Al,Zr,Ti中的一种或多种。锂离子正极材料本体通过本领域常规方法制得。其通用制备方法为将市售前驱体与锂源,金属氧化物混合后高温烧结所得。
如图1所示。一种外延式碳纳米管包覆的锂离子正极材料制备方法,包括以下步骤:
(1)将市售的正极材料前驱体、锂源(Li/前驱体中金属摩尔比1.05)和一定量的金属氧化物混合后,一定气氛下高温烧结得到正极材料本体;
(2)将水合肼、氨水、乙醇和去离子水的按照体积为2:3:5:20比例配置成混合溶液,按照6-10g/L比例加入Ni(NO3)2·6H2O,混合搅拌均匀制成新鲜镍浴;
(3)将正极材料加入新鲜镍浴后,恒温60℃搅拌10-30min,抽滤后干燥得到表面含有Ni金属颗粒的锂离子正极粉体;
(4)将干燥后粉体置于气氛炉中,600-800℃下,通氧气气氛0.5h氧化Ni金属生成NiO,切换氮气气氛0.5h置换氧气,再切换CH4或C2H2气氛,保温2-5h,由于NiO的催化作用,裂解CH4或C2H2,得到外延式碳纳米管包覆的锂离子正极材料。
实施例1
(1)将市售的Ni0.8Co0.1Mn0.1(OH)2前驱体、LiOH·H2O(Li/(Ni+Co+Mn)摩尔比1.05)混合后,纯氧气氛下,785℃烧结15h得到LiNi0.8Co0.1Mn0.1O2正极材料本体;
(2)将水合肼、氨水、乙醇和去离子水的按照体积为2:3:5:20比例配置成混合溶液,按照8g/L比例加入Ni(NO3)2·6H2O,混合搅拌均匀制成新鲜镍浴;
(3)将LiNi0.8Co0.1Mn0.1O2正极材料200g加入300g新鲜镍浴后,恒温60℃搅拌10min,抽滤后干燥得到粉体;
(4)将干燥后粉体置于气氛炉中,700℃下,通氧气气氛0.5h氧化Ni金属生成NiO,切换氮气气氛0.5h置换氧气,再切换CH4气氛,保温2h得到外延式碳纳米管包覆的锂离子正极材料。
电化学性能见表1。处理前,材料的0.1C容量达到195.5mAh/g。处理后,材料的0.1C容量达到195.2mAh/g;倍率方面,处理后的材料在1C的容量达到184.4mAh/g,循环100周容量保持率98.6%,高于改性前的180.1mAh/g及100周循环容量保持率92.3%,倍率性能提升明显,主要原因则是改善了材料的表面电子电导性,利于材料倍率放电行为。循环性能提升则是由于水浴还原Ni过程中,水浴的存在去除了材料表面的残碱杂质,降低了pH值,稳定了材料及电解液的界面。
实施例2
(1)将市售的Ni0.6Co0.2Mn0.2(OH)2前驱体、LiOH·H2O(Li/(Ni+Co+Mn)摩尔比1.05)及0.03mol%的纳米氧化铝混合后,空气气氛下,835℃烧结15h得到LiNi0.582Co0.194Mn0.194Al0.03O2正极材料本体;
(2)将水合肼、氨水、乙醇和去离子水的按照体积为2:3:5:20比例配置成混合溶液,按照6g/L比例加入Ni(NO3)2·6H2O,混合搅拌均匀制成新鲜镍浴;
(3)将LiNi0.582Co0.194Mn0.194Al0.03O2正极材料200g加入200g新鲜镍浴后,恒温60℃搅拌30min,抽滤后干燥得到粉体;
(4)将干燥后粉体置于气氛炉中,800℃下,通氧气气氛0.5h氧化Ni金属生成NiO,切换氮气气氛0.5h置换氧气,再切换C2H2气氛,保温4h得到外延式碳纳米管包覆的锂离子正极材料。
实施例3
(1)将市售的Ni0.87Co0.1Mn0.03(OH)2前驱体、LiOH·H2O(Li/(Ni+Co+Mn)摩尔比1.05)混合后,纯氧气气氛下,725℃烧结15h得到LiNi0.87Co0.1Mn0.03O2正极材料本体;
(2)将水合肼、氨水、乙醇和去离子水的按照体积为2:3:5:20比例配置成混合溶液,按照10g/L比例加入Ni(NO3)2·6H2O,混合搅拌均匀制成新鲜镍浴;
(3)将LiNi0.88Co0.09Mn0.03O2正极材料200g加入400g新鲜镍浴后,恒温60℃搅拌20min,抽滤后干燥得到粉体;
(4)将干燥后粉体置于气氛炉中,600℃下,通氧气气氛0.5h氧化Ni金属生成NiO,切换氮气气氛0.5h置换氧气,再切换CH4气氛,保温5h得到外延式碳纳米管包覆的锂离子正极材料。
实施例4
(1)将市售的Ni0.9Co0.1(OH)2前驱体、LiOH·H2O(Li/(Ni+Co)摩尔比1.05)及0.03mol%的纳米氧化钛混合后,空气气氛下,735℃烧结15h得到LiNi0.873Co0.097Ti0.03O2正极材料本体;
(2)将水合肼、氨水、乙醇和去离子水的按照体积为2:3:5:20比例配置成混合溶液,按照6g/L比例加入Ni(NO3)2·6H2O,混合搅拌均匀制成新鲜镍浴;
(3)将LiNi0.873Co0.097Ti0.03O2正极材料200g加入400g新鲜镍浴后,恒温60℃搅拌30min,抽滤后干燥得到粉体;
(4)将干燥后粉体置于气氛炉中,700℃下,通氧气气氛0.5h氧化Ni金属生成NiO,切换氮气气氛0.5h置换氧气,再切换C2H2气氛,保温4h得到外延式碳纳米管包覆的锂离子正极材料。
实施例5
(1)将市售的Ni0.82Co0.12Mn0.06(OH)2前驱体、LiOH·H2O(Li/(Ni+Co+Mn)摩尔比1.05)与0.01mol%的纳米氧化锆混合后,纯氧气氛下,775℃烧结15h得到LiNi0.812Co0.119Mn0.0594Zr0.01O2正极材料本体;
(2)将水合肼、氨水、乙醇和去离子水的按照体积为2:3:5:20比例配置成混合溶液,按照8g/L比例加入Ni(NO3)2·6H2O,混合搅拌均匀制成新鲜镍浴;
(3)将LiNi0.812Co0.119Mn0.0594Zr0.01O2正极材料200g加入300g新鲜镍浴后,恒温60℃搅拌10min,抽滤后干燥得到粉体;
(4)将干燥后粉体置于气氛炉中,700℃下,通氧气气氛0.5h氧化Ni金属生成NiO,切换氮气气氛0.5h置换氧气,再切换CH4气氛,保温3h得到外延式碳纳米管包覆的锂离子正极材料。
表1为实施例1-5中材料电化学性能对比。
表1
Figure BDA0001405885240000071
由表1可见,本发明锂离子正极材料在包覆碳纳米管后,其电化学性能得到明显提高。
以上内容仅仅是对本发明的结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (3)

1.一种外延式碳纳米管包覆的锂离子正极材料的制备方法,其特征在于,包括以下步骤:
(1)将锂离子正极材料和镍浴按照质量比1:1-2混合后加热搅拌,将镍源还原成Ni单质,得悬浊液;
(2)将悬浊液中粉体离心分离后,在氧气气氛中热处理氧化Ni单质,再用氮气吹扫去除残余氧气,再切换成CH4或C2H2气氛中保温,得到外延式碳纳米管包覆的锂离子正极材料;
所述正极材料由锂离子正极材料本体和由在锂离子正极材料表面的NiO催化诱导生成的外延式碳纳米管组成;
所述锂离子正极材料本体化学通式为:Li(NixCoyM1-x-y)O2,其中0.55<x≤0.9,0.09≤y≤0.2,M为Mn, Al, Zr, Ti中的一种或多种,其通用制备方法为将市售前驱体与锂源,金属氧化物混合后高温烧结所得;
步骤(1)所述的镍浴是由镍源Ni(NO3)2·6H2O、水合肼、氨水、乙醇和去离子水组成;
步骤(2)中热处理温度为600-800℃,热处理时间:氧气气氛下0.5h,氮气气氛下0.5h,CH4或C2H2气氛下保温2-5h。
2.根据权利要求1所述的外延式碳纳米管包覆的锂离子正极材料的制备方法,其特征在于,所述镍源Ni(NO3)2·6H2O在镍浴中的质量体积比为6-10g/L;所述水合肼、氨水、乙醇和去离子水的体积比为2:3:5:20。
3.根据权利要求2所述的外延式碳纳米管包覆的锂离子正极材料的制备方法,其特征在于,所述步骤(1)中的加热温度为60℃,搅拌时间为10-30min。
CN201710819261.XA 2017-09-12 2017-09-12 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法 Active CN107689449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710819261.XA CN107689449B (zh) 2017-09-12 2017-09-12 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710819261.XA CN107689449B (zh) 2017-09-12 2017-09-12 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107689449A CN107689449A (zh) 2018-02-13
CN107689449B true CN107689449B (zh) 2020-04-17

Family

ID=61156220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710819261.XA Active CN107689449B (zh) 2017-09-12 2017-09-12 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107689449B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847480B (zh) * 2018-06-22 2021-06-01 天津先众新能源科技股份有限公司 一种对锂电池正极材料进行气相碳包覆的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527353A (zh) * 2009-03-10 2009-09-09 重庆大学 一种锂离子电池正极复合材料及其制备方法
CN101969112A (zh) * 2010-09-30 2011-02-09 湛江市聚鑫新能源有限公司 锂离子电池用正、负极材料及其改性方法
CN105529452A (zh) * 2016-03-02 2016-04-27 合肥国轩高科动力能源有限公司 一种锂二次电池正极用硫镍复合材料及其制备方法
CN106058218A (zh) * 2016-08-12 2016-10-26 合肥国轩高科动力能源有限公司 一种碳纳米管复合镍钴镁钛四元正极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527353A (zh) * 2009-03-10 2009-09-09 重庆大学 一种锂离子电池正极复合材料及其制备方法
CN101969112A (zh) * 2010-09-30 2011-02-09 湛江市聚鑫新能源有限公司 锂离子电池用正、负极材料及其改性方法
CN105529452A (zh) * 2016-03-02 2016-04-27 合肥国轩高科动力能源有限公司 一种锂二次电池正极用硫镍复合材料及其制备方法
CN106058218A (zh) * 2016-08-12 2016-10-26 合肥国轩高科动力能源有限公司 一种碳纳米管复合镍钴镁钛四元正极材料的制备方法

Also Published As

Publication number Publication date
CN107689449A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
JP7236631B2 (ja) ニッケル三元正極材料の表面改質方法
WO2022083120A1 (zh) 一种锂离子电池正极材料及其制备方法
US10916767B2 (en) Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
JP4063350B2 (ja) ゾル−ゲル法を利用した複合酸化物の製造方法
WO2017000741A1 (zh) 一种磷酸锰锂包覆镍钴锰酸锂正极材料及其制备方法
CN113363492B (zh) 一种复合包覆改性的高镍nca正极材料及其制备方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN106299282B (zh) 一种氮掺杂碳纳米管硫复合材料及制备方法
CN109192969B (zh) 一种三元镍钴锰复合材料、其制备方法与锂离子电池
CN108899531A (zh) 一种磷酸盐包覆镍钴铝三元正极材料的制备方法
CN108878828A (zh) 一种碳包覆的高镍三元正极材料及其制备方法
JP2022081638A (ja) リチウム二次電池用正極活物質、その製造方法、およびこれを含むリチウム二次電池
CN104733714B (zh) 锂离子电池正极材料的改性方法
WO2024055517A1 (zh) 一种磷铁类锂离子电池正极材料及其制备方法和应用
CN110668507A (zh) 一种富锂锰基包覆层的三元正极材料制备方法
CN110112387B (zh) 一种亚氧化钛包覆改性的正极材料及其制备方法
KR20240056745A (ko) 나트륨 이온 전지 양극재 및 그 제조 방법과 응용
CN108400299B (zh) 一种用于钠离子电池的CuFe2O4/C复合负极材料的制备方法
CN108767231A (zh) 一种LiNixCoyMnl-x-yO2/Li2O·B2O3复合正极材料的制备方法
CN113422039A (zh) 三元系复合氧化物基体材料、三元正极材料及制备方法与由其制备的锂离子电池
CN113044890A (zh) 一种正极材料及其制备方法和锂离子电池
CN107689449B (zh) 一种外延式碳纳米管包覆的锂离子正极材料及其制备方法
CN110697799A (zh) 一种多孔锂离子电池正极材料的制备方法
CN113113588B (zh) 一种利用共价界面工程策略制备锂快离子导体类材料包覆高镍三元层状氧化物的方法
Sun et al. Preparation of CeO2-coated Li1. 2Mn0. 54Co0. 13Ni0. 13O2 as cathode materials for Lithium Ion Batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant